搜档网
当前位置:搜档网 › 浮动式齿圈行星齿轮箱齿轮故障振动频谱模型研究

浮动式齿圈行星齿轮箱齿轮故障振动频谱模型研究

行星齿轮箱状态监测和故障诊断概述

行星齿轮箱状态监测和故障诊断概述 摘要 行星齿轮箱与定轴齿轮箱截然不同,具有独一无二的特性,因此,在定轴齿轮箱上应用良好的故障诊断方法并不适用于行星齿轮箱。对定轴齿轮箱的状态监测和故障诊断方面的研究已经很多,但是对行星齿轮箱在这方面的研究还不足,然而,我们发现关于行星齿轮箱的状态监测和故障诊断方面的文献已经出现在学术期刊、会议纪要和技术报告中。这篇论文的目的就是回顾和总结这些文献,并为对这个方向感兴趣的研究人员提供综合的参考。本文对行星齿轮箱和定轴齿轮箱的结构作了简单介绍和对比,阐述和分析了行星齿轮箱独有的特征和故障特点,基于目前可采用的方法对行星齿轮箱的状态监测和故障诊断方面的研究进展进行了总结。最后,讨论了目前存在的问题,指出了潜在的研究方向。 1.引言 由于行星齿轮箱具有大传动比和重载特征,其被广泛应用在航空航天、汽车和重工行业,例如直升飞机、风力涡轮机和重型卡车[1,2]。行星齿轮箱通常工作在恶劣的工况下,例如,其关键组件齿轮和轴承的损伤模式一般为疲劳裂纹和点蚀[3],行星齿轮箱的任一失效都有可能引起整辆列车的停车,造成巨大的经济损失和人员伤亡,行星齿轮箱的状态监测和故障诊断目的是避免事故的发生,并降低用户使用成本。 齿轮箱的状态监测和故障诊断已经引起了越来越多的关注[4-6]。然而大多数的研究集中在定轴齿轮箱上,定轴齿轮箱所有的齿轮都绕某一根固定轴转动[7-10](见图1)。行星齿轮箱与定轴齿轮箱最根本的不同就在于其具有一组行星 图1 齿轮传动机构,图2所示的行星齿轮箱是一组负责的齿轮系统。他包括一个内齿圈,一个绕着固定轴转动的太阳轮和几个绕着自身中心转动的同时又绕着太阳轮中心转动的行星轮。由于具有如此复杂的传动结构,行星齿轮箱表现出独有的特性,因此,在定轴齿轮箱上应用很好的故障诊断方法不适用于行星齿轮箱。 与定轴齿轮箱相比,行星齿轮箱在状态监测和故障诊断方面的研究没有那么

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

齿轮箱故障诊断

风力发电机组齿轮箱故障诊断 摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。 关键词:风电机齿轮箱轴承状态检测 一、风电机组齿轮箱的结构及运行特征 我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。 1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。 2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

齿轮箱的故障类型及振动机理改

第2章齿轮箱的故障和振动信号 2.1齿轮箱故障的主要形式 齿轮箱系统是包含齿轮、轴承、传动轴及箱体等结构的复杂系统。其中主要故障发生在齿轮、轴承和传动轴上。在齿轮箱的诊断中,一般只给出是否产生故障及产生故障的位置,根据振动信号的特点,一般常见的典型故障形式有齿轮失效、轴和轴系失效、箱体共振和轴承疲劳脱落和点蚀等几种【5】。 在这些常见故障中,齿轮和滚动轴承的故障占齿轮箱故障的80%左右【4】。因此,对齿轮和滚动轴承的故障类型和振动机理进行剖析,对于识别齿轮箱故障类型有重要的意义。 2.1.1齿轮的故障类型及振动机理 (1)齿轮的故障类型齿轮的故障类型大致可分为以下两种类型: 1)由制造误差和装配误差引起的故障。具体的故障包括齿轮偏心、齿距偏差、齿形误差、轴线不对中、齿面一段接触等故障。齿轮制造时造成的主要缺陷有:偏心、齿距偏差和齿形误差等。齿轮装配不当,也会造成齿轮的工作性能恶化。当齿轮的这些误差较严重时,会引起齿轮传动中忽快忽慢的转动,啮合时产生冲击引起较大的振动和噪声等【5】。 2)运行中产生的故障齿轮除上述故障外,其在本身运行过程中也会形成许多常见的故障,例如断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重交合等等。齿轮预定寿命内不影响使用的磨损成文正常磨损,如果因使用不当、用材不当、接触面存在硬颗粒以及润滑油不足等原因引发早期磨损,将导致齿轮形变、重量损失、齿厚变薄、噪声增大等后果,甚至会导致齿轮失效。其中若润滑油不足,还会导致齿面胶合,胶合一旦发生,齿面状况变差,功耗增大,从而使得振动信号变强。 (2)齿轮的振动机理一对啮合齿轮,可以看作一个具有质量、弹簧和阻尼的振动系统,其力学模型如图2-1所示。 图2-1齿轮对的力学模型 其振动方程为【4】: M r X+CX+K t X=K t E1+K t E2(t)2-1式中 X——为沿作用线上齿轮的相对位移 K(t)——齿轮啮合刚度 M r——齿轮副的等效质量

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

减速机常见故障合集

减速机常见故障合集 基础 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转10-15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况,发现不符合要求时应立即更换,一般至少每半年换油一次。 简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因? 答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b.齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动精度较差等。还有圆弧齿轮的壳体中心距误差太大。

c.润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润滑性能较差。 d.油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b.是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c.减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因? 答:a.润滑油不合格或使用时间过长。 b.润滑油过多,不利于齿轮箱内机构散热。 c.机件损坏。机件损坏包括齿轮点蚀严重,断齿,轴承保持架、内外圈、滚珠损坏以及轴承抱死或轴变形严重; d.箱体外部被杂物或灰尘覆盖。当减速机周围堆放东西或机体表面长期没有清理时,有可能因杂物或灰尘的覆盖导致减速机散热不完全以致使油温升高; e.冷却装置堵塞或失效。冷却装置同减速机一样置于灰尘较大的厂房中,如果长期工作而未清理内部的管路造成冷却装置堵塞或冷却装置坏掉时,都会引起减速机油温升高;

参考 齿轮箱开题报告

本科学生毕业设计 (论文)开题报告 1、目的及意义(含国内外的研究现状分析) 1.2 选题背景 磨煤机是将煤块破碎并磨成煤粉的机械,它是煤粉炉的重要辅助设备。煤在磨煤机中被磨制成煤粉,主要是通过压碎、击碎和研碎三种方式进行。磨煤机经常运行于高速、重载以及恶劣环境等条件下,齿轮及齿轮箱作为机械设备中必不可少的连接和传递动力部件由于加工工艺复杂,装配精度要求高,又常常在高速度、重载荷的环境下连续工作,出现故障的概率较高。而齿轮的失效又是诱发机械故障的重要因素。齿轮箱在机械设备中是核心部件,出现故障后将会导致整个机械设备的失效。轻则降低生产质量或导致停产,重则会造成事故。据统计传动机械中齿轮引发的故障占 80%左右,旋转机械中约为 10%左右。齿轮箱的故障和失效轻则带来经济损失,重则造成人员伤亡。据日本新日铁会社的统计,在机器的总故障次数中,齿轮故障约占 10.3%左右,而在齿轮箱的失效零件中,齿轮失效占 60%左右,轴承和轴故障约为 30%左右。对齿轮箱进行状态检测与故障诊断中采用这些先进的技术,能够节省大量的人力、物力、财力,提高设备的利用率,可及时发现故障隐患,提高故障诊断效率,降低因为齿轮箱故障而引起的灾难,因此对电厂磨煤机齿轮箱进行状态监测与故障诊断具有重大的意义。 1.2 齿轮箱故障诊断的发展现状 齿轮箱振动与噪声的研究发展比较早,但是将齿轮的振动与噪声运用到齿轮箱的故障诊断中却是在20世纪60年代中期,美国的Buckingham和德国的Niemann,英国学者H.Optiz仔细研究了齿轮振动与噪声的原理,指出其是传动功率和齿轮传动误差及齿轮精度的函数。随后一些简单的齿轮箱故障诊断技术开始出现,这些技术手段主要是通过测量齿轮箱工作过程中一些简单的振动参数,如有效值、振动峰值、均方根值等来对齿轮箱进行直接分析。70年代末到80年代中期,利用频谱来分析齿轮箱的故障取得了重大成果,其中B.Randall和James I.Taylor等人作

齿轮箱中齿轮故障的振动分析与诊断 张尊建

齿轮箱中齿轮故障的振动分析与诊断张尊建 发表时间:2018-01-03T20:53:20.910Z 来源:《基层建设》2017年第28期作者:张尊建 [导读] 摘要:近年来,齿轮箱中齿轮故障振动分析与诊断问题得到了业内的广泛关注,研究其相关课题有着重要意义。 身份证号码:32032219830328XXXX 江苏南京 210012 摘要:近年来,齿轮箱中齿轮故障振动分析与诊断问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了DANA6000系列齿轮箱的故障,并结合相关实践经验,分别从多个角度与方面就DANA6000系列齿轮箱的日常保养展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:齿轮箱;齿轮故障;振动;诊断 1 前言 作为一项实际要求较高的实践性工作,齿轮箱中齿轮故障振动分析的特殊性不言而喻。该项课题的研究,将会更好地提升对齿轮故障的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其振动分析与诊断工作的最终整体效果。 2 概述 发动机的物理特性决定了齿轮箱的存在,通过改变齿轮箱的档位,使得发动机工作时的转速与车轮转速产生不同的转速比,保证发动机始终处在其最佳的动力性能状态下。由于近几年科技的不断进步,齿轮箱的结构创新不断引入机电液一体化设计思路,导致齿轮箱的问题越来越复杂,因此作为车辆传动系统中不可或缺的一环,我们学会分析处理齿轮箱的故障情况就显得尤为重要。 铜冠矿山建设股份有限公司采用的大型矿用卡车多为阿特拉斯公司生产的MT2010型卡车,与其配套使用的齿轮箱型号为DANA6000系列,该系列的动力换档齿轮箱拥有功能强大的设计,达到了最严格的工程机械领域的工作效率标准,具有可靠性和耐用性,使用时与德纳公司先进的电子控制系统的组合,最终完美体现在车辆的运营效率上。该款齿轮箱的传动比如下表1所示,常规额定值如表2所示。 DANA6000系列齿轮箱的特征和优点主要体现在这几个方面:(1)前进和后退都有4个档位;(2)自动换档时,齿轮会精确的变化,以配合特定工况下的速度和负载情况;(3)前后轴可以脱离,从而使车辆自行调整以适应各种地形和崎岖的路面;(4)各个离合器可各自断开,提高运行效率;(5)微电控制系统调节换档,提高车辆使用寿命和燃油效率;(6)在发动机故障的情况下,应急转向泵提供持续的转向动力。 3 DANA6000系列齿轮箱的故障分析 DANA6000系列齿轮箱是平行六轴式常啮合齿轮式动力齿轮箱,它的前进档位和后退档位各有4个,可在不切断动力的情况下进行升降挡操作,通过电液控制系统操控带有湿式摩擦片的离合器来实现,此外出于便于日常拆卸、维修和保养的目的,其设计制造时将换挡离合布置在齿轮箱箱体之外。该系列齿轮箱装配的MT2010型矿用卡车承担了冬瓜山铜矿巷道采掘矸石运输的主要任务,由于井下恶劣的工作环境,保养不到位,长时间高负荷工作等因素,齿轮箱会发生各种各样的故障情况,常见的故障现象以及排除方法如下。 (1)发动机正常运转但不能行驶:①档位按钮失灵→检查挡位选择器的电路及挡位的准确性;②齿轮箱内油位过低→按要求补充新油;③油泵损坏或渗漏造成供油不足→更换新件,检查密封面及油封。 (2)挡位选择器不工作、挡位不清或跳挡、掉挡:①选择器保险丝处接触不良或保险丝断→检查、更换保险丝;②各电缆插口接触不良→检查各插口处的接触情况;③挡位选择器内部故障→修理或更换当前挡位选择器;④车辆电气系统故障或电压不稳→检查车辆电气系统,测量电压(理论值为24V)。 注:车辆挡位时有时无、跳挡、掉挡等现象也可能是电磁阀阀内的阀芯卡滞造成的。 (3)润滑油油温过高:①齿轮箱内的油位过高或过低→按要求注油;②透气帽堵塞→检查透气帽;③离合器打滑→检查离合器油压;④制动器抱死或拖带严重→检查并进行调整;⑤轴承烧损、油路不畅→更换烧损零件、检查油路及油泵;⑥离合器打滑或烧损→检查工作压力,更换烧损零件;⑦长期重负荷工作→暂停作业,待冷却后再行工作;⑧冷却器损坏→检查冷却器(正常情况下润滑油在冷却器内的进出油口的温差在10℃左右);⑨车辆内其他零部件过热经热传导后导致变速器过热→检查其他零部件(桥、发动机等)是否正常。(4)驱动力不足:①变矩器入口油压低→检查齿轮箱油位;更换或清洗滤清器及粗滤网;检查操纵阀中的压力控制阀及控制压力阀是否正常;②离合器打滑→检查各离合器油压及活塞油封并且检查有无过载现象,这种现象多数是由于离合器片有烧损引起。 (5)控制压力偏低、不稳或表跳:①操纵阀的阀芯卡滞→清洗或更换操纵阀;②油泵吸空→检查油位、各油道及滤网有无堵塞,确定原因后做出相应处理方法;③油泵失效→更换新件;④离合器活塞油封严重漏油→更换油封,重新安装调试。 (6)车辆行驶过程中,齿轮箱位置有异常响声:零件磨损过大造成剥落,或者是安装齿轮箱不到位引起→检查连接螺栓位置。 4 DANA6000系列齿轮箱的日常保养 齿轮箱的故障问题主要来源之一就是日常保养维护不到位,不及时,因此,工作人员能否做好齿轮箱的日常保养工作就显得很关键,齿轮箱的养护工作主要体现在以下几个方面:(1)及时进行油位检查决定是否加油,且加油要适量,油液种类要符合要求;(2)定期跟换齿轮箱油液和滤油器等,防止造成,油温升高,齿轮箱离合器卡死等故障;(3)定期更换纸垫,密封圈等易耗件,防止油液泄露等問题;(4)工作前做好齿轮箱的检漏以及检查连接件缺失问题,莫让小故障变成大问题;(5)避免长时间,高负载工作;(6)定期进行清洗保养。 作为一款井下工作车辆的关键部件,恶劣的工作环境,高负荷的生产任务,有效地维护手段和设备等因素严重影响齿轮箱的使用寿命,齿轮箱的故障问题可能层出不穷。检修人员需要掌握必备的故障分析能力以及维修技巧以应对工作中出现的问题,但是我们不能寄希望于大修,深度检查来解决问题,培养驾驶员的良好操作习惯,切实做好日常保养,积极改善路面状况等因素更加重要。 箱体的生产规划针对齿轮箱箱体加工生产部门的规划工作是真整个生产线中最为重要的环节。齿轮箱体作为齿轮箱整体构造中零部件最繁杂,尺寸最多变、加工耗时最长以及最容易出现质量问题的重要部分,其整体的规划组成尤为重要,所以在这个部分中,设计人员应根据其生产的齿轮箱特征进行针对该箱壳体生产的工作。首先,将针对箱壳体的生产分为粗加工部分和细加工部分,其具体施工工艺如下图二: 齿轮箱加工区域物流的规划设计根据齿轮箱的箱体生产规划,科学且合理的设置加工区的物流配套规划模式,能够在很大程度上提高

减速机常见故障合集

减速机常见故障合集 1基础 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转10-15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况,发现不符合要求时应立即更换,一般至少每半年换油一次。 2简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因?

答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b.齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动精度较差等。还有圆弧齿轮的壳体中心距误差太大。 c.润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润滑性能较差。 d.油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b.是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c.减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因? 答:a.润滑油不合格或使用时间过长。 b.润滑油过多,不利于齿轮箱内机构散热。

振动测试数据处理方法的应用分析

振动测试数据处理方法的应用分析 【摘要】采用电测法对产品进行振动的加速度测量,通过FFT方法进行时域—频域的转换,运用加速度与位移之间积分的关系,将加速度值转换为位移值,试验证明该方法行之有效。 【关键词】振动测量;FFT;位移转换 0.绪论 根据要求需对产品进行整机振动测量,准确掌握改产品的振动状态和振动特征。本文详细阐述了振动测试及信号分析技术,介绍了一种用加速度传感器测量振动位移信号的方法。即采用FFT方法进行加速度与位移相互转换的方法,将加速度谱转换成位移谱,以达到对位移的测量。 1.振动测试系统基本结构与组成 机械振动参数可以用电测法、机械法、光学法等进行振动测量。目前电测法应用广泛,电测法是将工程振动的参量转换为电信号,经电子线路放大后显示和记录。它与机械式和光学式的测量方法比较,有以下几方面的优点: (1)具有较宽的频带。 (2)具有较高的灵敏度和分辨率。 (3)具有较大的动态范围。 (4)振动传感器可以做得很小,以减小传感器对试验对象的附加影响,还可以做成非接触式的测量系统。 (5)可以根据被测参量的不同来选择不同的振动传感器。 不同测量方法的物理性质虽然各不相同,但是组成的测量系统基本相同,它们都包含传感器、测量放大电路和显示记录三个环节。电测法测量系统图见图1所示。 机械振动参数的测量,是对运行状态下的机械振动进行测量和分析,以期获得振动体的振动强度——振级和有关信息。因为振动体上某一点的振动可以用振动位移、速度或加速度对时间的历程来描述,而且三者之间存在着简单的微分和积分的关系,因此,只要测得其中的一个,就可以通过未分、积分电路获得另外两个参数。 2.振动测试系统组成

齿轮箱实验

实验报告:齿轮箱故障检测班级:机自07 姓名:林海成 学号:10011166 日期:2013、5

一、实验目的 1、了解齿轮箱的整体结构以及故障类型 2、了解一种齿轮箱信号采集系统以及软件的操作 3、学习分析齿轮箱的故障特征 二、实验内容 1、分别在齿轮箱齿轮以及轴承正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 2、控制单一变量,在齿轮断齿、缺齿以及轴承滚动体、内圈、外圈故障的情况下进行数据采集。 三、实验步骤 1、打开计算机,启动软件,进行参数设置。 2、在齿轮箱齿轮正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 3、依次换上断齿、缺齿的故障齿轮,分别对其在两频率下的信号进行采集。 4、拆除齿轮部分,在齿轮箱轴承正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 5、依次换上滚动体、内圈、外圈故障的轴承,分别对其在两频率下的信号进行采集。 6、重新将正常的齿轮以及轴承安装回原来位置,清理工作台,结束实验。 四、实验分析 分析程序如下: clear; clc; load('f:\a.txt'); x=a(1:length(a),1);

y=a(1:length(a),2); fs=length(x)/(max(x)-min(x)); n=length(x)-1; t=n/fs; N=2^nextpow2(n); z=fft(y,N); mag=2*abs(z)/N; f=(0:length(z)-1)'*fs/length(z); figure(1); plot(f(1:N/2),mag(1:N/2)); grid on axis([0600000.15]) xlabel('频率/Hz') ylabel('幅值/V') title('幅频谱') figure(2); z2=rceps(y); plot(x,z2) grid on axis([00.1-0.20.2]) xlabel('时间/s') ylabel('幅值/V') title('倒频谱') figure(3); plot(x,y); grid on; xlabel('时间/s') ylabel('幅值/V') title('时间曲线') 理论数据如下: 轴承参数: 滚动体个数8,滚动体半径0.3125英寸,运动节径1.318英寸,压力角0度皮带轮传动比2.48 齿轮参数: 大齿轮齿数18,传动比1.5000000

轨道交通齿轮箱振动噪声分析

目录 摘要......................................................................................................................................... I Abstract .................................................................................................................................... II 第1章绪论. (1) 1.1 课题的研究背景及意义 (1) 1.2 齿轮系统动态激励国内外研究现状 (2) 1.3 齿轮箱振动噪声国内外研究现状 (4) 1.4 课题的来源及主要研究内容 (6) 1.4.1 课题来源 (6) 1.4.2 研究对象 (6) 1.4.3 研究的主要内容 (6) 第2章齿轮箱动力学与振动噪声基本理论 (7) 2.1 基本理论 (7) 2.1.1 动力学基本理论介绍 (7) 2.1.2 多柔体动力学仿真控制理论基础 (7) 2.2 本课题动力学建模假设 (9) 2.3 齿轮箱系统振动噪声产生机理 (10) 2.3.1 齿轮时变啮合刚度 (11) 2.3.2 误差动态激励 (12) 2.3.3 啮合冲击 (13) 2.4 本章小结 (14) 第3章齿轮箱动力学模型的建立 (15) 3.1 软件介绍 (15) 3.1.1 SIMPACK概述 (15) 3.1.2多体系统建模基本概念 (15) 3.1.3 ABAQUS子结构算法 (16) 3.1.4 ABAQUS与SIMPACK接口 (17) 3.2 低地板齿轮箱柔性体动力学模型 (18) 3.2.1 轴承模型 (18) 3.2.2 齿轮啮合模型 (19) 3.2.3 低地板齿轮箱多刚体模型 (21) 3.2.4 齿轮箱各主要零部件柔性体模型建立 (21) 3.2.5 齿轮箱柔性体模型 (23)

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

行星齿轮箱故障诊断技术的研究进展

行星齿轮箱故障诊断技术的研究进展 摘要:行星齿轮箱在现代机械中应用十分广泛,并且还发挥着重要作用。但是在运行过程中由于环境问题、使用问题等原因,会出现不同程度的磨损或裂纹等故障,而现有的故障诊断技术又不能满足其发展的需要,因此加大对诊断技术的研究,有效解决齿轮箱故障问题,有助于提高机械设备的运行效率。 关键词:齿轮箱;故障;原因;发展 齿轮箱属于故障多发部件,对于行星齿轮箱故障的诊断主要是通过对相关数据的监测进行分析、处理,从而判断齿轮箱的运行状况,达到事前预防、事后处理的目的。 1行星齿轮箱常见故障分析 行星齿轮箱常见故障有齿轮损伤、轴承损坏及运转异常、断轴、渗漏油、齿轮箱异响、振动较大、油温油压异常、连接螺栓损坏、润滑系统故障等。 1.1齿轮损伤 齿轮损伤主要包括轮齿折断(断齿)、齿面疲劳(点蚀)、齿面胶合、齿面磨损等。对齿轮箱中齿轮出现的故障,国内外的观察结果或报告都较为一致,即发生最多的仍为齿面的损坏,从应用初期的微点蚀,到逐步扩展的大面积点蚀、剥落或磨损。断齿常由细微裂纹逐步扩展而成。突发性的阵风或者电网故障导致的突发载荷、发生故障时的紧急制动等,都会产生较大载荷,有时甚至超过额定载荷数倍,引起齿轮的过载折断。在行星齿轮箱内部行星级、低速中间级、高速级都曾出现的情况中,齿轮断齿的情况最为严重,一旦出现断齿的情况,大部分齿轮箱需要下塔进行维修 1.2轴承损坏 轴承是行星齿轮箱中一个相对薄弱的环节。统计数据表明早期的行星齿轮箱故障大多是由轴承引起的。随着现场经验的增多,目前轴承引起的故障明显降低,但在齿轮箱故障中仍占有一定比例,其失效常常会引起齿轮箱灾难性的破坏。由于涉及选型不当、安装偏差、润滑不足等方面的原因,极易发生轴承烧毁,滚道表面发生点蚀、裂纹、表面剥落等损坏及轴承温度异常等情况。 1.3齿轮箱渗漏油 齿轮箱的渗漏油情况主要发生在箱体与齿圈结合面、端盖与箱体结合面、低速轴和高速轴轴颈处、润滑冷却系统管接头处等。箱体与齿圈结合面漏油的可能原因有箱体与齿圈连接螺栓松动、箱体与齿圈结合面安装密封胶条的环槽设计不当,密封胶条选用不合适等。

振动测试与分析报告汇编

输电线微风振动测试技术报告 任课教师:刘娟 组员: 2016年6月10日

1 大跨越输送线路背景 线路大跨越是输电线路的重要组成部分,在线路运行过程中具有特殊重要地位。架空电线路经常发生超过允许幅值的微风振动,往往导致某些线路部件的疲劳损坏,如导地线的疲劳断股,金具、间隔棒及杆塔构件的疲劳损坏或磨损等,其中导线疲劳断股是架空送电线路普遍发生的问题,严重时需要将全线路更换为新导线。所有的高压送电线路都受到微风振动的影响,尤其在线路大跨越上,因具有档距大、悬挂点高和水域开阔等特点,使风输给导地线的振动能量大大增加,导地线振动强度远较普通档距严重。 2 微风振动的原理与波形特点 2.1 微风振动原理 导线的振动是由于风作用于导线而产生的“卡门旋涡”造成的。把一个圆柱体,水平地放在风洞的试验中,并把圆柱体的两端刚性地固定住。如图1所示,当风vs从垂直于圆柱体轴线的方向作用于圆柱体后,在圆柱体的背后将产生旋涡,这种旋涡称为卡门旋涡。旋涡发生在圆柱体背风面处,上下交替地产生,不断地离开圆柱体向后延伸,渐渐消失。由于这种上下交替旋涡的产生,风对于圆柱体的作用除了有一个水平的压力外,在圆柱体上还有一种上下交替的力,在此交变力的作用下圆柱体产生持续振动。 图1 卡门涡街 卡门和司脱罗哈最早研究了旋涡的特性后发现,当出现振动时旋涡有比较稳定的频率f ,常称为司脱罗哈频率或冲击频率,这个交变力的频率与风速,圆柱体 s 的直径有如下关系:

另外,导线之所以能够持续振动其主要是由于同步效应作用的结果。风作用 于圆柱体后,由于产生卡门旋涡,根据上式,导线会以一定的频率f s 开始振动,如 果风对圆柱体产生的冲击频率与圆柱体的固有频率f 相同时,则会引起谐振使作用于圆柱体上的交变冲击力变大,激发圆柱体产生较大振幅的振动。当圆柱体以 f 0=f s 的频率振动后,气流将受到导线振动的控制,导线背后的旋涡将表现为很好 的顺序性,其频率也为f 0。当风速在一定范围内变化时,(约相应f 的士20%范围), 圆柱体的振动频率和旋涡的频率都不变化仍保持为f s ,这种现象称为“同步效应”。 电线受到微风(1一3级)吹拂时,由于产生卡门旋涡和同步效应(或锁定效应),加之电线振动振幅的自限作用,使得电线产生小振幅的持续振动,即微风振动。电线的振动波形有单一的驻波和行波,最常见的是有由以上二者混合成的拍频波。 (1)图所示波来回于档内时能出现这种波形,可观察到某点发生间歇性振动, 行波产生的原因可能是由于杆塔振动带动线夹上下振动,一般在振动发生的初期可能出现这种行波。 图2行波 (2)图3所示当档内具有同样风吹时会产生这种大体上具有相同振幅和频率 且波节、波腹位置不变的驻波。

齿轮噪音原因分析

齿轮噪音原因分析 齿轮传动噪声产生原因及控制 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,

风力发电机组齿轮箱振动测试与分析

风力发电机组齿轮箱振动测试与分析 齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表m/s2

5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在故障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且有明显的周期性,其频率约大20Hz。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率的幅值不对称)。 从5#机组功率谱密度函数(图7)可以看出,在频率177Hz、196Hz、531Hz及其倍频处幅值和4#机组(图8)相应测点相比成倍数增大。而177Hz是高速轴转频的7倍频,196Hz、531 Hz是齿轮箱第II级、第I级的啮合频率,因而可判断故障出现在第II级、第Ⅲ级。

风电齿轮箱常见故障及原因分析

风电齿轮箱常见故障及原因分析 发表时间:2019-04-23T11:22:16.550Z 来源:《基层建设》2019年第2期作者:郭金伟 [导读] 摘要:根据多年来制造和检修风力发电机齿轮箱的经验,总结了风力发电机齿轮箱的常见故障,分析了各种故障模式。 弗兰德传动系统有限公司天津市 300400 摘要:根据多年来制造和检修风力发电机齿轮箱的经验,总结了风力发电机齿轮箱的常见故障,分析了各种故障模式。目的是快速准确地确定风力发电机变速箱运行维护人员的故障点,并采取相应的处理方法,提供技术指导。 关键词:风电齿轮箱;常见故障;原因 引言 目前,世界能源供应主要依靠煤炭和石油等常规能源,但这些都是不可再生资源,给人们的生活带来了好处,但也造成了大气和水资源的严重污染,并日益威胁着人们的身体健康。和心理健康。寻找和开发替代清洁能源已成为全世界关注的焦点。风能是一种可再生资源,存在于自然界的每个角落。用它来发电将具有清洁无污染,投资回报高,取之不尽,建设周期短等优点,已被世界各国广泛采用。 近年来,中国还在海南和内蒙古建立了几个风力发电厂。根据制定国家发展计划的“十一五”规划,中国计划到2010年底使用国产设备建设1000万千瓦的大型风力发电机组。由于风资源的限制,风力涡轮机通常建在人口稀少的地方,长时间经受恶劣的自然环境,造成频繁的故障和经济损失。动力传动机构 - 风力齿轮箱是发电机组的重要组成部分,也是故障概率最高的部分。如何进行日常检查,提前预测运行中的工作状态和异常类型,合理安排设备零件的更换和维护,提高发电机组的运行效率并确保供电非常重要。 1、风电齿轮箱结构形式 风力齿轮箱是适用于恶劣环境的高速变速箱,由于风和风资源的影响,其动力非常复杂。在早期设计阶段,应充分考虑负荷,风速,风向突变,强风,地理环境等因素对变速箱的影响。目前,风力发电机齿轮箱的整体设计:一级行星+两级平行轴设计,两级行星+平行一级轴设计,内齿轮NW型旋转齿轮,一级行星+一级平行轴设计。变速箱主要由内齿轮,行星齿轮,太阳能轴,齿轮,齿轮轴,轴承,箱体等组成,输出功率由各种传动结构提供。 2、风电齿轮箱常见故障 2.1、齿面磕碰、划伤、胶合、点蚀 初始变速箱操作具有异常振动或声音并具有一定的规律性。振动频率与齿轮箱的旋转速度和齿轮齿数成数字匹配。这种类型的破损是由于在组装过程中刮擦牙齿表面引起的。您必须根据振动频率判断变速箱的特定部件是否有缺陷。齿面的粘接和点腐蚀也是在齿轮箱操作期间引起振动和声音异常的缺陷,这通常在一段操作之后发生。由于润滑不良,传动啮合位置的油膜受损,因此接触表面的金属焊接到齿面上的金属上。长期加载时,齿轮接触面上的疲劳剥落会导致精确腐蚀并出现凹坑。牙齿表面点蚀的主要原因是牙齿表面的疲劳强度不足。此外,材料,硬度,缺陷,齿轮精度差,润滑不良和油温高都会导致齿面点蚀,根据齿面的粘接程度和点蚀程度,可以通过磨削,更换润滑油系统,提高系统的过滤精度等来改善,并且应该认真对待塔架。 大量研究和观察表明微点蚀主要发生在低速,而其他品种很少见,通常认为其原因与风力涡轮机齿轮箱的运行状态有关,例如改变速度和负载,此外,油的表面粗糙度和表面光洁度,水含量,粘度,润滑性等也具有微点蚀,直接影响牙齿表面的润滑不足也会使牙齿表面之间的润滑剂状况恶化,这将加剧牙齿表面上的摩擦发生和微点蚀。齿轮强度设计不足,齿轮热处理质量不能满足要求,齿面硬度不足,可能导致点腐蚀的发生。 2.2、齿轮箱的振动及声音异常 相对运动是变速箱产生的振动和声音的来源。齿轮和轴承是变速箱传动的主要部件。因此,齿轮箱的振动和异常声音主要是由齿轮断裂,齿面碰撞和齿轮引起的。在操作过程中产生胶合和点蚀,长时间齿轮箱的齿面生锈,轴承质量问题,联轴器未对准,动态平衡过大严重影响齿轮箱内部零件的运动。 2.3、轴承失效 作为旋转部件,轴承受到齿轮箱结构尺寸的限制,并且必须承受复杂的负载和各种恶劣的工作环境。特别是承受高速和重载的输出级轴承通常成为变速箱中最薄弱的环节。轴承故障也是风力涡轮机齿轮箱振动和噪音的主要原因。 齿轮箱清洁度差,异物进入轴承工作表面,导致轴承表面之间产生相对滑动摩擦,导致工作表面金属连续磨损。局部摩擦产生热量,导致摩擦表面局部变形和摩擦微焊。相对运动引起磨损,外圈或滚动元件呈槽状磨损,润滑性差,滚动元件的不规则滚动导致磨损失效。轴承断裂失效的主要原因是缺陷和过载的两个主要因素。当主机突然失效或安装不正确时,施加的载荷超过材料强度限制并且轴承过载和损坏。轴承材料本身具有诸如微裂纹,缩孔,气泡,超标的夹杂物,过热结构和局部烧伤等缺陷,在冲击过载或剧烈振动的情况下将导致缺陷处的缺陷断裂。 2.4、润滑与密封系统 2.4.1、油温和油压异常 变速箱油的高温是风力齿轮箱中的常见故障,主要原因是油泵温度控制阀出现故障,因此润滑油不会通过冷却风扇而是直接返回变速箱,另外,需要检查变速箱的油位是否正常,油位传感器是否损坏,油冷却器是否工作或设定值是否过高。齿轮箱润滑油的入口压力低,这通常是由润滑系统的过滤元件堵塞引起的,因此润滑油不能通过过滤元件有效地送到冷却风扇或齿轮箱,从而产生润滑油不足和差压传感器报警,通过清洁或更换相关部件来消除问题。 2.4.2、润滑油黏度变化 风电润滑油工作时间长,每天运行,负载大,油温高,润滑油比其他润滑油易氧化,氧化形成的污泥和在强负荷作用下破裂的油链会改变油。产品的粘度导致油的粘度先下降然后再次上升。如果油的粘度低,则承载能力不足,这将增加齿轮和轴承的磨损。油分析中的粘度变化和污染程度增加,元素中的金属超标。当润滑油粘度高时,机械操作阻力增大,流动不顺畅,油温和油压过高,润滑不及时,齿面胶合并且轴承被加热和变形。 2.4.3、磨损检测 由于当齿轮啮合时齿面接触是渐开线接触,因此几乎不会发生相对滑动,并且由于润滑油的作用,具有更高精度的齿轮非常小,异常

相关主题