搜档网
当前位置:搜档网 › 循环荷载下非饱和结构性土的边界面模型_黄茂松

循环荷载下非饱和结构性土的边界面模型_黄茂松

循环荷载下非饱和结构性土的边界面模型_黄茂松
循环荷载下非饱和结构性土的边界面模型_黄茂松

常见的钢结构计算公式

常见的钢结构计算公式 SANY GROUP system office room 【SANYUA16H-

2-5钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C 冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。

当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77 注:表中厚度系指计算点的钢材厚度,对轴心受力构件系指截面中较厚板件的厚度。 钢铸件的强度设计值(N/mm2)表2-78

荷载-结构模型和地层结构模型计算实例北京地铁十号线八达岭高速站明挖、暗挖结构设计

1.3 结构统一技术要求 1.3.1.地下铁道结构中主要构件的设计使用年限为100年,主要构件是指结构的主体结构(梁、板、墙、柱)及基础结构。相应结构可靠度理论的设计基准期均采用50年。 取1.1; 1.3. 2.地下铁道结构中永久构件的安全等级为一级,相应的结构构件重要性系数γ 取0.9;在人防荷载或地震荷载临时构件的安全等级为三级,相应的结构构件重要性系数γ 组合下,相应的结构构件重要性系数γ 取1.0。 1.3.3. 地下铁道结构的地震作用按8度设防,地下结构框架柱的抗震等级暂按三级,梁、板、墙等构件暂按四级。待“北京地铁十号线场地地震安全评估报告”完成后,依其为设计依据。 1.3.4.地下结构中露天或与无侵蚀性的水或土壤直接接触的迎土面混凝土构件的环境类别为二类,非迎土面及内部混凝土构件的环境类别为一类,两者均视为一般环境条件。 1.3.5. 结构构件在永久荷载和基本荷载组合作用下,应按荷载短期效应组合并考虑长期效应组合的影响进行结构构件裂缝验算。二类环境混凝土构件的裂缝宽度(迎土面)应不大于0.2mm,一类环境(非迎土面及内部混凝土构件)混凝土构件的裂缝宽度均应不大于0.3mm,混凝土管片内外侧的裂缝宽度应不大于0.2mm。当计及地震、人防或其他偶然荷载作用时,可不验算结构的裂缝宽度。 1.3.6. 地下铁道结构中主要构件的耐火等级为一级。 1.3.7. 在规定的设防部位,地下结构按5级人防的抗力标准进行验算。 1.3.8.当地下结构处于有侵蚀地段时,应采取抗侵蚀措施,混凝土抗侵蚀系数不得低于0.8。 2.工程概况 八达岭高速站结构设计形式为两端明挖、中间暗挖车站,其中两端明挖部分为地下双层三跨岛式车站,车站中部过健德桥部分采用分离暗挖单洞通过,车站主体、风道基坑围护结构均采用钻孔灌注桩,基坑内设置横向钢支撑,出入口明挖部分采用型钢围檩,内设钢支撑,车站主体、风道、出入口的明挖部分采用现浇钢筋混凝土箱形框架结构,东北、西北两出入口跨路部分采用暗挖法施工。 4.施工方法的论证及方案比选

CORBA 构件模型综述

收稿日期:2004-05-19;修返日期:2004-06-26基金项目:国防预研基金资助项目(413160102) CORBA 构件模型综述 * 潘慧芳,周兴社,於志文 (西北工业大学计算机学院,陕西西安710072) 摘 要:随着计算机网络技术和应用的发展,分布构件技术成为分布式计算领域的热点,CCM 就是主流的分布构件技术之一。首先介绍了CCM 产生的背景,然后对CCM 的重要组成部分进行了详细的阐述,并对现有的基于CCM 的研究和实现进行了简要的分析,最后将CCM 与EJ B 和COM 进行了比较。关键词:构件;CORBA;CCM 中图法分类号:TP311 文献标识码: A 文章编号:1001-3695(2005)05-0014-02 An Overview of CORBA Com ponent M odel PAN Hui-fang,ZHOU Xing-she,YU Zhi-wen (School of Computer Science,Nor thwester n Polytechnical Univers ity,Xi ’an Shanxi 710072,China) Abst ract :Along wit h t he developm ent of com puter net works and applica tions,distribut ed com ponent t echnolog y becam e t he hot spot of distribut ed com https://www.sodocs.net/doc/0416026946.html, M is one of t he popular dis tribut ed com ponent technolog ies.This paper first int roduces t he background of CCM.It then describes t he m a in sect ions of CC M and a na ly zes the ex ist ing im plem ent at ions based on CC M.Fi-na lly,it com pares C CM with rela ted t echnolog ies.Key words:Com ponent;CORB A;C CM 随着网络技术的飞速发展,单个计算节点的处理能力持续提高,不同厂商和异构技术环境的不断激增,使得分布式系统的应用和开发日趋复杂。在构建企业分布式应用系统的过程中,要求系统具有可配置性、可伸缩性、可重用性和可管理性,以满足不断增长的企业应用需求。在这种情况下,分布构件技术应运而生。通过采用分布构件技术,可以降低大型分布式系统的开发难度,重用已有的代码资源,提高分布式系统的开发效率。目前,主流的服务器端分布构件技术有OMG 组织的C CM (CORB A C om ponent Model,C CM )技术,M icrosoft 的C OM (Com ponent Object M odel,C OM)技术以及S U N 的EJ B(E nt er-prise J av a Bea n,EJ B )技术。因为C ORBA 采用远程对象调用机制,支持异构环境下分布式应用系统的开发和互操作,具有与底层硬件、操作系统、网络、通信协议和编程语言无关的特点,所以被广泛地应用于大型的分布式系统中。而CCM 作为C ORB A 3.0规范的一部分,对原有的对象模型进行了扩展,从而更易于服务器端软件的重复使用和CORBA 应用程序的动态配置,因而具有广阔的应用前景。 1 CORBA 构件模型 传统的CORB A 对象模型(CORBA2.x 规范)具有一些明显的缺陷,如没有配置对象实现的标准方式,缺少对公共COR-BA 服务器编程模式的有效支持,对象功能难以扩展,CORBA 对象服务的可用性没有预先定义,对象生命周期管理没有标准化等。这些缺陷导致对象实现难以设计、重用、配置、管理和扩展。为此,OMG 在C ORBA 3.0中引入了CCM,C CM 是用于开 发和配置服务器端分布式应用的构件模型。 下面对CCM 中的抽象构件模型、构件实现框架(C IF)、容器编程模型、打包与部署模型进行详细的描述。1.1 抽象构件模型 CCM 构件提供了称为端口(Port s)的多种外部接口,以便与客户、其他构件、C ORB A 服务等进行交互。构件模型支持四种基本的Port s 。 (1)侧面(Facet s)。它是构件提供的与客户交互的相互独立的一组接口。一个构件能够提供多个对象引用,这些不同的对象引用被称为Facet s,Facet s 可以支持不同名字和功能的IDL 接口。客户通过唯一的等价接口(E quivalent Interfa ce)在构件的多个Facet s 间进行导航。Fa cet 接口的实现被封装在构件中,被看作是构件的一部分。 (2)插口(Recept acles)。它是一些指定的连接点(Connec-tion Point s),这些连接点描述一个构件使用外部构件提供的对象引用来调用其上的操作的能力。通过使用插口,构件能够与其他对象进行连接,并调用这些对象的操作。 (3)事件源/事件接收器(E vent Sources/Ev ent S inks)。它是指定发送/接收特定类型事件的连接点。事件源分为Em it-ter 和Publis her 两类,Em itt er 规定在某个时间只允许一个接收者与之连接,Publisher 允许同时有多个接收者与之连接。事件接收器允许有多个事件源与之相连。 (4)属性(At tribut es)。属性主要用于构件的配置,配置工具使用属性对构件的配置参数进行预先的设置。 CCM 引入了产地(Hom e)对构件的生命周期进行管理。一个Hom e 是某种类型所有构件实例的管理器,不同类型的 Hom e 能够管理同一类型的构件,但一个构件实例只能有一个Hom e 实例。Hom e 形式化了工厂(Fa ct ory)设计模式来管理同 ?41?计算机应用研究2005年

钢结构的计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构得承载能力与防止在一定条件下出现脆性破坏,应根据结构得重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度与工作环境等因素综合考虑,选用合适得钢材牌号与材性。 承重结构得钢材宜采用Q235钢、Q345钢、Q390钢与Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700与《低合金高强度结构钢》GB/T 1591得规定。当采用其她牌号得钢材时,尚应符合相应有关标准得规定与要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构得钢材应具有抗拉强度、伸长率、屈服强度与硫、磷含量得合格保证,对焊接结构尚应具有碳含量得合格保证。 焊接承重结构以及重要得非焊接承重结构得钢材还应具有冷弯试验得合格保证。 对于需要验算疲劳得焊接结构得钢材,应具有常温冲击韧性得合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢与Q345钢应具有0℃C冲击韧性得合格保证;对Q390钢与Q420钢应具有-20℃冲击韧性得合格保证。当结构工作温度等于或低于-20℃时,对Q235钢与Q345钢应具有-20℃冲击韧性得合格保证;对Q390钢与Q420钢应具有-40℃冲击韧性得合格保证。 对于需要验算疲劳得非焊接结构得钢材亦应具有常温冲击韧性得合格保证,当结构工作温度等于或低于-20℃时,对Q235钢与Q345钢应具有0℃冲击韧性得合格保证;对Q390钢与Q420钢应具有-20℃冲击韧性得合格保证。 当焊接承重结构为防止钢材得层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313得规定。 钢材得强度设计值(材料强度得标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件得强度设计值应按表2-78采用。连接得强度设计值应按表2-79至表2-81采用。 钢材得强度设计值(N/mm2) 表2-77

思考问题的结构性模型

结构性思维

目录 01.如何理解结构化思维? (1) 02.如何快速熟悉一个新领域? (12) 03.如何分析一家企业的商业模式? (28) 04.理解他人性格的四个维度 (40) 05.年终总结如何写? (46) 06.如何有效进行工作复盘? (51) 07.应届生如何找工作? (58) 08.如何利用战略思维提升工作能力? (67) 09.找到梳理逻辑思维的工具 (78) 10.利用 PPT 思维提升笔记能力 (89)

01. 如何理解结构化思维? 工作内和工作外,经常会帮他人修改文档,发现大家在写作时候,会有一个通病: 堆砌事实。 这背后一般有两个借口: 我花了这么多时间找资料,总不能浪费啊! 至少要让领导看到,即使最后的内容不过关,但没有功劳也有苦劳啊! 本质上来说,就是缺乏结构化思维。 ↑ 堆砌的文章一片混乱 ↑ 按逻辑进行汇总 (一)什么是结构化思维 结构化思维的本质是框架。它将搜集到的信息、数据、知识等素材按一定的逻辑进行归总,继而让繁杂的问题简单化,最终结果是透过现象看本质。 其实,读书阶段的语文课,很大程度上就在锻炼我们的结构化思维。 比如作文的总分总关系,就是结构化思维的经典模式。以《一件难忘的事》为例: 总:今年最难忘的事,是去爬峨眉山。

分:爬峨眉山的时候,遇见了好多猴子,在半山腰吃了川菜,第二天早上还看了日出。 总:这真的是难忘的一件事! 如果有心,我们还可以对这个逻辑做一个更深入的解剖:分的部分其实都是在论证这件事情的「难忘」。 ?遇见猴子→难忘 ?吃川菜→难忘 ?看日出→难忘 所以,整个逻辑十分清晰。 工作中经常遇到的逻辑是另一类: ?发现问题 ?分析问题 ?解决问题 以公众号运营为例: ?发现问题 公众号阅读量不够。 ?分析问题 从阅读者角度上看。渠道更多元,头条号、百家号、即刻等在分散注意力。 从写作者角度上看。内容重复,没有新鲜感;粉丝量基数少,自然转化率低;图文排版丑,影响观瞻;写作技巧差,没有愉悦感。 ?解决问题

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L= 250mm厚度t=10mm。 根据公式f t w移项得: l w t N l w t f t w (250 2 10) 10 185 425500N 425.5kN 【变化】若有引弧板,问N ? 解:上题中l w取实际长度250,得N 462.5kN 解:端焊缝所能承担的内力为: N30.7h f l w3 f f f w2 0.7 6 300 1.22 160 491904N 侧焊缝所能承担的内力为: N10.7h f l w1f f w4 0.7 6 (200 6) 160 521472N 最大承载力N 491904 521472 1013376N 1013.4kN 【变化】若取消端焊缝,问N ? 解:上题中令N30 , l w1200 2 6,得N 弘505.344 kN 2t,即250-2*10mm。 300mm 长 6mm。求最大承载力N 钢材米用Q 235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2 185N /mm。试求连接所能承受的最大拉力N 解:无引弧板时,焊缝的计算长度l w取实际长度减去 【练习2】两截面为450 14mm的钢板,采用双盖板焊接连接,连接盖板宽度 410mm中间留空10mm),厚度8mm 钢材Q 235,手工焊,焊条为E43, f f w160N / mm2,静态荷载,h f

【练习3】钢材为Q 235,手工焊,焊条为E43, f f 160N/mm",静态荷载。双角钢2L125X8采用三面围焊和节点板连接,h f 6mm,肢尖和肢背实际焊缝长度 均为250mm等边角钢的内力分配系数0.7,k20.3。求最大承载力N —}心}\2LI25x8 解: 端焊缝所能承担的内力为: N30.7h f l w3 f f f" 2 0.7 6 125 1.22 160 204960N 肢背焊缝所能承担的内力为: N10.7h f l w1f f w20.7 6 (2506) 160327936N 根据N1 N3 k1N —3 2 1N31204960 得: N(N13)(3279360 960 )614880N K120.72【变化】若取消端焊缝,问 解:上题中令N3614.88kN N ? 0,l w1 250 2 6,得N 456.96kN 【练习4】钢材为Q 235,手工焊,焊条为E43, f f w 已知F 120kN,求焊脚尺寸h f (焊缝有绕角,焊缝长度可以不减去 2 160N / mm,静态荷载。 2h f ) 解:设焊脚尺寸为h f,焊缝有效厚度为h e 0.7h f 将偏心力移 到焊缝形心处,等效为剪力V= F及弯矩在剪力作用下: 3 120 10 342.9 M=Fe h e l w 在弯矩作用下: M M f W f , 2 0.7h f 250 120 103150 2 h f 1234 2 (N / mm ) IK W f 1 代入基本公式 h f 2 (N /mm ) 得: (1234 )2 (342.9)2 (1.22h f)( h f) 1068 160 h f 可以解得:h f6.68mm,取h f h f mi n 1.5 14 5.6mm h f 【变化】上题条件如改为已知h 7 mm。 h 12 f max 14.4mm,可以。 f 8mm,试求该连接能承受的最大荷载N 12

计量经济学 Chow(邹氏)检验 检验模型是否存在结构性变化 Eviews6

数学与统计学院实验报告 院(系):数学与统计学学院学号:姓名: 实验课程:计量经济学指导教师: 实验类型(验证性、演示性、综合性、设计性):验证性 实验时间:2017年 3 月15 日 一、实验课题 Chow检验(邹氏检验) 二、实验目的和意义 1 建立财政支出模型 表1给出了1952-2004年中国财政支出(Fin)的年度数据(以1952年为基期,用消费价格指数进行平减后得数据)。试根据财政支出随时间变化的特征建立相应的模型。 表1 obs Fin obs Fin obs Fin 1952 173.94 1970 563.59 1988 1122.88 1953 206.23 1971 638.01 1989 1077.92 1954 231.7 1972 658.23 1990 1163.19 1955 233.21 1973 691 1991 1212.51 1956 262.14 1974 664.81 1992 1272.68 1957 279.45 1975 691.32 1993 1403.62 1958 349.03 1976 656.25 1994 1383.74 1959 443.85 1977 724.18 1995 1442.19 1960 419.06 1978 931.47 1996 1613.19 1961 270.8 1979 924.71 1997 1868.98 1962 229.72 1980 882.78 1998 2190.3 1963 266.46 1981 874.02 1999 2616.46 1964 322.98 1982 884.14 2000 3109.61 1965 393.14 1983 982.17 2001 3834.16 1966 465.45 1984 1147.95 2002 4481.4 1967 351.99 1985 1287.41 2003 5153.4 1968 302.98 1986 1285.16 2004 6092.99 1969 446.83 1987 1241.86 步骤提示: (1)做变量fin的散点图,观察规律,看在不同时期是否有结构性变化。

钢结构计算公式.docx

螺栓或铆钉的最大、最小允许距离表2-90 注:1. d0为螺栓或铆钉的孔径,t为外层较薄板件的厚度。 2 ?钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按中间排的数值采用。 常见型钢及其组合截面的回转半径的近似值见表2-91。 常见型钢及其组合截面的回转半径的近似值表表2-91

-I JK=O32 Λiy =0.28? w =0.18 I I=O.18 ?+? ∕χ=10.21A ?=≈0.2l??=0.185Λ "0-2 M ι20.21b iχ=0,45Λ?=0.24? J y S y IH).25tf ?=0,3S? Iy =0.44? ?=0.41Λ ?-0.12fr ∕χ=0.28λ ?=024? Jχ=0.42? ? =0.226?≡0.44Λ?~0.32A Pl ?-0J0Λ —r ? =^0.306 L.-√ h-0.l95Λ ∣χ=0.32A Jy -0.20ΔJX=O29Λ ? =O 456 ■J h =O .20片~j?=0 21h ?=0.29Λ ?→29? r*=0 29h ? =0.5Ofc -0.54? h =OJOh h =0.2150 ?=O.38Λ ? -0.60? -B?-___J□ φ=7?R.30λ ?-0.!7fe ?=0,40A ?≡021fe A =0.43 A i j=0 24b ?≡0.4θ? iχ =0?2ι4ft?p ?=0.4l ?flp ________ ?=0.44? ι=0.35? ■?≡045A ? =0- 235? ?=0 43h A=O 43? h=O39A ?≡O20? f—∣<=0.38Λ 王于」42防 h=0.32? ?=0 58? <χ=O.32 ? 6 =0.40? {≡- P ? ∕χ=0.365λ ?=0.275? s td E h=035A ?*0.56? IX =039Λ iy≈0 29b -C 戸 y Γ -U "1 J 厂 -I=Y _ ■ ■ ■ y π L ≡ ^?≡=0.39Λ 「?=0一 530 强度和稳定性计算表表2-93 ^=O 50? b≡Q39f>

青鸟构件库概念模型

青鸟构件库概念模型 一、引言 二、语法结构 2.1功能移出部分 2.2模板参数 2.3特例化实例化描述 2.4协作规约、成员规约和规约互联 2.5协作对象、成员对象和对象互联 参考文献 附录 附录1--青鸟构件描述语言BNF 回页首 一、引言 在过去三十年中,软件生产率一直稳步增长,但仍不足以满足社会对软件产业的需求[1,2]。为了解决这一问题,科技人员在软件工程和人工智能领域进行了深入的研究。近几年来,人们开始认识到,要真正实现软件的工业化生产方式,保证软件生产的高效率和高质量,软件复用是一条现实可行的途径[3]。 作为软件复用中一个主要的研究方向,构件描述与复合的研究最早可以追溯到70年代

Parnas所提出的模块[4]。早期的研究工作主要集中在模块互联语言(Module Interconnection Language)方面,如MIL75[5]、Intercol[6]等。进入80年代,研究重点开始转向构件描述语言(Component Description Language),其中具有代表性的工作包括Gougen开发的OBJ[7]和LIL[8],“Berlin approach”开发的ACT TWO[9],以及Meld[10]等。Litvintchouk和Mastsumoto指出两种语言的区别主要在于,模块互联语言是描述性的(declarative),而构件描述语言是强制性的(imperative)[11]。进入90年代,研究重点转向如何将模块互联语言的优点引入到构件描述语言当中,即使构件描述语言同时具有描述构件和构件子系统的能力,主要的工作包括Π[12]、CDL[13]、CIDER[14]、LILEANNA[15]、RESOLVE[16]以及OOMIL[17]以及等。 青鸟构件描述语言的主要作用是描述构件接口,它可以应用在以下三个方面:1、在工具的支持下实现自动或半自动的构件复合;2、利用接口描述中的形式化信息来进行构件验证;3、利用规约匹配技术来进行构件查询。JB_CDL的设计目标是同时满足以上三个方面的应用,目前的实现方案主要针对第一方面应用,但同时也考虑了今后扩展的可能。JB_CDL的特点在于:1、以采用面向对象范型的代码件和设计件为描述对象;2、语言本身也采用面向对象范型;3、以一致的形式描述类和框架等不同形态的构件;4、与青鸟构件库系统紧密结合。 回页首 二、语法结构 JB_CDL分九个部分来描述规约,即功能移出、模板参数、特例化实例化描述、协作规约、成员规约、规约互联、协作对象、成员对象、对象互联,其BNF范式如表1所示。另外,需要注意的是规约声明必须以句号结束。以下分别介绍这几个部分的语法和语义。

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L=250mm ,厚度t=10mm 。钢材采用Q235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2/185mm N f w t =。试求连接所能承受的最大拉力?=N 解:无引弧板时,焊缝的计算长度w l 取实际长度减去2t ,即250-2*10mm 。 根据公式 w t w f t l N

【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

荷载与与结构设计原则复习

荷载与与结构设计原则复习

第一章荷载类型 1.荷载类型: 1.荷载与作用:荷载、直接作用、间接作用、效应 2.作用的分类:按随时间的变异、随空间位置的变异和结构的反应分类 例如: 1、由各种环境因素产生的直接作用在结构上的各种力称为荷载。(√) 2、由各种环境因素产生的间接作用在结构上的各种力称为荷载。(×) 3、什么是荷载? (荷载的定义是什么?)?) 答:由各种环境因素产生的直接作用在结构的各种力称为荷载。 4、土压力、风压力和水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(×)

5、什么是效应? 答:作用在结构上的荷载使结构产生的内力、变形、裂缝等就叫做效应。 6、什么是作用?直接作用和间接作用? 答:使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 可归结为作用在结构上的力的因素称为直接作用; 不是作用力但同样引起结构效应的因素称为间接作用。 7、只有直接作用才能引起结构效应,间接作用并不能引起结构效应。(×) 8、严格意义上讲,只有直接作用才能称为荷载。(√) 9、以下几项中属于间接作用的是C C 10、预应力属于 A 。温度变化属于 B 。 A、永久作用 B、静态作用 C、直接作用 D、动态作用

第二章重力 1.重力(静载) 1)结构自重 2)土的自重应力 3)雪荷载(基本雪压、雪重度、屋面的雪压) 例如: 1、基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。(√) 2、我国基本雪压分布图是按照 C 一遇的重现期确定的。 A、10年 B、30年 C、50年 D、100年 3、虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定是同时出现。(√) 4、造成屋面积雪与地面积雪不同的主要原因有:风、屋面形式和屋面散热等。

钢结构的承载计算用表

钢结构承载计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

常见的钢结构计算公式

2-5 钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

(完整word版)钢结构承载计算公式

钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

钢结构计算公式

钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0 C但高于-20 C时,Q235钢和Q345钢应具有0 C C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有-20C冲击韧性的合格保证;对Q390钢和Q420钢应具有-40 C冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有0C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z 向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313 的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77 采用。钢铸件的强度设计值应按表2-78 采用。连接的强度设计值应按表2-79 至表2-81 采用。

承受多荷载工况的大跨度空间结构模型设计与制作

《承受多荷载工况的大跨度空间结构模型设计与制作》 1.命题背景 目前大跨度结构的建造和所采用的技术已成为衡量一个国家建筑水平的重要标志,许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 本次题目,要求学生针对静载、随机选位荷载及移动荷载等多种荷载工况下的空间结构进行受力分析、模型制作及试验。此三种荷载工况分别对应实际结构设计中的恒荷载、活荷载和变化方向的水平荷载(如风荷载或地震荷载),并根据模型试验特点进行了一定简化。选题具有重要的现实意义和工程针对性。通过本次比赛,可考察学生的计算机建模能力、多荷载工况组合下的结构优化分析计算能力、复杂空间节点设计安装能力,检验大学生对土木工程结构知识的综合运用能力。 2.赛题概述 竞赛赛题要求参赛队设计并制作一个大跨度空间屋盖结构模型,模型构件允许的布置范围为两个半球面之间的空间,如图 1 所示,内半球体半径为 375mm,外半球体半径 550mm。 (a) 平面图(b)剖面图(c)3d 图 图 1 模型区域示意图(单位:mm) 模型需在指定位置设置加载点,加载示意图如图 2 所示。模型放置于加载台上,先在8个点上施加竖向荷载(加载点位置及编号规则详见4.1及4.3),具体做法是:采用挂钩从加载点上引垂直线,并通过转向滑轮装置将加载线引到加载台两侧,采用在挂盘上放置

砝码的方式施加垂直荷载。在 8 个点中的点 1 处施加变化方向的水平荷载,具体做法是:采用挂钩从加载点上引水平线,通过可调节高度的转向滑轮装置将加载线引至加载台一侧,并在挂盘上放置砝码用于施加水平荷载。施加水平荷载的装置可绕通过点 1 的竖轴旋转,用于施加变化方向的水平荷载。具体加载点位置及方式详见后续模型加载要求。 图 2 加载 3d 示意图 (注:本图的模型仅为参考构型,只要满足题目要求的结构均为可行模型) 3.模型方案及制作要求 3.1. 理论方案要求 (1)理论方案指模型的设计说明书和计算书。计算书要求包含:结构选型、结构建模及计算参数、多工况下的受荷分析、节点构造、模型加工图(含材料表)。文本封面要求注明作品名称、参赛学校、指导老师、参赛学生姓名、学号;正文按设计说明书、方案图和计

hr不懂这几种思维结构化模型你就out了思维可视化的四类模型

hr不懂这几种思维结构化模型你就out了思维可视化的四类 模型 人的思考过程,是一个奇妙的过程,思维在脑海里流窜,横冲直撞又反复纠缠,最后扭成一团麻。所以常常会有人抱怨,脑袋里很乱,想不出头绪。这是因为,大部分人的思考过程都是杂乱无序的,没有逻辑的,最后也没法形成有效的沉淀,更无法找到清晰的结论。那么本文要讲述的,就是怎样把思维进行可视化的规整,最终系统化的沉淀下来,找到其中有价值的方向。其实这种可视化的规则,不止可以用工作中,用在生活中也一样。大部分人脑力最活跃的时候,往往是睡觉前、蹲厕所时,这时候你的脑袋里就像纪录片一样闪回各种生活片段,也会自我探讨很多人生问题,但是当别人问你,刚才你都想了些什么?你会发现你突然脑袋一片空白,我刚才在想什么?好像想了很多,却又都不记得了。除非在这漫无目的的脑力激荡中,你产生了让自己信服的idea,否则你很难记住自己都想了什么,所以大部分人这种碎片化的时间,都是毫无价值的浪费了。逻辑好的人,往往善于归纳总结,把复杂包裹起来,把整理后的闪光点暴露出来,就像集线器,把各种线索都收纳到盒子里,把重要的插头暴露出来。领导讲话,都喜欢讲3点。这并不是信手拈来那么简单,这需要提前做好充沛的准备。很多说3点的人,都是提

前思考过的,有备而来的。当然也不排除有些人天赋秉异,可以在极端的时间内,快速的思考并总结,提练出有价值的3点来。这是很难的事情,我也极少这么做,但是为了体现我自己很有逻辑,有时候我会这么说,这件事情,可以总结成如下几点,第一点,第二点,第三点……能说几点说几点,但是随时可以见好就收。我这里有一个面试的时候,我会问的比较有代表性的逻辑问题,请说出你的三个优点,每个优点说三个例子,每个例子不超过一句话。这要求应聘者在极短的时间内总结并提炼,是非常考验逻辑的。设计中的思维可视化,是从无序到有序的思考过程。不是所有的人都是天生就有很好的逻辑的,但是好在,逻辑是可以训练的,只要你懂的把自己的思维进行可视化的展示、分析和整理。漫思维模型是大部分人大部分时间的思维模型,从一个想法漫入进来,思绪进过各种游弋,然后再散漫的发散,如果有幸从中间找到一些价值点,那也只能说是幸运。不过像头脑风暴(Branstorming)这种依赖脑力激荡的思考方式,倒是也适用于这种漫思维模型,因为头脑风暴确实是需要从无限可能性中去寻找方向。所以这种思维模型也不是一无是处,只是适用的场景不同,也不需要可视化出来。聚思维模型是少量善于逻辑分析的人的思维模型,他们善于先自我发散,再筛选可能,然后聚合成靠谱方向,再具体细化。思维是一个漏斗,最后沉淀下来的想法,是经层层筛选的。而能控制自己

各种钢结构重量计算公式

各种钢结构重量计算公式 材料重量计算 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π = 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm

相关主题