搜档网
当前位置:搜档网 › 几何证明选讲

几何证明选讲

几何证明选讲
几何证明选讲

专题七立体几何

立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间直角坐标系.在本专题中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们要了解空间坐标系,会用空间两点间距离的坐标公式。

§7-1 点、直线、平面之间的位置关系

1.空间直线和平面的位置关系:

(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.

(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a?α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .

(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .

2.空间作为推理依据的公理和定理:

(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.

(3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:

【例题分析】

例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.

求证:(Ⅰ)E、C、D1、F四点共面;(Ⅱ)CE、DA、D1F三线共点.

【分析】对于(Ⅰ)中证明“E、C、D1、F四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE、DA、D1F三线共点”,可证其中两条相交直

线的交点位于第三条直线上.

证明:(Ⅰ)连接D 1C 、A 1B 、EF . ∵E ,F 分另是AB ,AA 1的中点,

∴EF ∥A 1B ,,2

1

1B A EF =

又A 1D 1∥BC ,A 1D 1=BC , ∴A 1D 1CB 是平行四边形. ∴A 1B ∥D 1C ,EF ∥D 1C ,

∴E 、C 、D 1、F 四点共面. (Ⅱ)由(Ⅰ)得EF ∥CD 1,,2

1

1CD EF =

∴直线CE 与直线D 1F 必相交,记CE ∩ D 1F =P , ∵P ∈D 1F ?平面A 1ADD 1,P ∈CE ?平面ABCD , ∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点. ∵平面A 1ADD 1∩平面ABCD =AD , ∴P ∈AD ,

∴CE 、DA 、D 1F 三线共点.

【评述】1、证明多点共面、多点共线、多线共面的主要依据: (1)证明多点共面常用公理2及其推论; (2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上; (3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内.

2、证明a ,b ,c 三线交于一点的主要依据: (1)证明a 与b 相交,c 与b 相交,再证明两交点重合; (2)先证明a 与b 相交于点P ,再证明P ∈c .

例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面P AD .

【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.

证明:方法一,取PD 中点E ,连接AE ,NE .

∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,

∴MA ∥CD ,.21

CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.2

1

CD NE =

∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .

又AE ?平面P AD ,MN ?平面P AD , ∴MN ∥平面P AD .

方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .

【评述】关于直线和平面平行的问题,可归纳如下方法: (1)证明线线平行:

(2)

例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.

【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直

于经过BC1的平面即可.

证明:连接AC1.

∵ABC-A1B1C1是直三棱柱,

∴AA1⊥平面ABC,

∴AB⊥AA1.

又AB⊥AC,

∴AB⊥平面A1ACC1,

∴A1C⊥A B.①

又AA1=AC,

∴侧面A1ACC1是正方形,

∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,A1C⊥BC1.

【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC ⊥平面PBC.

【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.

证明:∵平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,且AB⊥BC,

∴BC⊥平面P AB,

∴AP⊥BC.

又AP⊥PB,

∴AP⊥平面PBC,

又AP?平面P AC,

∴平面P AC⊥平面PBC.

【评述】关于直线和平面垂直的问题,可归纳如下方法:

例5 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.

(Ⅰ)求证:直线EF ∥平面A 1ACC 1;

(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .

∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,

又F 是BC 的中点,∴EF ∥A 1C .

∵A 1C ?平面A 1ACC 1,EF ?平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1.

(2)解:当

3

1

=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .

∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,

3

1

=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .

又EG ?平面EFG ,∴平面EFG ⊥平面ABC .

§7-2空间几何体的结构

1.简单空间几何体的基本概念: (1)

(2)特殊的四棱柱:

3.简单几何体的三视图与直观图: (1)平行投影:

①概念:如图,已知图形F ,直线l 与平面α 相交,过F 上任意一点M 作直线MM 1平行于l ,交平面α 于点M 1,则点M 1叫做点M 在平面α 内关于直线l 的平行投影.如果图形F 上的所有点在平面α 内关于直线l 的平行投影构成图形F 1,则F 1叫图形F 在α 内关于直线l 的平行投影.平面α 叫投射面,直线l 叫投射线.

②平行投影的性质:

性质1.直线或线段的平行投影仍是直线或线段; 性质2.平行直线的平行投影是平行或重合的直线; 性质3.平行于投射面的线段,它的投影与这条线段平行且等长;

性质4.与投射面平行的平面图形,它的投影与这个图形全等;

性质5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比. (2)直观图:斜二侧画法画简单空间图形的直观图. (3)三视图:

①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影.

②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图

形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面

内的图形叫做左视图.

将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.

③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”. 4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积:

①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.

②'=

ch S 21

正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高. ③''+=h c c S )(2

1

正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台

的斜高.

④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高. ⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长. ⑥S 球=4πR 2,其中R 是球的半径. (2)柱体、锥体、台体和球的体积:

①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高. ②Sh V 31

=锥体,其中S 是锥体的底面积,h 是锥体的高. ③)(3

1

'+'+=S SS S h V 台体,其中S '

,S 分别是台体的上、下底面的面积,h 为台体的高. ④3

π3

4R V =

球,其中R 是球的半径. 【例题分析】

例1 如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .

(Ⅰ)证明:P A ⊥BC ;

(Ⅱ)求三棱锥P -ABC 的表面积; (Ⅲ)求三棱锥P -ABC 的体积.

【分析】对于(Ⅰ)只要证明BC (P A )垂直于经过P A (BC )的平面即可;对于(Ⅱ)则要根据正三棱锥的基本性质进行求解.

证明:(Ⅰ)取BC 中点D ,连接AD ,PD . ∵P -ABC 是正三棱锥,

∴△ABC 是正三角形,三个侧面P AB ,PBC ,P AC 是全等

的等腰三角形.

∵D 是BC 的中点,∴BC ⊥AD ,且BC ⊥PD , ∴BC ⊥平面P AD ,∴P A ⊥BC . (Ⅱ)解:在Rt △PBD 中,

,421

2222a b BD PB PD -=

-= ∴.44

2122a b a PD BC S PBC

-==??

∵三个侧面P AB ,PBC ,P AC 是全等的等腰三角形, ∴三棱锥P -ABC 的侧面积是

.44

322a b a

- ∴△ABC 是边长为a 的正三角形,∴三棱锥P -ABC 的底面积是,4

32

a

∴三棱锥P -ABC 的表面积为?-+=-+)312(4

34434322222a b a a

a b a a (Ⅲ)解:过点P 作PO ⊥平面ABC 于点O ,则点O 是正△ABC 的中心, ∴,6

3233131a

a AD OD =?==

在Rt △POD 中,,33

3

2222a b OD PD PO -=

-=

∴三棱锥P -ABC 的体积为.312333433

12222

22a b a a b a -=-?? 【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的Rt △

POD ,其中含有棱锥的高PO ;如Rt △PBD ,其中含有侧面三角形的高PD ,即正棱锥的斜高;如果连接OC ,则在Rt △POC 中含有侧棱.熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.

例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.

(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.

【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.

证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC ,

∴BE ⊥AA 1.

∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ?平面BEC 1,

∴平面BEC 1⊥平面ACC 1A 1.

(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .

∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1.

又DE ?平面BEC 1,AB 1?平面BEC 1, ∴AB 1∥平面BEC 1.

例3 在四棱锥P -ABCD 中,平面P AD ⊥平面

ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .

(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ;

(Ⅱ)求四棱锥P -ABCD 的体积.

【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD

随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .

证明:(Ⅰ)在△ABD 中,

由于AD =4,BD =8,54=AB ,

所以AD 2+BD 2=AB 2. 故AD ⊥BD .

又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ?平面ABCD ,

所以BD ⊥平面P AD ,

又BD ?平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,

由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,

又△P AD 是边长为4的等边三角形.因此.3242

3

=?=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,

所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为55

85

484=?,即为梯形ABCD 的高,

所以四边形ABCD 的面积为.2455

82

5452=?+=

S 故

.31632243

1

=??=-ABCD P V

例4 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm)

(Ⅰ)画出该多面体的俯视图; (Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .

【分析】画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”,根据此原则及相关数据可以画出三视图.

证明:(Ⅰ)该几何体三视图如下图:

(Ⅱ)所求多面体体积).cm (3

284

2)2221(316442=????-??=-=正三棱锥长方体V V V

(Ⅲ)证明:在长方体ABCD -A'B'C'D'中,连结AD',则AD'∥BC'.

因为E ,G 分别为AA',A'D'中点, 所以AD'∥EG , 从而EG ∥BC '.又BC'?平面EFG , 所以BC'∥平面EFG .

例5 有两个相同的直三棱柱,底面三角形的三边长分别是3a ,4a ,5a ,高为

a

2

,其中a >0.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的一个是四棱柱,求a 的取值范围. 解:直三棱柱ABC -A 1B 1C 1的三个侧面的面积分别是6,8,10,底面积是6a 2,因此每个三棱柱的表面积均是2×6a 2

+6+8+10=12a 2+24.

情形①:将两个直三棱柱的底面重合拼在一起,只能拼

成三棱柱,其表面积为:

2×(12a 2+24)-2×6a 2=12a 2+48.

情形②:将两个直三棱柱的侧面ABB 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×8=24a 2+32.

情形③:将两个直三棱柱的侧面ACC 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×6=24a 2+36.

情形④:将两个直三棱柱的侧面BCC 1B 1重合拼在

一起,只能拼成四棱柱,其表面积为:2×(12a 2+24)-2×10=24a 2+28

在以上四种情形中,②、③的结果都比④大,所以表面积最小的情形只能在①、④中产生.

依题意“表面积最小的一个是四棱柱”,得24a 2+28<12a 2+48,解得,3

5

2

15,

0( 例6 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三

棱锥F -A 1ED 1的体积.

【分析】计算三棱锥F -A 1ED 1的体积时,需要确定锥体的高,即点F 到平面A 1ED 1的距离,直接求解比较困难.利用等积的方法,调换顶点与底面的方式,如111

1

EFD A ED A F V V --=,

也不易计算,因此可以考虑使用等价转化的方法求解.

解法1:取AB 中点G ,连接FG ,EG ,A 1G . ∵GF ∥AD ∥A 1D 1,∴GF ∥平面A 1ED 1,

∴F 到平面A 1ED 1的距离等于点G 到平面A 1ED 1的距离.

∴.8

183313132111111111a a a D A S V V V EG A EG A D ED A G ED A F =??==

==??--- 解法2:取CC 1中点H ,连接F A 1,FD 1,FH ,

FC 1,D 1H ,并记FC 1∩D 1H =K .

∵A 1D 1∥EH , A 1D 1=EH ,∴A 1,D 1,H ,E 四点共面. ∵A 1D 1⊥平面C 1CDD 1,∴FC ⊥A 1D 1.

又由平面几何知识可得FC 1⊥D 1H ,∴FC ⊥平面A 1D 1HE . ∴FK 的长度是点F 到平面A 1D 1HE (A 1ED 1)的距离. 容易求得.8

11053453131,10533

21111a a a FK S V a FK ED A ED A F =??===

?∴?- §7-3 空间直角坐标系

在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是

.)()()(||233222211b a b a b a AB -+-+-=

练习7-1

1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β B)n ∥β ,或n ?β (C)n ⊥α (D)n ∥α ,或n ?α

3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ?α ,b ⊥β ,α ∥β (D)a ?α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 5.在三棱锥P -ABC 中,6=

=PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠

BAC =30°,则PC =______.

6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)

7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α

以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______. 8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______.

9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC

的中点.

(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .

10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD , 且E 、F 分别是AB 、BD 的中点. 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .

11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB

=90°,BC ∥AD ,AF BE AF BE AD BC 2

1

,//,21==

, G ,H 分别为F A ,FD 的中点.

(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ)C ,D ,F ,E 四点是否共面?为什么?

(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .

练习7-2

1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) (A)2π (B)4π (C)8π (D)16π

2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) (A)9π (B)10π (C)11π (D)12π

3.有一种圆柱体形状的笔筒,底面半径为4 cm , 高为12 cm .现要为100个这种相同规格的笔筒涂色 (笔筒内外均要涂色,笔筒厚度忽略不计).如果所用

涂料每0.5 kg 可以涂1 m 2,那么为这批笔筒涂色约需涂料( ) (A)1.23 kg (B)1.76 kg (C)2.46 kg (D)3.52 kg

4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最

大值为( ) (A)22

(B)32 (C)4

(D)52

5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长 均为2,E 、F 分别是BC 、A 1C 1的中点, 则EF 的长等于______.

6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.

7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.

8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:

充要条件①:_______________________________________________________________; 充要条件②:_______________________________________________________________.

(写出你认为正确的两个充要条件)

9.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 是DD 1的中点. (Ⅰ)求证:BD 1∥平面ACE ;

(Ⅱ)求证:平面ACE ⊥平面B 1BDD 1.

10.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高

为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (Ⅰ)求该几何体的体积V ;

(Ⅱ)求该几何体的侧面积S .

11.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,

且AE =FC 1=1.

(Ⅰ)求证:E ,B ,F ,D 1四点共面;

(Ⅱ)若点G 在BC 上,3

2

=

BG ,点M 在BB 1上, GM ⊥BF ,求证:EM ⊥面BCC 1B 1.

习题7

1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ?α ,则a ∥α (B)若a ∥α ,b ?α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8

(B)

3

8

(C)6 (D)2

3.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)

4

6 (B)

4

10 (C)

2

2 (D)

2

3 4.已知某个几何体的三视图如下,根据图中

标出的尺寸(单位:cm),可得这个几何 体的体积是( ) (A)

3

cm 3

4000 (B)

3

cm 3

8000 (C)2000cm 3 (D)4000cm 3

5.若三棱柱的一个侧面是边长为2的正方形, 另外两个侧面都是有一个内角为60°

的菱形,则该棱柱的体积等于( ) (A)2 (B)22

(C)23 (D)24

6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.

7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1

和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于

3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.

10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论:

①直线AD ⊥平面BCD ;②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是

.24

23

a

其中正确结论的序号是____________.(写出全部正确结论的序号) 11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.

(Ⅰ)求证:AD ⊥B 1D ;

(Ⅱ)求证:A 1C ∥平面A 1BD ;

12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为

PC 的中点.

(Ⅰ)求证:平面PCB ⊥平面MAB ; (Ⅱ)求三棱锥P -ABC 的表面积.

13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是

A 1C 1、BC 1的中点.

(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积. 14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=

AD ,DC =SD

=2.点M 在侧棱SC 上,∠ABM =60°.

证明:M 是侧棱SC 的中点;

几何证明选讲(教师版)

B C D O A P 1.如图,点P 在圆O 直径AB 的延长线上, 且PB=OB=2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则PC= , CD= . 2.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C , ,32=PC 若∠CAP =30°,则⊙O 的直径AB =___________ 答案4 3.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _____。 解:依题意,BC =,∴AC =5,2 AD =.AB AC =15, ∴AD =15 4.如图,PA 切O 于点A ,割线PBC 经过圆心O ,OB=PB=1, OA 绕点O 逆时针旋转60°到OD ,则PD 的长为 . 解:∵PA 切O 于点A ,B 为PO 中点,∴AB=OB=OA, ∴60AOB ∠= ,∴120POD ∠= , 在 △ POD 中 由 余 弦 定 理 , 得 2222cos PD PO DO PO DO POD =+-?∠=1 414()72 +-? -= ∴PD 5.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD AD=DC ,则 sin ∠ACO=_________ 解:由条件不难得ABC ?为等腰直角三角形,设圆的半径为1,则1OB =,2BC =, OC =

sin BCO ∠= = ,s co BCO ∠= ∴ sin ∠ACO=0sin(45BCO -∠)=1010 6.如图,PT 是O 的切线,切点为T ,直线PA 与O 交于A 、B 两点,TPA ∠的平分线分别交直线TA 、 TB 于D 、E 两点,已知2PT =,PB =,则PA = , TE AD = . ; 7.已知AB 是圆O 的直径,EF 切圆O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 长为_______. 、23; 8.已知AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D ,且4AD DB =,设 COD θ∠=,则cos 2θ= . 解:()44,AD DB OC OD OC OD =∴+=- 即35OC OD =, 22 2 37cos 22cos 12121525OD OC θθ???? =-=?-=?-=- ? ? ???? 9.如图,圆O 是 ABC ?的外接圆,过点C 的切线交AB 的延长线于点D ,CD =3AB BC ==。则BD 的长______________ , AC 的长______________. 4,; 10.如图,⊙O 的直径AB =6cm ,P 是AB 延 长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC , 若CPA ∠=30°,PC = 。 解:连接OC ,PC 是⊙O 的切线,∴∠OCP=Rt ∠. ∵CPA ∠=30°,OC= 2AB =3, ∴0 3tan 30PC =,即PC= 11.如右图所示,AB 是圆O 的直径, AD DE =,10AB =,8BD =,则cos BCE ∠= . 35 12.如图:PA 与圆O 相切于A ,PCB 为圆O 的割线, P

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

(完整版)高一数学常考立体几何证明的题目及答案.docx

实用标准文案 1、如图,已知空间四边形ABCD 中,BC AC , AD BD ,E是AB的中点。 求证:( 1)AB平面CDE;(2)平面CDE平面ABC。A E B C 2、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点,D 求证: AC1 // 平面 BDE 。A D1 B1C E A 3、已知ABC 中ACB 90o,SA面ABC,AD SC , D B C 求证: AD面 SBC .S D A B ABCD A1B1C1D1,O是底ABCD对角线的交点.C 4、已知正方体 D1C1求证: (1 ) C1O∥面AB D; (2) AC面 AB D . B1 1 11 1 1 A1 D C O A B 5、正方体ABCD A ' B 'C ' D ' 中,求证: (1) AC 平面 B ' D ' DB ; (2) BD ' 平面 ACB ' . 6、正方体 ABCD —A B C D中. 1111 D 1C 1 (1) 求证:平面 A1 BD∥平面 B1D1C; A B1 (2) 若 E、 F 分别是 AA , CC的中点,求证:平面 EB D1F ∥平面 FBD . 1111 E G C

实用标准文案 2o 7、四面体ABCD 中,AC BD , E, F 分别为 AD , BC 的中点,且 EF AC ,BDC 90 , 求证: BD平面ACD 8、如图,在正方体ABCD A1B1C1D1中, E 、F、G分别是AB、AD、 C1 D1的中点.求证:平面 D1EF ∥平面 BDG . 9、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点. (1)求证:A1C //平面BDE; (2)求证:平面A1AC平面BDE . 10、已知ABCD是矩形,PA平面ABCD,AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证:DE平面PAE; ( 2)求直线DP与平面PAE所成的角. 11、如图,在四棱锥P ABCD 中,底面ABCD 是DAB 600且边长为 a 的菱形, 侧面 PAD 是等边三角形,且平面 PAD 垂直于底面 ABCD .( 1)若G为AD的中点,求证:BG平面PAD; ( 2)求证:AD PB. 12、如图 1,在正方体ABCD A B C D中, M 为 CC的中点, AC 交 BD 于点 O,求证:AO平面 MBD . 1 1 1 111 13 、如图2,在三棱锥A- BCD 中, BC= AC, AD= BD, 作BE⊥ CD,E为垂足,作 AH⊥ BE 于 H.求证: AH⊥平面 BCD.

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

几何证明选讲

1.如图4所示,圆O的直径AB=6, C为圆周上一点,BC=3过C作 圆的切线I ,过A作I的垂线AD垂足为D,则/ DAC=() A 15 B. 30 C 45 D. 60 C 66cm D. 99cm 【解析】由弦切角定理得◎,戈AD丄匚故如C二3兀 故选& 2?在肋URC中,CD、CE分别是斜边朋上的高和中线,是该图中共有x个三甬形与WC相僦则“() A.0 B. 1 C.2 D. 3【解析】2个;AACD和人仙此故选U 3. 一个圆的两眩相交,一条眩被分为辽和辽ea两段.另一弦被分为3:乳则另一 弦的长为〔) XL 1 lrw B. 33ci^ 【解析】设另一弦被分的两段长分别为魏昭L叽由相交弦定理得 3Jl?jt=12kL83解得k = h故所求弦长为3Jt+8/t =llJt = 33 COT.故选 B. 4?如图」在ilSC和AZZSE孔一=—=—=-,若3C与D£ BE DE 3 M)£E^周长之差为Wm,则WC的周长为( 25 「0 S .?_、cm U —cm ■+ ~ 3 几20 cm D. 25 cm 【解祈】利用相似三角形的村似比等于周长比可得答峯良 5. Zl O的割线PAB交心O于凤月两点,割线PCD经过圆心】已知 __ ______ 22 3 ,则00的半径为() PA 6,PO 12, AB A.4 C.6 .14 D8 【解析】U O 22 半径为r,由割线定理有6(622)(12 r)(12 r) 6.如图,AB是半圆0的直径,点C在半圆上,CD AB于点D ,

tan2— 且AD 3DB ,设COD ,则2 =() 1 1 A. 3 B. 4 C. 4 2y/3 D 3 Off析】设半径为九则AD^-r.BD^丄儿由CD1 AD得= 从而 2 2 2 0 = —.ifctan2—= 3 2 3 匸在辺?中,D=E分别为AB=ACh的点,且DE^BC3 MDE的面积是曲,梯^DBCE的面积为弘存,则C的值为〔) A1;击 B.1;2 G 1;3 D. 1:4 【解折】仙丘-WC、和用面积比等于相似比的平方可得答案良 8. 半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个. A.2 B3 C.4 D5 【解析】一共可作5个,其中均外切的2个,均内切的1个,一外切一内切的2个,故选D. 9. 如图甲,四边形ABCD是等腰梯形,AB//CD .由4个这样的 等腰梯形可以拼出图乙所示的平行四边形 则四边形ABCD中A度数为()

天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等 函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线 与方程、导数及其应用。选修1—2:统计案例、推理与证明、 数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。选修2—2:导数及其应用,推理与证 明、数系的扩充与复数选修2—3:计数原理、随机变量及其 分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平 面向量,圆锥曲线,立体几 何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运 算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与 定义域、值域与最值、反函 数、三大性质、函数图象、 指数与指数函数、对数与对 数函数、函数的应用

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . 7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且 22EF AC = ,90BDC ∠=, A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A 1 A B 1 B C 1 C D 1 D G E F

求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 12、如图1,在正方体 1111 ABCD A B C D -中,M 为 1 CC 的中点,AC 交BD

几何证明选讲知识点总结

相似三角形的判定及有关性质一一备课人:李发 知识点1比例线段的相关概念 比例线段:对于四条线段a b c、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即- - b d (或a:b=cd )那么这四条线段叫做成比例线段,简称比例线段. 注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位. ⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式. ⑶比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:b d c a 知识点2:比例的性质 基本性质:(1) a: b c: d ad bc;(2) a : c c: b c a b . 反比性质(把比的前项、后项交换): a c b d b d a c b a d c a c a b cd 合比性质:?.发生同样和差变化比例仍成立.如: a c a c等等. b d b d a b c d a b c d o p p m八,,小、a c e m a 等比性质:如果一(b d f n 0),那么 b d f n b d f n b 注意:实际上,由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad be,除 了可化为a:b c:d,还可化为a:c b:d , c: d a : b , b:d a : c , b:a d:c, c:a d:b, d : c b: a , d:b c:a. 知识点3:比例线段的有关定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等?推论1:经过三角形一边的中点与另一边平行的直线必平分第三边?(三角形中位线定理的逆定理) 推论2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰?(梯形中位线定理的逆定理) 平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点:4 :黄金分割 把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线 段AB的黄金分割点,其中AC AB 0.618AB . 2 知识点5:相似图形 1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形) 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫 做相似比(或相似系数) (1 )相似三角形是相似多边形中的一种;

高考数学几何证明选讲

几何证明选讲 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号). (1)AD DF = CE BC ;(2) AD BE = BC AF ;(3) CE DF = AD BC ;(4) AF DF = BE CE . 2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已 知AD DB = 2 3 ,则 S △ADE S 四边形BCED = __________________________________________________________________. 3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF BC + FG AD =________.

4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________. 5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________. 6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________. 7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________. 8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC = ________. 二、解答题(共42分) 9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC 的平分线,交AD于F,求证:DF AF = AE EC .

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中数学立体几何证明题汇总

高中数学立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D C B D C B A A H G F E D C B A E D B C S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面 FBD . 考点:线面平行的判定(利用平行四边形) 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点, 且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 考点:线面垂直的判定,三角形中位线,构造直角三角形 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=o ,24AB BC ==时, 求MN 的长。 考点:三垂线定理 10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、 AD 、11C D 的中点.求证:平面1D EF ∥平面BDG . 考点:线面平行的判定(利用三角形中位线) 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 考点:线面平行的判定(利用三角形中位线),面面垂直的判定 12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 考点:线面垂直的判定,构造直角三角形 A 1 A B 1 C 1 D 1 D G E F

(一)几何证明选讲

(一)几何证明选讲 1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值. 解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB , 所以∠ABO =12(180°-∠AOB ) =12 (180°-2∠ACB ) =90°-∠ACB =90°-54°=36°. 2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长. 解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°. 因为BE =2,BC =4,由余弦定理得EC =2 3. 又BE 2=EC ·ED ,所以DE = 233, 所以CD =EC -ED =23-233=433 . 3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE . 求证:(1)DB 是∠CDE 的平分线; (2)AE =2EB . 证明 (1)连结AD ,∵AB 是圆O 的直径, ∴∠DAB +∠DBA =90°,

∵DE ⊥AB ,∴∠BDE +∠DBA =90°, ∴∠DAB =∠BDE , ∵CD 切圆O 于点D , ∴∠CDB =∠DAB , ∴∠BDE =∠CDB , ∴DB 是∠CDE 的平分线. (2)由(1)可得DB 是∠CDE 的平分线, ∴CD DE =CB BE =3,即CD =3DE . 设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x , 在Rt △CDE 中, 由勾股定理可得(3x )2=x 2+(4m )2,则x =2m , 由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA , CA =6m ,AB =3m ,AE =2m , 则AE =2EB . 4.(2018·江苏海安中学质检)如图,在Rt △ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF , 求证:(1)PF FD =PD DC ;(2)PE ∥BC . 证明 (1)连结DE , 则△BDF 是等腰直角三角形, 于是∠FPD =∠FDB =45°, 故∠DPC =45°. 又∠PDC =∠PFD ,则△PFD ∽△PDC , 所以PF FD =PD DC .① (2)由∠AFP =∠ADF ,∠AEP =∠ADE , 知△AFP ∽△ADF ,△AEP ∽△ADE . 于是,EP DE =AP AE =AP AF =FP DF . 故由①得EP DE =PD DC ,②

高中数学高考总复习几何证明选讲习题及详解

高中数学高考总复习几何证明选讲习题 (附参考答案) 一、选择题 1.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( ) A .y 是x 的增函数 B .y 是x 的减函数 C .y 随x 的增大先增大再减小 D .无论x 怎样变化,y 为常数 [答案] D [解析] ∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12 AR ,∵R 固定,∴AR 是常数,即y 为常数. 2.(2010·湖南考试院)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,则四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7 [答案] C [解析] 由条件知AF =2,BF =BE =1, ∴S △ADE =12AE ×DF =12 ×4×3=6, ∵CE ∥DB ,∴S △DBC =S △DBE ,∴S 四边形ABCD =S △ADE =6. 3.(2010·广东中山)如图,⊙O 与⊙O ′相交于A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q

和M ,交AB 的延长线于N ,MN =3,NQ =15,则PN =( ) A .3 B.15 C .3 2 D .3 5 [答案] D [解析] 由切割线定理知: PN 2=NB ·NA =MN ·NQ =3×15=45, ∴PN =3 5. 4.如图,Rt △ABC 中,CD 为斜边AB 上的高,CD =6,且AD BD =32,则斜边AB 上的中线CE 的长为( ) A .5 6 B.56 C.15 D.3102 [答案] B [解析] 设AD =3x ,则DB =2x ,由射影定理得CD 2=AD ·BD ,∴36=6x 2,∴x =6,∴AB =56, ∴CE =12AB =562 . 5.已知f (x )=(x -2010)(x +2009)的图象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A .(0,1) B .(0,2)

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

专题:几何证明选讲

专题:几何证明选讲 【知识梳理】 1.相似三角形的判定定理: 判定定理1.两角对应相等的三角形相似。 判定定理2.三边对应成比例的两个三角形相似。 判定定理3.两边对应成比例,并且夹角相等的两个三角形相似。 2.相似三角形的性质 性质定理1.相似三角形对应边上的高、中线和它们的周长的比都等于相似比。 性质定理2.相似三角形的面积比等于相似比的平方。 3.平行截割定理 三条平行线截任意两条直线,所截出的对应线成比例。 4.射影定理 直角三角形中,每一条直角边是这条直线边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项。 5.圆周角与弦切角 圆的切线判定定理:经过圆的半径的外端切垂直于这条半径的直线,是圆的切线。 圆的切线的性质定理:圆的切线垂直过圆的半径。 推论1.从圆外的一个已知点所引的两条切线长相等。 推论2.经过圆外的一个已知点和圆心的直线,平分从这个点向圆所做的两条切线所夹的角。 6.圆周角定理 圆周角的度数等于它所对弧的度数的一半。 推论1.直径所对的圆周角都是直角 推论2.同弧或等弧所对的圆周角相等。 推论3.等于直角的圆周角所对的弦是圆的直径。 7.弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。 推论:弦切角等于它所夹弧所对的圆周角。 8.圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线短长的积相等。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。圆幂定理:(不用掌握) 9.圆内接四边形的性质 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 10.圆内接四边形的判定 定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆。 【知识梳理】 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。相似三角形的判定及性质

相关主题