搜档网
当前位置:搜档网 › 氯离子含量与不锈钢的选型说课讲解

氯离子含量与不锈钢的选型说课讲解

氯离子含量与不锈钢的选型说课讲解
氯离子含量与不锈钢的选型说课讲解

氯离子含量与不锈钢

的选型

精品文档

304 CL-含量标准

25℃时 100mg/L

50℃时 75mg/L

75℃时 40mg/L

100℃时 20mg/L

120℃时 10mg/L

下面是不同氯离子含量对应的材料选择,仅供参考

氯离子浓度 60度 80度 120度 130度

< 10ppm 304 304 304 316

< 25ppm 304 304 316 316

< 50ppm 304 316 316 Ti

< 80ppm 316 316 316 Ti

< 150ppm 316 316 Ti Ti

< 300ppm 316 Ti Ti Ti

> 300ppm Ti Ti Ti Ti

关于不锈钢材质耐氯离子腐蚀标准可参照《火电厂循环水处理》一书第179页,明确约定: ⑴、T304不锈钢氯离子含量为0-200mg/L

⑵、T316不锈钢氯离子含量为<1000mg/L

⑶、T317不锈钢氯离子含量为<5000mg/L

氯离子对不锈钢钝化膜的破坏

处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。当介质中含有活性阴离子(常见的如氯离子)时,平衡便受到破坏,溶解占优势。其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20~30μm),这些小蚀坑称为孔蚀

收集于网络,如有侵权请联系管理员删除

混凝土碱含量氯离子含量计算书

混凝土碱含量、氯离子含量计算书 1.计算依据: 1.1《混凝土结构工程施工质量验收规范》(GB50204-2015) 1.2《混凝土碱含量限值标准》 1.3陕西国华锦界煤电工程混凝土设计强度等级最高的为空冷柱混凝土C50(配合比编号:HNTPB-2015-11),除氧煤仓间框架混凝土C45(配合比编号:BPCC/HNTPB-2015-09),汽机基座上部结构(配合比编号:C35HNTPB-2015-16),统计如下: 1.4设计要求:混凝土结构的环境类别为二、b类,碱含量限值为3 kg/m3(每立方米混凝土碱含量)、氯离子含量限值为0.2%(占水泥用量)。 1.5水泥、外加剂材质证明、砂石复试 1.6混凝土各组份碱含量及氯离子含量 2.碱含量计算

2.1计算公式 混凝土碱含量A=Ac+Aca+Aaw 水泥碱含量Ac=WcKc(kg/m3) Wc---水泥用量(kg/m3) Kc---水泥平均碱含量(%) 外加剂碱含量Aca=aWcWaKca(kg/m3) a---将钠或钾盐的重量折算成等当量Na2O重量的系数 Wa---外加剂掺量 Kca---外加剂中钠(钾)盐含量(%) 骨料引入混凝土碱含量Aaw=Wa砂Pac砂+Wa石Pac石 Pac---骨料中碱含量(%) Wa---骨料用量(kg/m3) 2.2单方混凝土碱含量 2.2.1空冷柱混凝土C50(配合比编号:HNTPB-2015-11) 混凝土配比: 水泥(P.O52.5):480kg; 砂:610kg; 石:1079kg; JF-9:11.5kg; A空冷柱C50=480×0.3%+11.5×3.64%+610×0.07%+1079×0.04%=2.72(kg/m3)<3(kg/m3)。满足设计要求。 2.2.2除氧煤仓间框架混凝土C45(配合比编号:BPCC/HNTPB-2015-09)混凝土配比: 水泥(P.S42.5):478kg; 砂:606kg; 石:1098 kg; F-9:11.16 kg A除氧煤仓间框架C45=478×0.3%+11.16×3.64%+606×0.07%+1098×

氯离子腐蚀及不锈钢知识(精.选)

氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金 属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化. 本文分析了氯离子对金属腐蚀的机理,并针对热力系统内部氯离子的来源,提出了相应的解决措施. 岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析 316L 抋o 简隆新1 ,时建华2 (1.中广核工程有限公司,广东深圳 518124; 2.大亚湾核电运营管理有限公司,广东深圳 518124) 简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况, 分析了316L不锈钢的抗腐蚀性。详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防 护措施。 316L不锈钢;管道;点腐蚀 : a 316L . 316L . , a . . : 316L ; ; 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统()的主要设备是旋转海水滤网,在其运行中要不断 清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一

样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m。反冲洗海水管道设计采用公称直径150(壁厚 7.11)的316L不锈钢管。输送的海水含氯量为17g,摩尔浓度为0.48,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

不锈钢在含氯离子介质中的适用范围

热交换器专家—为您提供最专业的热交换器技术方案及采购咨询 不锈钢在含氯离子介质中的适用范围 最高温度(℃) 25 50 60 75 80 100 120 130 氯离子含量(mg/l) 10 304 304 304 304304304304316 25 304 304 304 304304316 316 316 40 304 304 304 304316 316 316 904L 50 304 304 304 316 316 316 316 904L 75 304 304 316316 316 316 316 904L 80 304 316316316 316 316 316 904L 100 304 316316316 316 316 904L254 120 316 316316316 316 904L904L254 130 316316316316 316 904L254254 150 316316316316 316 254254254 180 316316316316 904L254254TA1 250 316316316904L254254254TA1 300 316316904L254254254254TA1 400 316904L254254254254TA1TA1 500 904L 904L254254254TA1TA1TA1 750 904L254254254TA1 TA1 TA1 TA1 1000 904L254254TA1 TA1 TA1 TA1 TA1 1800 254 254TA1 TA1 TA1 TA1 TA1 TA1 5000 254 TA1 TA1 TA1 TA1 TA1 TA1 TA1 7300 TA1 TA1 TA1 TA1 TA1 TA1 TA1 TA1 注:表中数据仅供参考,实际选用还要根据介质中其它元素的含量的多少决定选用何种材料,如有需要可登陆本网站咨询。 https://www.sodocs.net/doc/044055811.html,

氯离子含量快速测定仪使用说明书

氯离子含量快速测定仪使用说明书 氯离子含量快速测定仪概述 氯离子是诱发钢筋锈蚀的重要因素,为了避免钢筋过早锈蚀,混凝土原材料中氯离子含量的控制相当严格。我国部分规范明确要求混凝土在选配砂子、骨料、水泥、外加剂、拌和水等混凝土原材料的时候,必须进行氯离子含量的测试,从根本上避免将过量氯离子带入混凝土中。我公司生产的氯离子快速测定仪正是测定新拌混凝土中氯离子浓度的实验室电化学分析仪器,氯离子选择电极为指示电极,再辅以适当的参比电极,一起插入待测溶液中,构成供测定用的电化学系统。 氯离子含量快速测定仪适用范围及执行标准 执行标准:?《水运工程混凝土试验规程》?JTJ270-98 测试指标:氯离子浓度、质量百分比 适用范围:实验室检测氯离子含量,控制及防止钢筋发生过早腐蚀,快速检测混凝土、砂石子、水泥等无机材料的水溶性氯离子含量,结合混凝土中氯离子扩散系数,可对混凝土结构寿命、钢筋锈蚀寿命进行预测。 氯离子含量快速测定仪功能特点 采用采用离子选择电极法(ISE[工业电器网-cnelc]法),人机界面采用一键式编码开关和128*64液晶显示面板,高速低噪热敏式微打。一键快速测试,全中文导航式提示菜单,操控直观方便。是测定混凝土、砂石子、外加剂、拌和水等材料水溶性氯离子含量的最佳选择。产品具有运行快、操作简单,稳定性高、应用范围广等特点,同时适合于科研、检测、和实验室做水溶性氯离子含量检测与测试。 氯离子含量快速测定仪主要技术参数 1、氯离子浓度测量范围:5*-1mol/L。 2、pH范围:2---6 pH

3、温度范围:室温 4、响应时间: 2分钟 5、输出方式:可选配打印输出 6、输入电源:AC/220V 7、分辨率: 1mV 8、输入阻抗: 1 1012 氯离子含量快速测定仪配置 1、氯离子选择电极 2、参比电极:饱和甘汞电极(L) 3、两种溶液(L和L)各250ml 4、电极支架 5、制样用化学试剂(用户选配) 氯离子含量快速测定仪操作规程 (一)电极校准 1、检查设备连接,打开软件。 2、清洗电极:将活化好的电极置于清洗瓶中,用去离子水清洗3 次,清洗后的水倒掉。 3、用滤纸小心拭干电极表面。 4、打开CLU-H测试软件,点击“工具”菜单下的“仪器校准”选 项,确认标准溶液的个数为两种。 5、用两个标准溶液校准电极时,依次选取50-150ml(根据容量 瓶的大小)的×10-4、×10-3Mol/L NaCL标准溶液置于事先清洗干净并且干燥的烧杯中,适量添加电极稳定液(1~2ml),将电极由稀到浓的顺序插入标准溶液。

氯离子计算书

氯离子计算书

————————————————————————————————作者:————————————————————————————————日期:

需 方:山东天齐置业集团股份有限公司济南分公司 合同编号:/ 工程名称:济南西客站生态住区B-1地块二期1号楼 配合比编号:2014-HP-112 浇筑部位:/ 强度等级:C30 材料名称 水泥 砂 石 外加剂 水 膨胀剂粉煤灰 厂 家泰山P·O42.5 泰安中砂 济南 恒达BHD-D 饮用水 材料用量(㎏/ m3)415 745102920.75 170 各材料碱含量(%)0.31% 2.40% 各材料带入碱含量 (㎏/ m3)混凝土总碱含量 (㎏/ m3)碱含量设计要求 (㎏/ m3) 各材料氯离子含量(%)0.01% 各材料带入氯离子含量 (㎏/ m3)混凝土总氯离子含量 (㎏/ m3)氯离子总含量占 水泥用量的百分数氯离子含量 设计要求(%) 结 论依据《混凝土结构设计规范》GB50010-2010标准,该混凝土碱含量、氯离子含量符合设计要求。 ≤3Kg/m 3 (一类)氯离子含量≤0.3 ≤0.15-0.2 (二类)氯离子含量 (三类)氯离子含量 ≤0.1-0.15 0.040.01% 0.0415 1.78 1.2865 0.49800 0.000 批准: 审核: 计算:

需 方:山东天齐置业集团股份有限公司济南分公司 合同编号:/ 工程名称:济南西客站生态住区B-1地块二期1号楼 配合比编号:2014-HP-127 浇筑部位:/ 强度等级:C35 材料名称 水泥 砂 石 外加剂 水 膨胀剂粉煤灰 厂 家泰山P·O42.5 泰安中砂 济南 恒达BHD-D 饮用水 材料用量(㎏/ m3)435 719103421.75 170 各材料碱含量(%)0.31% 2.40% 各材料带入碱含量 (㎏/ m3)混凝土总碱含量 (㎏/ m3)碱含量设计要求 (㎏/ m3) 各材料氯离子含量(%)0.01% 各材料带入氯离子含量 (㎏/ m3)混凝土总氯离子含量 (㎏/ m3)氯离子总含量占 水泥用量的百分数氯离子含量 设计要求(%) 结 论依据《混凝土结构设计规范》GB50010-2010标准,该混凝土碱含量、氯离子含量符合设计要求。 0.000 1.87 1.3485 0.52200 ≤3Kg/m 3 (一类)氯离子含量≤0.3 ≤0.15-0.2 (二类)氯离子含量 (三类)氯离子含量 ≤0.1-0.15 0.040.01% 0.0435 批准: 审核: 计算:

氯离子对不锈钢腐蚀原理

氯离子对不锈钢有多种腐蚀 1对钝化膜的破坏 目前有几种理论,比较权威: 1>成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。 2>吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速 2孔蚀(点蚀)孔蚀失效机理 在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。点蚀一般在静止的介质中容易发生。具有自钝化特性的金属在含有氯离子的介质中, 经常发生孔蚀。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。 含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm ~30μm小蚀坑,这些小蚀坑便是孔蚀核。在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。蚀孔内的金属表面处于活化状态电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。孔内主要发生阳极溶解: Fe →Fe2+ + 2e , Cr →Cr3 + + 3e , Ni →Ni2 + + 2e。 介质呈中性或弱碱性时,孔外的主要反应为: O2 + H2O + 2e →2OH-。 由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩,溶解氧也不易扩散进来。由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶液,这种浓溶液可使孔内金属表面继续维持活化状态。又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀物,结果锈层、垢层一起在孔口沉积形成一个闭塞电池。闭塞电池形成后 ,孔内、外物质交换更加困难,孔内金属氯化物更加浓缩,氯化物水解使介质酸度进一步增加,酸度的增加将使阳极溶解速度进一步加快,蚀孔的高速度深化,可把金属断面蚀穿。这种由闭塞电路引起的孔内酸化从而加速腐蚀的作用称为自催化酸化作用。影响孔蚀的因素很多,金属或合金的性质、表面状态,介质的性质、pH值、温度等都是影响孔蚀的主要因素。大多数的孔蚀都是在含有氯离子或氯化物的介质中发生的。有自钝化特性的金属孔蚀的敏感性较高,钝化能力越强,则敏感性越高。 奥氏体不锈钢最怕氯离子. 因为CL-能在奥氏体的晶间与不锈钢中的Cr,生成络化物在晶间上造成贫铬区使不锈钢在晶间率先发生腐蚀破坏这就是晶间腐蚀所以有cl-的场合不能用奥

混凝土外加剂氯离子含量试验精选报告.doc

湖南中天土木工程检测中心混凝土外加剂氯离子含量试验报告 委托单位委托单号 工程名称样品编号 施工部位环境条件温度:° C 湿度: % 样品名称混凝土高性能外加剂质量标准GB8076-2008 样品描述淡黄色粘稠液体仪器名称电位测定仪、电极、搅拌器 代表数量6t 试验方法电位滴定法 样品批号样品来源 生产厂家试验日期 序号试验项目规定值试验结果 1氯离子含量X Cl(%) 结论 : 经检测,所测指标符合《混凝土外加剂》 GB8076-2008 标准及《 xxx 工程混凝土外加剂的质 量标准》的要求。

备注: 批准: 审核 试验: 批准日期: 年 月 日 湖南中天土木工程检测中心 混凝土外加剂氯离子含量试验记录表 委托单位 委托单号 工程名称 样品编号 施工部位 环境条件 温度: ° C 湿度: % 样品名称 混凝土高性能外加剂 试验依据 GB8077-2012 样品描述 淡黄色粘稠液体 仪器名称 电位测定仪、电极、搅拌器 代表数量 6t 试验日期 外加剂类型 GOR 型高性能减水剂 试验次数 1 2 外加剂试样质量 m ( g ) 硝酸银溶液当量浓度 c ( mol/L ) 加 10mL 氯化钠标准液消耗 空白硝酸银溶液体积 V 01( mL ) 液 加 20mL 氯化钠标准液消耗硝酸银溶液体积 V 02( mL ) 加 10mL 氯化钠标准液消耗 硝酸银溶液体积 V 1( mL )加 20mL 氯化钠标准液消耗硝酸银溶液体积 V 2( mL ) 氯离子所消耗的硝酸银溶液体 积 :V=[( V 1- V 01) +( V 2- V 02)] /2 氯离子含量: X Cl =[( c ·V ×) / m ] × 加外 加剂 试验

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

氯离子碱含量计算书

C35桥面板、中板等配合比氯离子、碱含量计算书 依据规范《普通混凝土配合比设计规程》 (JGJ55-2011 ),《混凝土结构耐久性设计规范》 GB/T50476-2008要求,混凝土氯离子含量不得大于胶凝材料总用量的 0.06%,混凝土的总碱 含量应w 3.0kg/m 3混凝土的三氧化硫的含量应不超过胶凝材料总量的 4%该配比碱含量和 氯离子含量符合规范要求。 计算: 复核: 日期: 配合比编号:E 配 合 比 ( ) 水泥:水:砂:石:粉煤灰:外加剂 =333: 154: 710: 1065: 83: 4.784 3.每方混凝土碱含量 333 X 0.54%+4.784 X 0.27%+83X 1.66%/6+154 X 0.0021%=2.04 ( kg ) 4. 每方氯离子含量 (333 X 0.016%+4.784 X 0.017%+154 X 0.00001699+83*0.01%+710 X 0.00001+1065 X 0.00002 ) / (333+83) =0.02% 5. 每方三氧化硫含量 (333 X 1.90%+4.784 X 0.32%+154 X 0.0025%+83*0.31%+710 X 0.16%+1065*0.24% ) / (333+83) =2.4%

C35连续墙、抗拔桩配合比氯离子、碱含量计算书 6. 结论 依据规范《普通混凝土配合比设计规程》(JGJ55-2011 ),《混凝土结构耐久性设计规范》 GB/T50476-2008要求,混凝土氯离子含量不得大于胶凝材料总用量的0.06%,混凝土的总碱含量应w 3.0kg/m 3混凝土的三氧化硫的含量应不超过胶凝材料总量的4%该配比碱含量和 氯离子含量符合规范要求。 计算: 复核: 日期:

砼碱含量及氯离子的计算方法(精)

砼碱含量及氯离子的计算计算方法 1、水泥:水泥碱含量以实测平均碱含量计 Ac=Wc*Kc(Kg/m3) Wc—水泥用量kg;Kc—水泥平均碱含量% 2、化学外加剂:在化学外加剂的掺量以水泥质量的 百分数表示时 Ac a=a*Wc*Wa*Kca(Kg/m3) a——将钠或钾盐的重量折算成等量的Na2O重量的系数 Wa—外加剂掺量% Kca—外加剂中钠(钾)盐的含量(%) a表表6059 序号名称化学式每Kg物质含碱量注 1 硫酸钠Na2SO4 0.436 2 亚硝酸钠NaNO20.449 3 碳酸钾K2CO30.448 4 硝酸钠NaNO30.365

5 氯化钠+硫酸钠NaCL+Na2SO40.464 1:1 6 氯化钠+亚硝酸钠NaCL+NaNO20.486 1:1 1、含碱量按Na2O含量计算 2、K2O折算为Na2O时乘以0.658 3、掺合料:掺合料提供的碱含量按下式计算 Am a=B*Y*Wc*Km a(Kg/m3) 式中 B—掺合料有效碱含量占掺合料碱含量的百分率% Y—掺合料对水泥的置换率% Km a—掺合料的碱含量% 对于矿渣、粉煤灰和硅灰B值分别为50%、15%、50%沸石15%、矿渣与粉煤灰30%。 4、骨料和拌合水,如果骨料为受到海水作用的砂、石,拌合水为海水则由骨料和拌合水引入的碱含量可按下式计算 A a w=0.76*(W a*P a c+Ww*Pwc)(Kg/m3) 式中P a c—骨料的氯离子含量% Pwc—拌合水的氯离子含量% W a—骨料用量 Ww—拌合水用量(Kg/m3)

总 A=Ac+Ac a+Am a+A a w(Kg/m3) 二、钢筋混凝土中氯离子含量包括水泥、矿物掺合料、粗骨料、细骨料、水和外加剂等所含氯离子含量之和。其中以水泥、外加剂的含量为主,矿物掺合料、水中氯离子含量、粗骨料中含量较小,可忽略不计。细骨料可由试验验测得(海砂),非海砂可忽略不计。 以C30砼为例: 水泥300Kg 砂800 石1020 粉煤灰70 外加剂9.3 水189 碱含量:Ac=300*0.8%=2.4 Kg/m3 Aca=9.3*4.5%*0.436=0.18 Kg/m3(高效减水粉剂15%的Na2SO4含量,配制浓度为30%的泵送剂可测或外加剂厂提供报告) Ama=15%*70*(0.63+0.658*2.27)%=0.23 Kg/m3 (粉煤灰碱含量见化学分析,由供应商提供报告) A=Ac+Aca+Ama=2.81 Kg/m3<3 Kg/m3 氯离子含量: 水泥中氯离子含量=300*0.031%=0.0933 Kg/m3 外加剂中氯离子含量=9.3*0.1%=0.0093 Kg/m3 (由外加剂厂提供氯离子含量报告) 总=0.093+0.0093=0.123 Kg/m3 0.123/370=0.033%<0.06% (370为胶凝材料总量)。

混凝土CL-含量计算书

混凝土氯离子含量计算书 根据相关规范、标准要求,结合我场所用原材料情况,对我场C40混凝土每方中氯离子计算如下(混凝土配合比报告编号为2007-013): 1、混凝土中水泥用量270Kg/m3,矿粉用量80Kg/m3,外加剂用量4.1Kg/m3,水用量139Kg/m3,细骨料767Kg/m3,粗骨料1103Kg/m3,粉煤灰用量60Kg/m3 2、混凝土中水泥氯离子含量:水泥氯离子含量为0.003Kg/m3,则氯离子含量为0.003%*270=0.0081Kg/m3。 3、混凝土中粗骨料氯离子含量:粗骨料为0.002Kg/m3,则氯离子含量为0.002%*1103=0.02206 Kg/m3。 4、混凝土中细骨料氯离子含量:细骨料为0.004Kg/m3,则氯离子含量为0.004%*767=0.03068 Kg/m3。 5、混凝土中矿粉氯离子含量:矿粉氯离子含量为0.015%,则氯离子含量为0.015%*80=0.012 Kg/m3。 6、混凝土中外加剂氯离子含量:外加剂氯离子含量为0.03%,则氯离子含量为0.03%*4.1=0.00123 Kg/m3。 7、混凝土中水氯离子含量:0.000145*139=0.020155 Kg/m3。 8、混凝土中粉煤灰氯离子含量:则氯离子含量为0.001%*60=0.0006 Kg/m3。 9、混凝土中总氯离子含量为:水泥+矿粉+粗骨料+细骨料+外加剂+水+粉煤灰= 0081+0.012+0.02206+0.03068+0.00123+0.020155+0.0006= 0.094825Kg/m3<0.06%*410=0.246Kg/m3标准要求。 9、《客运专线高性能混凝土暂行技术条件》 计算:复核: 试验室 2006.4.16 混凝土氯离子含量计算书 根据相关规范、标准要求,结合我场所用原材料情况,对我场C50混凝土每方中氯离子计算如下(混凝土配合比报告编号为2005-京津砼配-07): 1、混凝土中水泥用量315Kg/m3,矿粉用量45Kg/m3,粉煤灰用量90Kg/m3,外加剂用量5.3Kg/m3,水用量142Kg/m3,细骨料690Kg/m3,粗骨料1170Kg/m3; 2、混凝土中水泥氯离子含量:水泥氯离子含量为0.003Kg/m3,则氯离子含量为0.003%*315=0.00945Kg/m3。 3、混凝土中粗骨料氯离子含量:粗骨料为0.002Kg/m3,则氯离子含量为0.002%*1170=0.0234 Kg/m3。 4、混凝土中细骨料氯离子含量:细骨料为0.004Kg/m3,则氯离子含量为0.004%*690=0.0276 Kg/m3。 5、混凝土中矿粉氯离子含量:矿粉氯离子含量为0.015%,则氯离子含量为0.015%*45=0.00675 Kg/m3。 6、混凝土中粉煤灰氯离子含量:粉煤灰氯离子含量为0.01%,则氯离子含量为0.01%*90=0.009 Kg/m3。 7、混凝土中外加剂氯离子含量:外加剂氯离子含量为0.03%,则氯离子含量为0.03%*5.3=0.00159 Kg/m3。 8、混凝土中水氯离子含量0.000145*144=0.021 Kg/m3。

氯离子腐蚀介绍

氯离子腐蚀研究 一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO AI6XN, SAF2507等,不重要的地方也可以衬胶我同意六楼的观点,我们买的泵基本上是2605 三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的 18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的

使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制, 已知增加Cr和Mo奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本 研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀! 以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢00Cr26Ni6Mo4CuTiAI 耐海水不锈钢Yus270 (20Cr—18Ni - 6Mo- 0. 2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过一一氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl 离子”、 “应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专 着,讲述更清楚明白。譬如: 《不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢》陆世英王欣增等着1985年9月第1版 《应力腐蚀破裂》左景伊着1985年 《钢的应力腐蚀开裂》作者:[苏]H . H .瓦西连科 P . K .麦列霍夫1983 年

混凝土中氯离子、碱含量及三氧化硫的测定计算方法研究

混凝土中氯离子、碱含量及三氧化硫的测定计算方法研究 混凝土及其原材料中氯离子、碱含量及三氧化硫会影响钢筋混凝土的耐久性能。采用标准检测方法对混凝土中各种原材料的氯离子、碱含量及三氧化硫进行检测,并依据计算公式计算出混凝土中的氯离子、碱含量以及三氧化硫的含量。 标签:混凝土;原材料;测定;计算;氯离子;碱含量;三氧化硫 1 前言 当前建筑形式主要以钢筋混凝土结构为主,其具有性能高、成本低廉、坚固耐用等优点,被广泛应用于建筑工程中。然而钢筋锈蚀是影响钢筋混凝土安全使用的一个重要问题。由于混凝土中氯离子的存在,致使水泥混凝土结构内部发生了“电化反应”,导致钢筋锈蚀,对水泥混凝土结构造成了危害。混凝土中碱含量的存在,使有碱活性的粗细骨料与碱发生了化学反应,致使混凝土膨胀、开裂甚至破坏。此外,混凝土中硫酸盐的存在可能会使混凝土发生化学腐蚀。由此可见,对混凝土原材料中氯离子、碱含量及三氧化硫进行检测,根据各原材料的检测数值计算出混凝土中氯离子、总碱量及三氧化硫含量,以判别对混凝土腐蚀的影响程度,并加以控制以减少对混凝土的腐蚀。 2 实验仪器及检测方法 2.1实验仪器 PHS-3C酸度计;BM-252电子天平;FP6400A火焰光度计;SX2-2.5-12箱式电阻炉。 2.2检测方法 水泥、粉煤灰、矿粉检测方法为《水泥化学分析方法》GB/T176-2008;细骨料、粗骨料检测方法为《普通混凝土用砂、石质量及检验方法标准》JGJ52-2006;外加剂检测方法为《混凝土外加剂匀质性试验方法》GB/T8077-2012;混凝土拌合物用水检测方法为《混凝土用水标准》JGJ63-2006。由于原材料的级别和使用要求不同,对混凝土原材料的氯离子、碱含量及三氧化硫检测技术要求参照产品标准。 3 混凝土中氯离子含量计算方法 依据标准《混凝土结构耐久性设计规范》GB/T50476-2008以及《铁路混凝土结构耐久性设计规范》TB10005-2010的要求。不同环境下,混凝土的氯离子含量应满足表1的规定。 注:(1)混凝土中各种原材料的氯离子含量之和与胶凝材料重量的比值,得

氯离子腐蚀介绍

氯离子腐蚀研究一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO,Al6XN,SAF2507,等,不重要的地方也可以衬胶 我同意六楼的观点,我们买的泵基本上是2605

三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的 使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢 00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢 00Cr26Ni6Mo4CuTiAl 耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的 是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl 离子”、 “应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专着,讲述更清楚明白。譬如:

氯离子对奥氏体不锈钢的腐蚀机理

氯离子对奥氏体不锈钢的腐蚀机理 氯离子对奥氏体不锈钢的腐蚀主要使点蚀。 机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性路氯化物,结果在露出来的机体金属上腐蚀了一个小坑。这些小坑被成为点蚀核。这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平很腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。如此循环,奥氏体不锈钢不断的腐蚀,越来越快,并且向孔的深度方向发展,直至形成穿孔。 由于Cl离子是水中经常含有的物质,又是引起若干合金局部腐蚀的所谓“特性离子”(破钝剂),它进入缝隙或蚀孔内还会与H+生成盐酸,使腐蚀加速进行。 氯离子被认为是304不锈钢发生局部腐蚀的主要原因之一,由于氯离子半径小,穿透钝化膜的能力强,其电负性又很大,氯离子的存在加速了304不锈钢的腐蚀。另外,应力的存在也加速了氯离子对304不锈钢的腐蚀,降低了304不锈钢抗氯离子应力腐蚀的临界浓度。 在氯离子存在的情况下,多发生的是孔蚀也叫点蚀,属于电化学腐蚀。点腐蚀多发生在上表面生成钝化膜的金属材料上或表面有阴极性镀层的金属上,当这些膜上某点发生破坏,破坏区下的金属基体与膜未破坏区形成活化—钝化腐蚀电池,钝化表面为阴极,而且面积比活化区大很多,腐蚀就向深处发展而形成小孔。 点腐蚀发生于有特殊离子的介质中,例如不锈钢对含有卤素离子的溶液特别敏感,其作用顺序为Cl—>Br>1—。这些阴离子在合金表面不均匀吸附导致膜的不均匀破坏。氯离子具有很强的穿透本领,容易穿透金属氧化层进入金属内部,破坏金属的钝态。同时,氯离子具有很小的水合能,容易被吸附在金属表面,取代保护金属的氧化层中的氧,使金属受到破坏。点腐蚀发生在某一临界电位以上,该电位称为点蚀电位(或击破电位),用Eb表示。如把极化曲线回扫,又达到钝态电流所对应的电位Erb,称为再钝化电位(或叫保护电位)。大于此值,点蚀迅速发生、发展;在Eb~Erb之间,已发生的蚀孔继续发展。此种形态的腐蚀决定于阳极和阴极的面积比。若阳极的位置不随时间而变化,且阳极的面积远小于阴极,则阳极的电流密度(currentdensity注二)甚大,因此腐蚀速率较快而产生孔蚀,点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 氯化物应力腐蚀开裂简介 氯化物应力腐蚀开裂是一种十分常见的奥氏体钢炉管破裂形式。不同材质的奥氏体钢炉管发生开裂时介质中的氯化物浓度差别很大,一般在30ppm以上,但少数比较敏感的钢,如304钢可能几个ppm甚至更低的浓度就会腐蚀开裂。在某些情况下,虽然介质中氯化物浓度较低,但由于在某些不规则表面的局部浓缩,也会造成应力腐蚀开裂。在有溶解氧的情况下会加速腐蚀。大多数奥氏体钢应力腐蚀开裂均发生在75℃以上,低于50℃时,材料不发生应力腐蚀开裂。一般情况下,氯化物应力腐蚀开裂为穿晶开裂,但由于热处理不当使材料敏化或材料长期处于敏化温度工作时,也会发生沿晶开裂。

碱含量计算书

C25隧道初期支护喷射混凝土配合比碱含量计算书 一、配合比: 水泥:砂:碎石:水:外加剂 473 :725 :851 :224 :19.0 1、水泥为宁夏青铜峡P.0420.5; 2、砂采用柳林金星砂场生产的山砂; 3、碎石采用山西柳林晋垣石料厂的碎石; 4、外加剂采用山西凯迪化工有限公司生产的KD-5液体速凝剂; 5、拌和水采用送榆林疾病预防控制中心已检验合格的段家湾河水。 二、计算依据: 采用中国工程建设标准化协会标准,混凝土碱含量限值标准,标准号CECS53:93。 三、各种材料带入混凝土中的碱含量(一米立方混凝土) 1、水泥: 水泥的碱含量以实测平均碱含量计,每立方混凝土水泥用量以实测用量计,水泥提供的碱含量为: Ac=W C K C=473×0.58%=2.7434(kg/m3) W C———水泥用量(kg/m3) K C———水泥平均碱含量(%) 2、骨料和拌和用水:

骨料带入混凝土中碱含量(骨料不受海水侵蚀,故碱含量不用考虑)。 3、施工用水: 456.77×224/1000000=0.10231648(kg/m3) Wa———骨料用量(kg/m3) Pac———骨料的氯离子含量(%) Ww———拌和用水用量(kg/m3) Pwc———拌和用水的氯离子含量(%) 4、1立方米混凝土中总碱含量的计算: 总碱含量:A= Ac + Aaw=2.7434+0.10231648=2.84571648 二、本项目对混凝土碱含量的具体要求: 混凝土最大碱含量为不超过 3.0(kg/m3),计算结果为2.84571648(kg/m3),可以满足要求。 附件: 1、水泥出厂报告; 2、外加剂试验报告; 3、粉煤灰试验报告; 4、砂试验报告; 5、碎石试验报告; 6、施工用水试验报告; 7、混凝土配合比选定报告。

相关主题