搜档网
当前位置:搜档网 › 人教版九年级数学上册 二次函数综合测试卷(word含答案)

人教版九年级数学上册 二次函数综合测试卷(word含答案)

人教版九年级数学上册  二次函数综合测试卷(word含答案)
人教版九年级数学上册  二次函数综合测试卷(word含答案)

人教版九年级数学上册二次函数综合测试卷(word含答案)

一、初三数学二次函数易错题压轴题(难)

1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)

(1)求该二次函数所对应的函数解析式;

(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;

(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.

【答案】(1)y=x2﹣4x+3;(2)EF的最大值为

2

4

;(3)M点坐标为可以为(2,

3),(55

2

+

,3),(

55

2

-

,3).

【解析】

【分析】

(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.

(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.

(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.

【详解】

解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),

∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),

∴二次函数解析式:y=a(x﹣1)(x﹣3).

又∵点D(4,3)在二次函数上,

∴(4﹣3)×(4﹣1)a=3,

∴解得:a=1.

∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

(2)如图1所示.

因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC

∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .

设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,

30

3k b b +=??

=?

, 解得:1

3

k b =-??

=?,

∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.

FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-2

4

. (3)①如图2所示:

若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .

设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.

又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴

CE NE =NF

BF

, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,

∴24m m

m

-+=2343m m m --+-,

化简得:m 2﹣5m+5=0. 解得:m 1=

552

+,m 2=552-.

∴M 点坐标为(

55+,3)或(55-,3)

②如图3所示:

当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,

∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).

综上所述,满足题意的M 点坐标为可以为(2,3),(552

+,3),(55

2-,3).

【点睛】

本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.

2.如图,抛物线()2

1y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y

轴的负半轴交于点C .

()1求点B 的坐标.

()2若ABC 的面积为6.

①求这条抛物线相应的函数解析式.

②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.

【答案】(1)(1,0);(2)①2

23y x x =+-;②存在,点P 的坐标为

1133313++??或53715337-+-??

. 【解析】

【分析】

(1)直接令0y =,即可求出点B 的坐标;

(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到1

2

(1?a)?(?a)=6即可求a 的值,即可得到解析式;

②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】

解:()1当0y =时,()2

10,x a x a -++=

解得121,.x x a ==

点A 位于点B 的左侧,与y 轴的负半轴交于点,C

0,a ∴<

∴点B 坐标为()1,0.

()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <

1,AB a OC a ∴=-=-

ABC 的面积为6,

()()1

16,2a a ∴

--?= 123,4a a ∴=-=.

0,a <

3a ∴=-

22 3.y x x =+-

②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-

则03,k =-

3k ∴=.

,POB CBO ∠=∠

∴当点P 在x 轴上方时,直线//OP 直线,BC ∴直线OP 的函数解析式3,y x =为

则2

3,23,y x y x x =??=+-?

1132x y ?=??∴?-?=??(舍去)

,2232x y ?=???+?=??

∴点的P

坐标为??

; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,

则直线'OP 的函数解析式为3,y x =- 则2

3,

23,y x y x x =-??

=+-?

1152152x y ?-=??∴?+?=??(舍去)

,2252152x y ?-=???-?=?? ∴点P'

的坐标为??

综上可得,点P

的坐标为1322??++ ? ???

或515,22??

-- ? ???

【点睛】

本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.

3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2

0x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2

121

a +是线段AB 的垂

直平分线,求实数b 的取值范围.

【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b

的取值范围是﹣

4

≤b <0. 【解析】 【分析】

(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后

令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;

(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121

a +是线段AB 的垂

直平分线,从而可以求得b 的取值范围. 【详解】

解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,

即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,

∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,

即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),

∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣

b a

, ∵线段AB 中点坐标为(122x x +,122

x x

+), ∴该中点的坐标为(2b a -,2b a

-), ∵直线y =﹣x+

2121

a +是线段AB 的垂直平分线,

∴点(2b a -,2b

a -)在直线y =﹣x+2121

a +上, ∴2b

a -

=21221

b a a ++

∴﹣b =

2

2

21

22a a a ≤

+=

24,(当a =22

时取等号) ∴0<﹣b ≤

2

, ∴﹣

2

4

≤b <0, 即b 的取值范围是﹣2

4

≤b <0. 【点睛】

本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.

4.如图1,抛物线2

:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正

半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线

()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于

点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;

(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;

②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.

【答案】(1)11a =,12b =;(2)22132y x x =-,231

26

y x x =-;(3)①()22

1

2123

n n y x x n -=

-≥?,②20182019y y >. 【解析】 【分析】

(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;

(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.

②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】

解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),

由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(

12b ,12b ),D 1(12b ,12

b

-), ∵B 1在抛物线c 上,则

12b =(12

b )2

, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),

把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;

(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,

222,22b b B ??∴ ???,22

2,22b

b D ??- ???

. 2B 在抛物线1C 上,2222222b b b ??∴

=- ???

.

解得24b =或20b =(不合舍去),

()22,2D ∴-

2D 在抛物线2C 上,

()22224a ∴-=-.

解得212

a =

. 2C ∴的解析式是()2142y x x =

-,即221

22

y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.

()33,0A b ∴.

由正方形333OB A D ,得3333B D OA b ==,

333,22b b B ??∴ ???,333,2

2b

b D ??- ???.

3B 在抛物线2C 上,

2

333122222

b b b

??∴=-? ???. 解得312b =或30b =(不合舍去),

()36,6D ∴-

3D 在抛物线3C 上,

()366612a ∴-=-.解得31

6

a =

. 3C ∴的解析式是()31126y x x =

-,即231

26

y x x =-. (3)解:①n C 的解析式是()22

1

2123

n n y x x n -=-≥?. ②由①可得2

201820161223y x x =

-?,220192017

1223

y x x =-?. 当0x ≠时,2

2018201920162017

111

0233y y x >??-=

-

???

, 20182019y y ∴>.

【点睛】

本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此

题而言:①求出抛物线与x 轴交点坐标?把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.

5.已知函数2222

22(0)

114(0)

2

2x ax a x y x ax a x ?-+-

=?---+≥??(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,

①求此函数图象与x 轴的交点的横坐标.

②若此函数图象与直线y m =有三个交点,求m 的取值范围.

(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点

()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.

【答案】(1)1a =或3a =-;(2

)①1x =--

1x =+;②

7

2

4m ≤<或21m -<<-;(3

)3a <--

或1a ≤<-

或a >【解析】 【分析】

(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线

y m =观察其与图像交点,即可得到答案.

(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将

2222y x ax a =-+-函数值与2比大小,将2211

422

y x ax a =---+与0比大小;第二

种为当20a -≤<,2

2

22y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211

422

y x ax a =-

--+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2

2

22y x ax a =-+-与y 轴交点与2比大小,2211

422

y x ax a =---+与y 轴交点与0比大小. 【详解】

(1)将()1,2代入2211422y x ax a =-

--+中,得211

2422

a a =---+,解得1a =或3a =-.

(2)当1a =-时,函数为2221,(0)17

(0)

2

2x x x y x x x ?+-

=?-++≥?

?,

①令2210x x +-=

,解得1x =--

1x =- 令217

022

x x -

++=

,解得1x =+

或1x =-

综上,1x =--

1x =+.

②对于函数()2

210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217

(0)22

y x x x =-

++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2??

???

. 综上,若此函数图象与直线y m =有三个交点,则需满足

7

2

4m ≤<或21m -<<-. (3)22

22y x ax a =-+-对称轴为x a =;2211

422

y x ax a =-

--+对称轴为x a =-. ①当2a <-时,若使得2

2

22y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2

2

22y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础

上若使2211

422

y x ax a =-

--+图像与矩形ABCD 无交点,需满足当3x =时,2221111

49342222

0y x ax a a a =---+=?--+<-,

解得3a >

或3a <--,

综上可得:3a <--.

②当20a -≤<时,若使得2

2

22y x ax a =-+-图像与矩形ABCD 无交点,需满足

2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,

22222=20y x ax a a =-+--≤

;得2a ≤<,

在此基础上若使2211

422

y x ax a =-

--+图像与矩形ABCD 无交点,需满足0x =时,222111

4=42222y x ax a a ---+->=;3x =时,

2221111

49342222

2y x ax a a a =---+=?--+>-;

求得21a -<<-;

综上:1a ≤<-.

③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,

22222=22y x ax a a =-+--≥且222111

4+40222

y x ax a a =---+=-<;

求解上述不等式并可得公共解集为:22a >.

综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】

本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.

6.如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;

(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;

(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)

(1)证明:OBC ≌OED ;

(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.

【答案】(1)见解析;(2)x=4,16 【解析】 【分析】

(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;

(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】

(1)证明:连接EF . ∵四边形ABCD 是矩形,

∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE ∴∠DEF =90°

又∵∠ADE =∠DAF =90°, ∴四边形ADEF 是矩形 又∵AD =DE ,

∴四边形ADEF是正方形

∴AD=EF=DE,∠FDE=45°

∵AD=BC,

∴BC=DE

由折叠得∠BCO=∠DCO=45°

∴∠BCO=∠DCO=∠FDE.

∴OC=OD.

在△OBC与△OED中,

BC DE

BCO FDE

OC OD

=

?

?

∠=∠

?

?=

?

∴△OBC≌△OED(SAS);

(2)连接EF、BE.

∵四边形ABCD是矩形,

∴CD=AB=8.

由(1)知,BC=DE

∵BC=x,

∴DE=x

∴CE=8-x

由(1)知△OBC≌△OED

∴OB=OE,∠OED=∠OBC.

∵∠OED+∠OEC=180°,

∴∠OBC+∠OEC=180°.

在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.

在Rt△OBE中,OB2+OE2=BE2.

在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.

∵OB2=y,∴y+y=x2+(8-x)2.

∴y=x2-8x+32

∴当x=4时,y有最小值是16.

【点睛】

本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.

7.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).

【解析】

【分析】

(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;

(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:

①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;

②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P

点的坐标;

(3)很显然当P 、B 重合时,不能构成以A 、P 、E 、F 为顶点的四边形,因为点P 、F 都在抛物线上,且点P 为抛物线的顶点,所以PF 与x 轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P 、Q 重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P 、F 的纵坐标互为相反数,可据此求出F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】

(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;

∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:

①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);

②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;

当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,

∴P 2、D 2关于x 轴对称;

设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:

30

3

k b b +=??

=? ,

解得

1

3

k

b

=-

?

?

=

?

∴y=﹣x+3;

设D2(x,﹣x+3),P2(x,x2﹣4x+3),

则有:(﹣x+3)+(x2﹣4x+3)=0,

即x2﹣5x+6=0;

解得x1=2,x2=3(舍去);

∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;

∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).

∴P点坐标为P1(1,0),P2(2,﹣1);

(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;

当点P的坐标为P2(2,﹣1)(即顶点Q)时,

平移直线AP交x轴于点E,交抛物线于F;

∵P(2,﹣1),

∴可设F(x,1);

∴x2﹣4x+3=1,

解得x1=2﹣2,x2=2+2;

∴符合条件的F点有两个,

即F1(2﹣2,1),F2(2+2,1).

【点睛】

此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.

8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.

(1)如图1,当k=1时,直接写出A ,B 两点的坐标;

(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;

(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由. 【答案】(1)A(-1,0) ,B(2,3) (2)△ABP 最大面积s=1927322288?=; P (1

2,﹣34

) (3)存在;25

【解析】 【分析】

(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组

21

1

y x y x ?=?

=+?﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,

,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可. 【详解】

解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1. 联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,

当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).

如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).

∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.

S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278

当x=

1

2时,yP=x 2﹣1=﹣34

. ∴△ABP 面积最大值为

,此时点P 坐标为(

1

2,﹣34

). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣

1k ,0),F (0,1),OE=1

k

,OF=1. 在Rt △EOF 中,由勾股定理得:EF=2

2111=k k +??+ ???

令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .

假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,

则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2

k

. ∴EN=OE ﹣ON=

1k ﹣2

k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,

∴△EQN ∽△EOF ,

NQ EN OF EF

=,即:1221k

k k k

-

=,

解得:k=±25

, ∵k >0, ∴k=

25

. ∴存在唯一一点Q ,使得∠OQC=90°,此时k=

25

. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.

9.如图,在平面直角坐标系中,抛物线2

(0)y ax bx c a =++≠交x 轴于点

(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .

(1)求该抛物线的函数关系式;

(2)△ANM 与ABD ?是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;

(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)

【答案】(1)2113442y x x =-

-+;(2)点M (0,3

2)、点N (34

,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,3

2

);(3)QH 有最大值,当x=2-时,其最大值为12

5

. 【解析】 【分析】

(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可;

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

九年级数学《二次函数》综合练习题及答案

九年级数学《二次函数》综合练习题 一、基础练习 1把抛物线y=2x 2向上平移1个单位,得到抛物线 _____________ ,把抛物线y=-2x 2?向下平移3个单位,得到 抛物线 _________ . 2 ?抛物线y=3x 2-1的对称轴是 ______ ,顶点坐标为 ________ ,它是由抛物线 y=3x 2?向 _________ 平移 _____ 个单位得到的. 3 .把抛物线y=J 2x 2向左平移1个单位,得到抛物线 _____________ ,把抛物线y=-J2x 2?向右平移3个单位, 得到抛物线 __________ . 4. _____________________________________ 抛物线y=j 3 ( x-1 ) 2的开口向 _____________ ,对称轴为 ,顶点坐标为 __________________________________ , ?它是由抛物线 y=乔x 2向 _______ 平移 _______ 个单位得到的. 1 1 1 5 .把抛物线y=- 1 (X+1) 2向 __________ 平移 _______ 个单位,就得到抛物线 y=-」x 2. 3 2 3 6. _____________________________ 把抛物线y=4 (x-2 ) 2向 平移 个单位,就得到函数 y=4 (x+2) 2的图象. 1 2 1 7. ____________________________________ 函数y=- (x- 1) 2的最大值为 ________ ,函数y=-x 2- 1的最大值为 _________________________________________ . 3 3 &若抛物线y=a (x+m ) 2的对称轴为x=-3,且它与抛物线y=-2 x 2的形状相同,?开口方向相同,则点(a , m )关于原点的对称点为 __________________ . 9. ___________________________________________________________________ 已知抛物线y=a (x-3 ) 2过点(2, -5 ),则该函数y=a (x-3 ) 2当x= _______________________________________?时,?有最 __ 值 _______ . 10. ________________________________________________________________________________________ 若二次函数y=ax 2+b ,当x 取X 1, X 2 (X 1^x)时,函数值相等,则x 取x 什X 2时,函数的值为 ___________________ . 11. 一台机器原价50万元.如果每年的折旧率是 x ,两年后这台机器的价格为 y?万元,则y 与x 的函数 关系式为( ) A . y=50 (1-x ) 2 B . y=50 (1-x ) 2 C . y=50-x 2 D . y=50 (1+x ) 2 12. 下列命题中,错误的是( ) 13 .顶点为(-5 , 0)且开口方向、形状与函数 1 1 A . y=- (x-5) 2 B . y=- x 2-5 C 3 3 .抛物线 y=- J 3X 2-1不与 x 轴相交; 2 .抛物线 尸孚2-1与 y= 3 (x-1 ) 2 2 形状相同,位置不同 .抛物线 .抛物线 1 y=-- 2 1 y= 2 (x- 1) 2 1 (x+ —) 2 2 的顶点坐标为 2 的对称轴是直线 1 , 0); 2 1 x=— 2 1 y=- =x 2的图象相同的抛物线是( ) 3 1 1 y=- (x+5) 2 D . y= (x+5) 2 3 3

2018年沪教版九年级数学 21.4.1二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题 1、说出如何表示各图中阴影部分的面积? 2、抛物线 322 +--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 图五 图四 图六 图二 图一 图三

3、已知抛物线4 2 12 --= x x y 与x 轴交与A 、C 两点,与y 轴交与点B , (1)求抛物线的顶点M 的坐标和对称轴; (2)求四边形ABMC 的面积. 4、已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标; (3)求四边形ADBC 的面积. 5、如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积.

6、已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P. (1)结合图形,提出几个面积问题,并思考解法; (2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ??=, 若存在,请写出点N 的坐标;若不存在,请说明理由。 变式一:在抛物线的对称轴上是否存点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在, 请说明理由. 变式二:在双曲线3 y x = 上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由.

(精)人教版数学九年级上册《二次函数》全章教案(最新)

22.1二次函数的图像和性质(一) 一、学习目标 1.知识与技能目标: (1)理解并掌握二次函数的概念; (2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式; (3)能根据实际问题中的条件确定二次函数的解析式。 二、学习重点难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。 三、教学过程 (一)创设情境、导入新课: 回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流: 问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。问题2:n边形的对角线数d与边数n之间有怎样的关系? 问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 问题4:观察以上三个问题所写出来的三个函数关系式有什么特点? 小组交流、讨论得出结论:经化简后都具有的形式。 问题5:什么是二次函数? 形如。 问题6:函数y=ax2+bx+c,当a、b、c满足什么条件时,(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?

(三)尝试应用: 例1. 关于x 的函数 是二次函数, 求m 的值. 注意:二次函数的二次项系数必须是 的数。 例2. 已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。求这个二次函数的解析式.(待定系数法) (四)巩固提高: 1.下列函数中,哪些是二次函数? (1)y=3x -1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x - 2+x . 2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。 3、n 支球队参加比赛,每两支队之间进行一场比赛。写出比赛的场数m 与球队数n 之间的关系式。 4、已知二次函数y=x2+px+q ,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式. (五)小结: 1.二次函数的一般形式是 。2.会用 法求二次函数解析式。 (六)作业设计 22.1二次函数 y=ax 2的图像和性质(二) 一.学习目标: m m 2 21)x (m y --=

人教版九年级数学上册二次函数教案

教材分析 本节课是数学新人教版九级(上)第二十二章《二次函数》第一节课内容 二次函数教学设计 一、教学目标知识方面: 1.理解并掌握二次函数的概念; 2.能根据实际问题中的条件列出二次函数的解析式。 3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 二、教材分析 本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。 重点是理解二次函数的概念,能根据已知条件写出函数解析式; 难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 三、教学过程教学过程: 一、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么? 2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。 3、你能举出一些生活中类似的曲线吗? 二、合作交流,形成概念。1.列式表示下面函数关系。 问题1:正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2.教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1)等号左边是变量y,右边是关于自变量x的整式。 a,b,c为常数,且a≠0 (2)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。(3)x的取值范围是任意实数。 教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数。

沪科版九年级数学上册《二次函数》教案

《二次函数》教案 教学目标 1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系. 2、理解二次函数的概念,掌握二次函数的形式. 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 4、会用待定系数法求二次函数的解析式. 教学重点 二次函数的概念和解析式. 教学难点 利用条件构造二次函数. 教学设计 一、创设情境,导入新课. 问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才能使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习二次函数来解决,今天我们学习“二次函数”(板书课题) 二、合作学习,探索新知. 请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系: (1)面积y(cm2)与圆的半径x(cm). (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x两年后王先生共得本息y元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12cm,室内通道的尺寸如图,设一条边长为x(cm)种植面积为y(cm2). x

教师组织合作学习活动: 先个体探求,尝试写出y 与x 之间的函数解析式. 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨. (1)y =πx 2 (2)y =2000(1+x )2=20000x 2+40000x +20000 (3)y =(60-x -4)(x -2)=-x 2+58x -112 上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法. 教师归纳总结:上述三个函数解析式经化简后都具y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的形式. 板书:我们把形如y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0)的函数叫做二次函数. 称a 为二次项系数, b 为一次项系数,c 为常数项. 请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项. 做一做 1、下列函数中,哪些是二次函数? (1)2x y =(2)21x y -=(3)122--=x x y (4))1(x x y -= (5))1)(1()1(2 -+--=x x x y 2、分别说出下列二次函数的二次项系数、一次项系数和常数项: (1)12+=x y (2)12732-+=x x y (3))1(2x x y -= 3、若函数m m x m y --=2)1(2为二次函数,则m 的值为______________. 三、例题示范,了解规律. 例、已知二次函数q px x y ++=2 当x =1时,函数值是4;当x =2时,函数值是-5.求这个二次函数的解析式. 此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法. 练习:已知二次函数c bx ax y ++=2,当x =2时,函数值是3;当x =-2时,函数值是2.求这个二次函数的解析式. 例、如图,一张正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),四边形EFGH 的面积为y (cm 2),求: (1)y 关于x 的函数解析式和自变量x 的取值范围. (2)当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示.

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分 一、选择题(每小题3分,共6分) 1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠0 2.当ab >0时,y =ax 2与y =ax +b 的图象大致是( ) 二、填空题(每小题4分,共8分) 3.若y =x m - 1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________. 图J22-1-1 三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12 x 2 的图象,并根据图象回答下列问题(设小方格的边长为1): 图J22-1-2 (1)说出这两个函数图象的开口方向,对称轴和顶点坐标; (2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点; (3)函数y =-1 2 x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有 最______值是______.

时间:10分钟 满分:25分 一、选择题(每小题3分,共6分) 1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)2 2.二次函数y =-x 2+2x 的图象可能是( ) 二、填空题(每小题4分,共8分) 3.抛物线y =x 2 +14 的开口向________,对称轴是________. 4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分) 5.已知二次函数y =-12 x 2 +x +4. (1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?

人教版九年级数学二次函数应用题(含答案)

人教版九年级数学二次函数实际问题(含答案) 一、单选题 2+2t,则当t=4t(米)与时间(秒)的关系式为s=5t时,该物体所经1.在一定条件下,若物体运动的路程s过的路程为][ A.28米 B.48米 C. 68米 米.88 D2 +bx+c的图象过点(1,0)……2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax 求证这个二次函数的,题中的二次函数确定具有的性质是图象关于直线x=2对称.][ A.过点(3,0) B.顶点是(2,-1) C.在x轴上截得的线段的长是3 3)(0,D.与y轴的交点是3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面 是离墙的距离OB1m,离地面m,则水流落地点BM垂直),如图,如果抛物线的最高点离墙 A.2m B.3m C .4 m m5 D. 之间的函数关系式是,则该运与水平距离4.如图,铅球运动员掷铅球的高度y(m)x(m)页9共,页1第 动员此次掷铅球的成绩是

][ A.6 m B.8m C. 10 m m.12 D 2,若滑到间的关系为S=l0t+2t的斜坡笔直滑下,滑下的距离S(m)与时间5.某人乘雪橇沿坡度为1t(s):4s,则此人下降的高度为坡底的时间为][ A.72 m 36 .m BC.36 m m.18D2 +50x-500,则要想满足关系y=-x与销售单价x(元))6.童装专卖店销售一种童装,若这种童装每天获利y(元获得最大利润,销售单价为][ A.25元 B.20元 C.30元 元40D.7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入2 +bx+c所示,则下列结论正确的是网.若足球运行的路线是抛物线y=ax -12a00;④③;;①a<②

沪教版九年级上册-二次函数复习 讲义

教学内容—二次函数综合复习 知识精要 二次函数的概念:形如 2 (0)y ax bx c a =++≠的函数。定义域是一切实数。 二次函数的图像 函数 对称轴 顶点 开口方向 最值 () 20y ax a =≠ y 轴 (0,0) a>0,图像开口向上,顶 点是最低点; a<0,图像开口向下,顶点是最高点. () 2 0y ax c a =+≠ y 轴 ) ,0(c c ()() 2 0y a x m a =+≠ m x -= ()0,m - )0()(2≠++=a k m x a y m x -= ),(k m - k ()02 ≠++=a c bx ax y a b x 2- = ??? ? ??--a b ac a b 44,22 a b a c 442 - )0)()((1≠--=a x x x x a y x 22 1x x x += 一、选择题典型例题 1)有关二次函数图像与系数关系 1.如果0k <(k 为常数),那么二次函数22y kx x k =-+的图像大致为 ( ). 2. 已知二次函数)0(2 ≠++=a c bx ax y 的图像如图所示, 以下关于实数c b a ,,的符号判断中,正确的是( ) A.0,0,0>>>c b a B.0,0,0><>c b a C.0,0,0<>>c b a D.0,0,0<<>c b a 第6题 A B C D y O x y O x y O x y O x

2)二次函数性质的判断:对称轴,开口方向,顶点,增减性 1. 已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是 ( ) A. 若12y y =,则12x x = B. 若12x x =-,则12y y =- C. 若120x x <<,则12y y > D. 若120x x <<,则12y y > 2.关于抛物线4)1(32 -+-=x y ,下列说法正确的是 ( ) A .抛物线的对称轴是直线1=x ; B .抛物线在y 轴上的截距是4-; C .抛物线的顶点坐标是(41--,) ; D .抛物线的开口方向向上. 3.已知函数2 22y x x =--的图像如图所示,根据图像提供的信息,可得y ≤1时,x 的取值范围是 ( ) A .3x -≥ B .31x -≤≤ C . 13x -≤≤ D .1x -≤或3x ≥ 4.对于抛物线23y x =-,下列说法中正确的是( ) A .抛物线的开口向下 ; B .顶点(0,-3)是抛物线的最低点 ; C .顶点(0,-3)是抛物线的最高点; D .抛物线在直线0x =右侧的部分下降的. 3)二次函数的平移问题 1.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ). A. 沿y 轴向上平移2个单位; B. 沿y 轴向下平移2个单位; C. 沿x 轴向右平移2个单位; D. 沿x 轴向左平移2个单位. 2. 把抛物线()2 16+=x y 平移后得到抛物线2 6x y = ,平移的方法可以是 ( ). A. 沿y 轴向上平移1个单位; B. 沿y 轴向下平移1个单位; C. 沿x 轴向左平移1个单位; D. 沿x 轴向右平移1个单位. 巩固练习 1.已知抛物线解析式为243y x x =--,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的 坐标是__________.

人教版九年级上册数学九年级二次函数综合测试题及答案

二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 二、4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点在第 ___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P 的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么 AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3, y3)是直线上的点,且-1

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

沪教版(上海)初中数学九年级第一学期 本章小结以二次函数为背景的综合题 教案

以二次函数为背景的综合题 复习目标: 1、熟练掌握用待定系数法求二次函数; 2、结合二次函数的性质与多个知识点的沟通解决有关数学的综合题 3、体会数学思想方法,如:数形结合思想、方程思想、分类讨论思想;复习重点:掌握函数中典型几何问题的解题方法 复习难点:数学思想的渗透 复习过程: 教学 环节 设计过程设计说明 一、 知识点回顾1、二次函数y=-(x-1)2+3图像的顶点坐标是______ 开口方向________对称轴_________ 2、将抛物线向上平移3个单位,向左平移 2个单位后可得到抛物线的解析式_________________ 3、如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c 的 大 致 图 像 为() 通过这三个题目主要是回顾 二次函数中的性质且灵活的 运用性质 已知:抛物线c bx ax y+ + =2经过点A(1,0),B(4,在直角坐标平面内,根据确定 的三点用待定系数法求抛物 线的解析式是每一个学生要

BCD的面积有多种方法,一方面考虑通性、 方面考虑择优

问题5:如果⊙P过点A、B、C三点,求圆心P的坐标。 问题5如何确定三角形的外 心,利用两点间距离公式确定 点需要满足的数量关系 三、 小 结 师生共同回顾本节课的内容和学习这节课的收获。 四、作业如图,在平面直角坐标系xOy中,O为原点,点A、C的 坐标分别为(2,0)、(1,3 3).将△AOC绕AC 的中点旋转180°,点O落到点B的位置,抛物线 x ax y3 2 2- =经过 点A,点D是该抛物线的顶点. (1)求证:四边形ABCO是平行四边形; (2)求a的值并说明点B在抛物线上; (3)若点P是线段OA上一点,且∠APD=∠OAB,求 点P的坐标; (4) 若点P是x轴上一点,以P、A、D为顶点作平行 四边形,该平行四边形的另一顶点在y轴上,写出点P 的坐标. B C D A x y O

初中数学九年级《二次函数》公开课教学设计

22.1.1 二次函数 一、教学目标 1.知识与技能目标: (1).使学生理解并掌握二次函数的概念 (2).能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式 (3).能根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想 2.过程与方法目标; 通过“探究----感悟----练习”,采用探究、讨论等方法进行。 3.情感态度与价值观: 通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 二、教学重、难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式 2.难点:理解二次函数的概念. 三、教学过程 1、知识回顾 (1).什么是变量,常量? (2).函数的定义是什么,有什么表现形式? (3) 函数的图象怎么构成,如何作函数的图象? 2、合作学习,探索新知 : 问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,那么y 与x 的关系可表示为? y=6x 2 问题2: n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系? m=21122 n n 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果

每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示? y=20x 2+40x+20 观察以上三个问题所写出来的三个函数关系式有什么特点?引导学生从自变量最高次数思考。 经化简后都具有y=ax2+bx+c 的形式,(a,b,c 是常数, a≠0 ). 我们把形如y=ax2+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项. 又例:y=x2 + 2x – 3 满足什么条件时 当,是常数其中函数c b,a,)c b,a,c(bx ax y 2++= (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数? 3、巩固练习: 1.下列函数中,哪些是二次函数? (1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x. 2.做一做: (1)正方形边长为x (cm ),它的面积y (cm2)是多少? (2)矩形的长是4厘米,宽是3厘米,如果将其长增加x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式. 4、例题讲解: 例1: 关于x 的函数是二次函数, 求m 的值. 解: 由题意可得 注意:二次函数的二次项系数不能为零 m m x m y -+=2)1(012 2≠+=-m m m 时,函数为二次函数。当解得,22 =∴=m m

11沪教版-初三数学-中考总复习(二次函数) - 学生版-基础

教师姓名 学生姓名 年(尚孔教研院彭高钢级 初三 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢 科 数学 课题名称 中考总复习之二次函数 待提升的知识点/题型 (尚孔教研院彭高钢) 考点提炼 (一)二次函数的定义和性质 形如2 y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. 1、二次函数由特殊到一般,可分为以下几种形式: ①0)0(2 2++=?=x a y ax y ; ②k x a y k ax y ++=?+=2 2)0(; ③()0)(2 2 +-=?-=h x a y h x a y ; ④()2 y a x h k =-+(其中,,a h k 是常数,且0a ≠) 2、抛物线()2 y a x h k =-+(其中,,a h k 是常数,且0a ≠)的对称轴是过点( h ,0)且平行(或重合)于y 轴的直线,即直线x h =,顶点坐标是(h ,k),当0a >时,抛物线开口向上,顶点是抛物线的最低点;当0a <时,抛物线开口向下,顶点是抛物线的最高点。 3、一般二次函数c bx ax y ++=2 用配方法可化成:a b ac a b x a y 44222 -+ ??? ? ? +=的形式 对称轴:直线,a b x 2-= 顶点坐标:(- a b 2,a b ac 442-) ,当0a >时,抛物线开口向上, 顶点是抛物线的最低点;当0a <时,抛物线开口向下,顶点是抛物线的最高点。 4、求二次函数的解析式一般方法 (1)一般式:c bx ax y ++=2 .已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式.

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

人教版九年级数学上册二次函数

初中数学试卷 二次函数 ——二次函数的定义、图像及性质 一、二次函数的定义 形如y=a x2+bx+c(a, b, c是常数,a≠0),那么,y叫做x的二次函数。 【例题1】 (1)下列函数中,是二次函数的为() A. B.y= C. D. (2)函数是二次函数,则m的值为()A.1或—6 B.1 C.—2或3 D.3 二、二次函数的图像——抓住a、b、c 【例2】

(1)在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠ 0)的图象可能是() (2)函数与(k≠0)在同一坐标系中图像大致是图中的 () (3)已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的() (4)设a、b是常数,且b>0,抛物线为下图中四个图像之一,则a的值为()

(5)二次函数的图像的一部分如图所示,求a的取值范围 三、二次函数的图像性质 1.点的坐标 【例3】 (1)已知抛物线的顶点在坐标轴上,则k的值共有()A.1个 B.2个 C.3个 D.4个 (2)若抛物线的顶点的纵坐标为n,则k-n的值为_______. 2.二次函数的单调性 【例4】 (1)若点A(2,y 1),B(3,y 2 )是二次函数图像上的两点, 则y 1与y 2 的大小关系是() A.y1<y2B.y1=y2C.y1>y2D.不能确定

(2)已知a<—1,点(a-1, y1),(a, y2)(a+1,y3)都在二次函数 的图像上,则y1、y2、y3 的大小关系为_______. 四、二次函数的最值问题——配方法、顶点法 【例5】 (1)二次函数的最小值是_______. (2)已知实数x,y满足,则x+y的最大值为______. (3)当二次函数的最小值为() A.—4 B.— C.— D. (4)当—1≤x≤1时,二次函数y= x2-mx+3有最小值—3,求m的值。

相关主题