搜档网
当前位置:搜档网 › 喷射压缩器的设计计算--李春萍

喷射压缩器的设计计算--李春萍

喷射压缩器的设计计算--李春萍
喷射压缩器的设计计算--李春萍

喷射压缩器的设计计算

李春萍1,杨 伟1,霍天瑞1,谈 新2

(1.内蒙古工业大学化工系,内蒙古呼和浩特 010062;2.包头二机厂,内蒙古包头 014000)

摘要:通过喷射压缩器的工艺参数,确定喷射压缩器的定型尺寸,设计合理的喷射压缩器结构,达到利用喷射压缩器节能的目的。

关键词:喷射压缩器;定型尺寸;设计计算;节能

中图分类号:TQ114.15 文献标识码:B 文章编号:1005-8370(2000)05-0031-03

化工生产是高耗能企业,全球能源危机迫使化

工行业相继进行节能改造,热泵应用做为一种节能措施被广泛采用[1,2]。喷射热泵是利用需要降压的蒸汽来引射压缩低位能热量,提高能量利用率的节能设备,近年来它在化工、轻工等行业中得到广泛应用[3],喷射热泵的设计主要是喷射压缩器的设计计算。

大膨胀比和中等压缩比的同相喷射器,是不发生相态变化的喷射器的最普遍情况,这种气体喷射器通常叫做喷射压缩器。喷射压缩器主要由工作喷

嘴、接受室、混合室、扩散器组成。选择喷射压缩器最适宜的混合室形状的理论方法至今无人提出,但经验证明,圆柱形混合室较之其他形状混合室具有明显优势[4],因此,本文即研究了带圆柱形混合室的喷射压缩器的设计计算问题。

1 喷射压缩器的结构及符号说明

喷射器结构见图1,图文中各种符号的意义如下

:

图1 喷射器简图

A —工作喷嘴

B —接受室

C —混合室

D —扩散器

1)符号意义

G ———质量流量,kg/s ; P ———压力,MPa ;

υ———比容,m 3/kg ; i ———焓,k J/kg ;

ω———速度,m/s ;a ———声速,m/s ;

1

32000年第5期 李春萍,等:喷射压缩器的设计计算

f ———截面积,m 2

;

2)简单下脚注号

3———临界截面;1———工作喷嘴出口截面;2———混合室入口截面;3———混合室出口截面;

P ———喷射压缩器喷嘴前的工作流体;H ———喷射压缩器接受室前的引射流体;C ———喷射压缩器扩散器后的压缩混合流体;3)复杂下脚注号

脚注的第一个符号表示流体类型,第二个符号表示截面。

4)名词含义

μ———喷射系数,是指喷射压缩器中引射流体

与工作流体的质量流量比值;

λ———折算等熵速度,是指气体在等熵流动时

的速度与临界速度之比;

a 3———气体的临界速度,是一种等于当地声速

的实际速度;

Π———相对静压力,即在给定截面上等熵流动

气体压力P 与滞止压力P o 之比;

ε———相对密度,即在给定截面上等熵流动流

体的密度ρ与滞止流体的密度ρ0之比;

q ———折算质量速度,即在给定截面上等熵流

动流体的质量速度与在临界截面上这种流体的质量速度之比。

2 喷射压缩器喷射系数的计算

喷射系数是指引射蒸汽与工作蒸汽的质量流量之比,其值可通过能量守恒来确定。

由i P +μi H =(1+μ

)i C 得

μ=

i C -i P

i H -i C

实际计算时,是根据临界速度a 3,相对压力∏、折算等熵速度λ和折算质量速度q 来确定的。

a 3=

2k

k +1

?RT 0(m/s )式中:K ———绝热指数;

R ———气体状态常数;

T 0———滞止温度,即在等熵滞止状态下

气体的温度;

θ=T H T P =a H 3

2

a p 3

2

指的是引射蒸汽与工作蒸汽的温度之比;由此μ=K 1λPH -k 3λC3K 4λC3-K 2λH2?

K 1:工作蒸汽的速度系数,K 1=0.834;

K 2:引射蒸汽的速度系数,K 2=0.812;K 3和K 4:蒸汽喷射器的速度系数,

K 3=1+φ3P C P P ?

∏C3-P H /P C

K ∏3λC3q PH K 4=1+φ3

P C P H ?

∏C3-∏C2

K ∏3λC3q H2

式中的φ3=0.9。

3 喷射器定型尺寸的计算

1)工作喷嘴入口截面积f P 的计算

f P =

G P ?υP ωP

ωP :工作蒸汽的流速,m/s ;

2)扩张式工作喷嘴临界截面积f P 3的计算

f P 3=

G P ?a P 3K P ?∏P 3ρP

3)工作喷嘴出口截面积f P1的计算

f P1=

f P 3

q P1

q P1可根据相对压力∏P1查取;

4)混合室出口截面积f 3的计算

由于f 3f P 3=

P P (1+μ)θP C ?q C3

所以

f 3=

P P (1+μ

)θP C ?q C3

f P 3

5)自由流束的长度L C1及工作喷嘴出口与混合

室入口间长度L C 的计算。

工作蒸汽在喷嘴出口截面上的流束具有均匀的速度场,当工作蒸汽和引射蒸汽相混合时,一起形成

紊流边界层,边界层的厚度沿流动方向逐渐加大。边界层以外侧面和速度等于零的介质相毗连,边界层以内侧面形成速度不变的中心区,中心区截面随着距喷嘴出口距离的增加而减小,至某一距离时,中心区消失,这段距离就称为“自由流束长度L C1”。在计算喷射压缩器时,喷嘴出口距混合室最适宜的

2

3纯 碱 工 业

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

距离要使自由流束的终截面(中心区消失处)与混合

室入口截面相等

图2 自由流束长度示意图

当喷射系数μ≤0.5时,自由流束长度L C1为

L C1=[

0.083+0.76μ-0.29]

d 1

2α当喷射系数μ≥0.5时,自由流束长度L C1为

L C1=0.37+μ4.4α

?d 1

α实验常数,对于弹性介质在0.07~0.09之间。

在距喷嘴出口截面L C1处,自由流束直径为d 4,当喷射系数μ≥0.5时,d 4=1.55d 1(1+μ);当喷射系数μ≤0.5时,

d 4=3.4d 1

0.083+0.76μ;

若d 3>d 4,图2(a ),则喷嘴出口截面与园柱形

混合室入口截面距离L C 取为L C =L C1;

若d 3

L C2是混合室入口段长度,在这一段上直径由

d 4变到d 3,而且L C2=

d 4-d 3

2

6)园柱形混合室长度L K 的计算

混合室长度一般取6~10倍的混合室直径,即:L k =(6~10)d 3

7)扩散器出口截面积f C 的计算

f c =

G P (1+μ

)ρC ?

2?ωC ρC 为压缩蒸汽的密度,kg/m 3

;

8)扩散器长度L π的计算

扩散器按8~100的扩散角确定,即L π=(6~7) (d c -d 3)

喷射热泵这种结构简单、操作可靠的节能设备,本身投资较小,一般为2万元/台;而节省蒸汽量却能达到2t/h ,因此投资回收期较短,是一项可广泛推广的节能措施。依据本文进行喷射压缩器的设计计算,确定其结构,并应用于工业生产中,其经济性和社会效益是明显的。参考文献:

[1] 夏璐,方诩,龚铸.热泵技术在轻工行业蒸发中的应用

[J ].广西轻工业,1997,(4):7.

[2] 许业仁.蒸发装置与热泵[J ].轻金属,1996,(11):3.[3] 上海化工学院.化学工程第一册[M].北京:化学工业

出版社,1980.

[4] E.B.索科洛夫,黄秋云译.喷射器[M].北京:科学出版

社,1997.

收稿日期:2000-07-10

欢迎投稿 欢迎订阅

3

32000年第5期 李春萍,等:喷射压缩器的设计计算本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2007,版权所有,仅供试用。

2019新蒸汽管道设计计算

项目名称:XX蒸汽管网 设计输入数据: ⒈管道输送介质:蒸汽 工作温度:240℃设计温度260℃ 工作压力: 0.6MPa 设计压力:0.6MPa 流量:1.5t/h 比容:0.40m3/kg 管线长度:1500米。 设计计算: ⑴管径: Dn=18.8×(Q/w)0.5 D n—管子外径,mm; D0—管子外径,mm; Q—计算流量,m3/h w—介质流速,m/s ①过热蒸汽流速 DN》200 流速为40~60m/s DN100~DN200 流速为30~50m/s DN<100 流速为20~40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ③考虑管道距离输送长取D0 =133 mm。 ⑵壁厚: ts=PD0/{2(〔σ〕t Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm; D0—管子外径,mm; P —设计压力,MPa; 〔σ〕t—在操作温度下材料的许用压力,MPa;

Ej—焊接接头系数; tsd—直管设计厚度,mm; C—厚度附加量之和;: mm; C1—厚度减薄附加量;mm; C2—腐蚀或磨蚀附加量;mm; Y—系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260℃时20#钢无缝钢管的许用应力〔σ〕t为101Mpa,Ej取1.0,Y取0.4,C1取0.8,C2取0. 故ts=1.2×133/【2×101×1+1.1×0.4】=0.78 mm C= C1+ C2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为φ133×4。 ⑶阻力损失计算 3.1按照甲方要求用φ89×3.5计算 ①φ89×3.5校核计算: 蒸汽流量Q= 1.5t/h 粗糙度K=0.002m 蒸汽密度v=2.5kg/m3 管内径82mm 蒸汽流速32.34m/s 比摩阻395.85Pa/m ②道沿程阻力P1=395.85×1500=0.59MPa; 查《城镇热力管网设计规范》,采用方形补偿器时, 局部阻力与沿程阻力取值比0.8,P2=0.8P1; 总压力降为P1+P2=1.07Mpa; 末端压力为0.6-1.07=-0.47Mpa 压力不可能为负值,说明蒸汽量不满足末端用户需求。 3.2按照φ108×4校核计算: ①φ108×4计算: 蒸汽流量Q= 1.5t/h 粗糙度K=0.002m 蒸汽密度v=2.5kg/m3 管内径100mm

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

蒸汽管道计算实例(DOC)

、尸, 、■ 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在 自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、 滑动支座。

6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该 状态下的密度P为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7MP,温度为240C查《管道设 计》表1 —3得蒸汽在该状态下的密度P为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一) 2、压力损失 5化』Ifp x 廿證丁?叫2—1

式中△ p—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2 取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; U P—介质的平均比容,m3/kg; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4—9得管道的摩擦阻力系数入=0.0196; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; 2E—局部阻力系数的总和,由表(一)得2E =36 H1、H2—管道起点和终点的标高,m; 1/Vp二P p—平均密度,kg/m3; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/VP很小,可以忽略不计所以式2—1变为 叫d 2—2 在上式中:5 Wp2/g U p=5 ? 2PnD /g表示速度头(动压头) 入l^/d为每根管子摩擦阻力系数。 把上述数值代入2—2 中得

一级水处理设计计算

第一章 污水的一级处理构筑物设计计算 1.1格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。 设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。 格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差,故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处 的格栅。 1.1.1格栅的设计 城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。 本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。其中,中格栅设在污水泵站前,细格栅设在污水泵站后。中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。 1.1.2设计参数 1、格栅栅条间隙宽度,应符合下列要求: 1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。特殊情况下,最大间隙可为100mm 。 2) 细格栅:宜为1.5~10mm 。 3) 水泵前,应根据水泵要求确定。 2、 污水过栅流速宜采用0.6~1.Om /s 。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。人工清除格栅的安装角度宜为30°~60°。 3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。 4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦

水处理常用计算公式汇总

水处理常用计算公式汇总 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿的计算,大家可有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2)废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除 25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙 50~100mm。 (3)大型废水处理厂可设置粗、中、细三道格栅。 (4)如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1)栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。 (2)栅渣的含水率一般为80%,容重约为960kg/m3。 (3)在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。3、其他参数 (1)过栅流速一般采用0.6~1.0m/s。 (2)格栅前渠道内水流速度一般采用0.4~0.9m/s。 (3)格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4)机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 (5)设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6)大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1)栅槽宽度B 式中,S 为栅条宽度,m;n 为栅条间隙数,个; b 为栅条间隙,m;为最大设计流量, m3/s;a 为格栅倾角,(°);h为栅前水深,m,不能高于来水管(渠)水深;v 为过栅流速, m/s。 (2)过栅水头损失如

蒸汽管道计算实例

、尸■、亠 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道 终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达

不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失:

2、压力损失 式中△ p —介质沿管道内流动的总阻力之和,Pa; Wp —介质的平均计算流速,m/s ;查《管道设计》表5-2 取 Wp=40m/s ; g —重力加速度,一般取 9.8m/s "; u p —介质的平均比容,m 3/kg ; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4— 9得 管道的摩擦阻力系数 入=0.0196 ; d —管道直径,已知d=200mm ; L —管道直径段总长度,已知 L=505m ; 艺E —局部阻力系数的总和,由表(一)得 艺E =36 H 1、战一管道起点和终点的标高,m ; 1/Vp= p p —平均密度,kg/m 3 ; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp 很小,可以忽略不计所以 2 103 d 厶+工? + (禺+駕)-1。5 2— 1

蒸汽管道设计计算

项目名称:XX 蒸汽管网设计输入数据: 1.管道输送介质:蒸汽 工作温度:240 C 工作压力: 0.6MPa 流量:1.5t/h 管线长度:1500 米设计计算: 设计温度260 C 设计压力:0.6MPa 比容:0.40m 3/kg ⑴管径: Dn=18.8 X(Q/w) 0-5 D n —管子外径,mm ; D0 —管子外径,mm ; Q —计算流量,m3/h w —介质流速,m/s ①过热蒸汽流速 DN》200 流速为40?60m/s DN v 100 流速为20 ?40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ⑵壁厚: DN100~DN200 流速为30 ?50m/s

ts = PD o/{2 (〔c〕Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm ; D0 —管子外径,mm ; P —设计压力,MPa ; 〔c〕t —在操作温度下材料的许用压力,MPa ; Ej—焊接接头系数; tsd —直管设计厚度,mm ; C—厚度附加量之和;:mm ; C1—厚度减薄附加量;mm ; C2—腐蚀或磨蚀附加量;mm ; 丫一系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260 C 时20#钢无缝钢 管的许用应力〔c〕t为101Mpa , Ej取1.0 , Y取0.4 , C i 取0.8 , C2 取0. 故ts = 1.2 X133/【2 X101 x i+1.1 X0.4】=0.78 mm C= C 1+ C 2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为? 133 X4。

污水处理设计常用计算公式

污水处理设计公式 竖流沉淀池[3] 中心管面积: f=q/vo=0.02/0.03=0.67m2 中心管直径: do=√4f/∏ =√4*0.67/3.14=0.92 中心管喇叭口与反射板之间的缝隙高度: h3=q/v1∏d1=0.02/0.03*3.14*0.92*1.35 沉淀部分有效端面积: A=q/v=0.02/0.0005=40m2 沉淀池直径: D=/4(A+f)/∏ =/4*(40+0.67)/3.14=7.2m 沉淀部分有效水深: h2=vt*3600=0.0005*1.5*3600=2.7m 沉淀部分所需容积: V=SNT/1000=0.5*1000*7/1000=3.5m3 圆截锥部分容积: h5=(D/2-d`/2)tga=(7.2/2-0.3/2)tg45=3.45m 沉淀池总高度: H=h1=h2=h3=h4=h5=0.3+2.7+0.18+0+3.45=6.63m 符号说明: q——每池最大设计流量,m3/s vo——中心管内流速,m/s v1 ——污水由中心管喇叭口与反射板之间的缝隙流出速度,m/s d1 ——喇叭口直径,m v——污水在沉淀池中的流速,m/s t——沉淀时间,h S——每人每日污水量,L/(人?d),一般采用0.3~0.8L/(人?d)N——设计人口数,人 h1——超高,m

h4——缓冲层高,m h3——污泥室圆截锥部分的高度,m R——圆锥上部半径,m r——圆锥下部半径,m 污水处理中ABR厌氧和SBR的设计参数 1)进水时间TF 根据每一系列的反应池数、总进水量、最大变化系数和反应池的有效容积等因素确定。 2)曝气时间TA 根据MLSS浓度、BOD-SS负荷、排出比、进水BOD浓度来确定。由于: 式中:Qs-污水进水量(m3/d) Ce-进水平均BOD(mg/l) V-反应池容积(m3) e-曝气时间比:e=n×TA/24 n-周期数 TA-1个周期的曝气时间 又由于: 1/m-排出比 则: 将e=n×TA/24代人,则: 3)沉淀时间Ts 根据活性污泥界面的沉降速度、排出比确定。 活性污泥界面的沉降速度和MLSS浓度有关。由经验公式得出: 当MLSS≤3000mg/l时 Vmax=7.4×104×t×MLSS-1.7 当MLSS>3000mg/l时 Vmax=4.6×104×MLSS-1.26 式中Vmax-活性污泥界面的沉降速度(m/h) t-水温℃ MLSS-开始沉降时的MLSS浓度(mg/l) 沉淀时间Ts=H×(1/m)+ε/Vmax 式中:H-反应池水深(m) 1/m-排出比

蒸汽管道计算实例

前言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 、在蒸汽管道相对位置最低处设置了输水阀。4 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。

蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该3。为4.21kg/mρ状态下的密度1假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设3。2.98kg/m 蒸汽在该状态下的密度ρ为—计》表13得2(一)管道压力损失: 1、管道的局部阻力当量长度表(一) 阻力系数总阻力管子公称直径数量名称(毫米)数(ξ)3 200 3 1 止回阀旋启式 3 煨10 0.3 弯200 R=3D 煨弯30 200 6 5 方型伸缩. 2、压力损失 2—1 式中Δp—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; 2;—重力加速度,一般取9.8m/s g3/kg;υp—介质的平均比

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

蒸汽供热管道中波纹管补偿器的设计计算

蒸汽供热管道中波纹管补偿器的设计计算 摘要:研究了蒸汽供热管道设计中常用的外压轴向型波纹管补偿器、拉杆型波纹管补偿器、铰链型波纹管补偿器在典型管段中的布置、设计计算,提出了波纹管补偿器的选用程序。 关键词:蒸汽供热管道;波纹管补偿器;热补偿 在城市直埋蒸汽供热管道的设计中最经济的补偿应为自然补偿,自然补偿利用弯曲管段中管道的挠曲来补偿热位移,但补偿能力有限。当自然补偿不能满足要求时,通常选用补偿器吸收热位移。常用补偿器有方型补偿器、套筒补偿器、球型补偿器及波纹管补偿器[1-6]。本文主要研究蒸汽供热管道设计中常用的波纹管补偿器及其在典型管段设计中的计算、选用。 1 常用的波纹管补偿器 波纹管补偿器是以波纹管作为挠性元件,并由端管及受力附件组成。波纹管补偿器补偿量大,补偿方式灵活,结构紧凑,位移反力小,使用过程中不需维护。可根据固定支座及设备的受力要求,灵活设计结构型式。 ①外压轴向型波纹管补偿器 外压轴向型波纹管补偿器由承受外压的波纹管、导流筒及进、出口管等组成。外压轴向型波纹管补偿器能吸收轴向位移,但不能承受管道内压产生的强大推力,因此外压轴向型波纹管补偿器一般用于低支架敷设、埋地管道敷设的直管段中。 ②拉杆型波纹管补偿器 拉杆型波纹管补偿器由经中间管道连接的2个波纹管及拉杆、端板、垫圈等组成。拉杆型波纹管补偿器能吸收任一平面内的横向位移并能承受管道内压产生的推力,因此广泛应用于高支架的地上敷设蒸汽供热管道,特别是管道穿越道路、高垂直段或水平转弯段的设计中。因此在设计中一般优先考虑使用拉杆型波纹管补偿器。 ③铰链型波纹管补偿器 铰链型波纹管补偿器由经中间管道连接的2个波纹管及销轴、铰链板和立板等结构件组成。2~3个铰链型波纹管补偿器配套使用时,能吸收一个平面内横向位移并能承受管道内压产生的推力。铰链型波纹管补偿器以角位移的方式吸收平面弯曲管段的热位移。一对铰链型波纹管补偿器吸收横向位移时,角位移一定,其所能吸收的横向位移与2个铰链型波纹管补偿器之间的距离成正比,在施工现场条件允许下尽量增加2个铰链型波纹管补偿器之间的距离,可更有效发挥其补偿能力。因此铰链型波纹管补偿器被广泛应用于蒸汽供热管道设计中。

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

蒸汽管道设计计算

蒸汽管道设计计算 项目名称 :XX 蒸汽管网 设计输入数据 : 1.管道输送介质:蒸汽 工作温度:240C 设计温度260 C 工作压力 : 0、 6MPa 设计压力 :0、6MPa 比容: 0、 40m 3 /kg 管线长度 :1500米。 设计计算 : ⑴管径: D n — 管子外径 ,mm; D 0 — 管子外径 ,mm; Q —计算流量,m 3/h w —介质流速,m/s ① 过热蒸汽流速 DN 》200 DN100~DN200 DN V 100 ② w=20 m/s Dn=102、 97mm w=40 m/s Dn=72、 81mm ③ 考虑管道距离输送长取 D 0 =133 mm 。 ⑵壁厚: ts = PD 0/{2(〔八 t Ej+PY )} tsd=ts+C C=C1+C2 ts —直管计算厚度 ,mm; D 0 — 管子外径 ,mm; P — 设计压力 ,MPa; "〕t —在操作温度下材料的许用压力,MPa; 蒸汽管道设计计算 Ej —焊接接头系数; tsd —直管设计厚度,mm; C —厚度附加量之与;:mm; Dn=18、8X (Q/w) 0、5 流量:1、 5t/h 流速为 流速为 流速为 40 ?60m/s 30 ?

C1—厚度减薄附加量;mm; C2—腐蚀或磨蚀附加量;mm; 丫一系数。 本设计依据《工业金属管道设计规范》与《动力管道设计手册》在260C 时20#¥冈无缝钢管的许用应力〔八t为101Mpa,Ej取1、0,丫取0、4,C i 取 0、8,C2 取0、 故ts= 1、2X 133/【2X 101 X 1+1、1 X0、4】=0、78 mm C= C1+ C2 =0、8+0=0、8 mm Tsd=0、78+0、8=1 、58 mm 壁厚取4mm 所以管道为? 133X 4。 ⑶阻力损失计算 3、1按照甲方要求用? 89X 3、5计算 ①? 89X 3、5校核计算: 蒸汽流量Q= 1 、5t/h 粗糙度K=0、002m 蒸汽密度v = 2、5kg/m3管内径82mm 蒸汽流速32、34m/s 比摩阻395、 85Pa/m ② 道沿程阻力P1=395、85X 1500=0、59MPa; 查《城镇热力管网设计规范》,采用方形补偿器时, 局部阻力与沿程阻力取值比0、8,P2=0、8P1; 总压力降为P1+P2=1、07Mpa; 末端压力为0、6-1、07=-0、47Mpa 压力不可能为负值,说明蒸汽量不满足末端用户需求。 3、2按照? 108X 4校核计算: ① ? 108X 4 计算: 蒸汽流量Q= 1、5t/h 粗糙度K=0、002m 蒸汽密度v = 2、5kg/m3管内径100mm 蒸汽管道设计计算 蒸汽流速21、22m/s 比摩阻131、94Pa/m ② 道沿程阻力P1=42、33X 1500=0、20MPa; 查《城镇热力管网设计规范》,采用方形补偿器时, 局部阻力与沿程阻力取值比0、8,P2=0、8P1; 总压力降为P1+P2=0、36Mpa; 末端压力为0、6-0、

水处理行业常用单位换算及计算

水处理行业常用单位换算及计算 必须知道的一些水处理行业常用单位换算及计算: 1.长度: 1英寸(inche)=25.4毫米(mm) 1英尺(ft)=30.480厘米(cm)=0.3048米(m) 2.面积: 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.75平方英尺(ft2) 3.体积: 1立方英尺(ft3)=28.317升(L)=0.028317立方米(m3) 1加仑(gal,Gallon)=4.54升(L) 值得关注的是 1加仑(gal,Gallon)=4.54升(L)是英制的计算方法 1加仑(美制)=3.78541 约3.79升 中国国内普遍采用的美制的算法,即1加仑(美制)=3.78541 约3.79升 4.重量: 1磅(lb,Pound)=0.455公斤(Kg) 1格令(grain)=64.8毫克(mg) 1千格令=0.0648千克 5.流速、流量: 1加仑/分(gpm)=0.272立方米/小时(m3/h)=272升/小时(L/h)=4.53L/min 顺流再生一般流速应该控制在4-6m/h 6.硬度: 1格令/加仑(grain/gal)=17.1毫克/升(mg/L) 1格令/加仑(grain/gal)=0.342毫克当量/升(mgN/L) CaCO3的克当量为50,即1克当量CaCO3的质量为50g; 1毫克当量/升=50毫克/升 (1千格令=1.297克当量) 7.水压: 1psi(磅/平方英寸)=0.07kg/cm2 8.温度: 华氏度是以其发明者GabrielD.Fahrenheir(1681-1736)命名的,一般用F表示,其结冰点是31℉,沸点为212℉。

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

水处理计算方法

1. 工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方 饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。 2. 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考 虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取。 呵呵,计算这个比较麻烦,短管计算更麻烦,公式不好打。总之,只知道压力和管径,无法算得流速的,因为管道起始端压力一定,管道的流速和管长和糙率成反比。 3. 我公司的一个车间内自来水量不够,现需增加。 开车时用水量在60个立方以上,但现在肯定达不到 不知道是增加管径好,还是加个增压泵好? 我的流体力学书丢了,现在没法算出60个立方,压力0.1MPa(表压)时,选用多少管径比较节能? 主管道大概有55米,每根次管道是3米到30米不等。 请高手帮我算下,或者给出公式。 问题补充:5寸的话根据我大约的计算(算他管径全算是5寸,共90米) (100*0.03^(1/3)/(9.817*90*(1/0.03)*0.012^2))^0.5*3.14*0.06^2*3600=110.151459649598 会不会太大了? 上面这个算是1是忽略了小管径的管子对流量的束缚;2是忽略了局部水头损失. 麻烦帮我想想看。 4. 选4"管道比较合适。保守的话就选5"的。 按照流量计算公式:V(流量)=v(流速)*0.25πD(管子内径)^2 流量V=1/60m/s 流速v取2m/s 计算得D=0.103m 当然,如果你取的流速越大管径就越小,但你给的水压力也不高,管道又比较长,所有取的2/s

蒸汽管道标准

下载文档收藏直埋蒸汽管道保温结构形式的探讨保温技术保温技术<<隐藏 水、暖通、电、空调与其他 !"#$% !&’#%()’($&) 直埋蒸汽管道保温结构形式的探讨 "胡摘要本文通过对直埋蒸汽管道设计、生产、施工等方面调研,针对其保温结构形式的几个技术要点进行了分析、探讨。关键词直埋蒸汽管道保温结构形式外滑动钢套钢形式骏响,必要时应适当调整保温结构各层保温材料的厚度,以确保保温结构安全。保温计算中,对土壤、保温材料的导热系数选取不能草率,这两个系数的选取正确与否,往往影响保温效果和管道运行的安全性。跨度很大,其大土壤的导热系数在 $) ’ , #) ’- . *) / 之间,小与土壤种类、含水量大小、化学成分、埋设条件等多种因素有关。在工程设计时应坚持实测当地土壤导热系数或求助当地地“质部门提供资料,认真确定土壤导热系数值。如果只根据无资料可查时取 () ’- . *) /”确定土壤导热系数不是科学的,因为不能确切反映管道所处土壤的实际情况,造成计算结果误差很大。例如南方高水位地区和西部干燥地区的土壤导热系数值相差成倍,那么保温结构计算结果也会差异很大,如果草率计算,会造成管道表面温度过高或过低,破坏管道保护层。所以,应使用当地实测土壤导热系数值来计算。对各种保温材料的导热系数,不能简单地以厂家提供的单体数值为准,而应搞清楚该数值是在何种温度、何种条件、哪一级检测部门测定的,有否导热系数方程式的条件下,然后尽量参照行业标准确定的导热方程式来选取、确定导热系数。例如微孔硅酸钙,笔者见过几个厂家标出的导热系数都不同,这时《应凭据标准硅酸钙绝热制品》 . 2($"++ & (++3 的相关条文 01 选取,送样检测后确定导热系数。 #) # 保温外护层的选取由于蒸汽管道介质温度高,保温结构不可能做成像直埋热““水管道那样三位一体”需要做成脱开式”即工作钢管与保,,温层或外护层脱开。国外基本是采用钢外护层,我国对于蒸汽管道直埋外护层的选择以玻璃钢和钢外护层为多。早期采用玻璃钢做外护层后,由于对玻璃钢制造工艺机理了解不透,采用了简陋方式,同时,玻璃钢外护层标准当时还没有颁布,造成制造的玻璃钢外护层质量低下,运输、安装过程中违规操作,导致外护层出现局部开裂破坏,动摇了采用玻璃钢的信心。目前最多的是仿照国外采用钢外护层,即钢地沟形式,“优势”它的是前二、三年不易发现问题,不过从长远来看,其防腐、电化学、检修等问题还没有较好的解决。从地域来看,南方地区主要矛盾是防水问题,采用钢外护层的居多;沿海地区不仅有防水问题,更关键是防止氯、硫氧化物的腐蚀问题,但钢套外护层防腐解决困难,因此采用按“标准”制造的玻璃钢外护层既能防水更能防腐;西部地区干旱,地下水位低,解决的主要矛盾是土壤热阻值等问题,所以外护层也不宜采用价高的钢外护层。 #) % 保温层材料保温层材料最初从采用岩棉、复合硅酸盐毡与聚氨酯泡沫复合过渡到采用微孔硅酸钙瓦与聚氨酯泡沫复合。但由于硅酸钙瓦之间有缝隙,当管道运行后容易产生裂缝,导致局部热流外泄,从而破坏了有机保温层和保护层,虽然对此也采取了一些措施,但仍未能解决热流不外泄的问题。当前,硅酸钙、高密度玻璃棉管壳、硅珠复合等一批新的保温层材料正在通过实践检验。结构形式的探讨 #) 4“外滑动钢套钢”“(目前,国内采用的外滑动式钢套钢”结构形式钢地沟)基 () 直埋蒸汽管道技术发展概况由于节能、环保的需求,由于市容规划的要求,地下直埋技术应运而生。高温管道的敷设由传统的架空和地沟敷设到直埋技术的应用是个飞跃,与地沟和架空敷设相比它有许多优点:如占地少、不影响市容景观和城市规划、施工快捷、大量减少建材用量和土建费用、社会环境效益好、工程造价低、维护费用低、节约能源、使用寿命长等。近几年来我国在直埋蒸汽管道技术的研究、开发、应用等方面,取得了长足进步。保温结构形式和选用材料之多样化,工程实践规模之大,在世界上也是少见的。国外公司采用的最大管径为 !’$$**,而目前

2021年蒸汽管道计算实例

前言 欧阳光明(2021.03.07) 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。

4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一) 2、压力损失

2—1式中Δp—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H1、H2—管道起点和终点的标高,m; 1/Vp=ρp—平均密度,kg/m3; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp很小,可以忽略不计所以式2—1变为 2—2 在上式中:5·Wp2/gυp=5·Wp2ρp /g表示速度头(动压头) λ103L/d为每根管子摩擦阻力系数。

相关主题