搜档网
当前位置:搜档网 › 2019-2020年高三数学上学期三角函数与解三角形9函数y=Asin(ωx+φ)的图像教学案(无答案)

2019-2020年高三数学上学期三角函数与解三角形9函数y=Asin(ωx+φ)的图像教学案(无答案)

2019-2020年高三数学上学期三角函数与解三角形9函数y=Asin(ωx+φ)的图像教学案(无答案)
2019-2020年高三数学上学期三角函数与解三角形9函数y=Asin(ωx+φ)的图像教学案(无答案)

2019-2020年高三数学上学期三角函数与解三角形9函数y =Asin (ωx+φ)的图像

教学案(无答案)

【教学目标】掌握三角函数中的几种常见的变换,理解函数的图象的形成过程.

【教学重点】函数的图象及其简单的性质.

【教学难点】对三角函数中的几种变换的理解.

【教学过程】

一、知识梳理:

1.函数的图象:

(1)用“五点法”画函数的图象的步骤:① ;② ;③ .

(2)用“变换法”由函数的图象得到函数的图象的规律:

①由y =sin x 的图象向 ()或向 ()平移个单位,得到的图象;纵坐标不变,横坐标变为原来的,得到的图象;横坐标不变,纵坐标变为原来的A 倍,得到的图象;

②由y =sin x 的图象纵坐标不变,横坐标变为原来的,得到的图象;向 ()或向 ()平移个单位,得到的图象;横坐标不变,纵坐标变为原来的A 倍,得到的图象.

2.函数的性质:

振幅:A ;周期:T = ;频率:f = ;相位: ;初相:x =0时的相位,即.

二、基础自测:

1.将函数y =sin2x 的图象向左平移π4

个单位,再向上平移1个单位,所得图象的函数解析式是________. 2.要得到函数的图象,只需将函数的图象向 平移 个单位.

3.已知函数f (x )=sin(ωx +φ)(其中ω>0,|φ|<π2)的图象与x 轴的两个相邻交点之间的距离为π2

, 且f (0)=32,则ω=________,φ=________. 4.函数y =12cos x -32

sin x 的图象的对称轴方程为______________. 三、典型例题:

例1.(1)若函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象如图所示,则ω的值为________.

(2)设ω>0,函数y =sin(ωx +

π3)+2图象向右平移4π3

个单位后与原图象重合,则ω最小值是_______.

【变式拓展】(1)函数f (x )=2sin(ωx +φ)ω>0,-π2<φ<π2

的部分图像如下左图所示, 反思:

则ω+φ的值是________.

(2)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如上右图所示,△KLM 为等腰

直角三角形,∠KML =90°,KL =1,则f ? ??

??16的值为______.

例2.(1)已知函数f (x )=sin(ωx +π4

)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象向______平移________个单位长度.

(2)把函数的图像上各点向右平移个单位,再把横坐标缩小到原来的

一半,纵坐标扩大到原来的5倍,最后再把整个图象向下平移4个单位,则所得函数

的解析式为 .

【变式拓展】设函数,将的图像向右平移个单位长度后,

所得的图像与原图像重合,则的最小值等于 .

例3.(1)若函数y =3sin(2x +φ)(0<φ<π)的图像关于点? ??

??π3,0中心对称,则φ= .

(2)已知ω>0,函数f (x )=cos ? ????ωx +π3的一条对称轴为x =π3,一个对称中心为点? ??

??π12,0, 则ω的最小值为______.

【变式拓展】已知函数f (x )=cos 2? ??

??x +π12,g (x )=1+12sin 2x . (1)设x =x 0是函数y =f (x )图像的一条对称轴,求g (2x 0)的值;

(2)求函数h (x )=f (x )+g (x ),x ∈?

?????0,π4的值域.

四、课堂反馈:

1.把y =sin 12

x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω 的值为________. 2.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2

”的________条件.

3.如果函数y =3sin(2x +φ)的图像关于直线x =π6

对称,则|φ|的最小值为________. 4.若函数f (x )=2sin ωx (ω>0)在??????-2π3

,2π3上单调递增,则ω的最大值为______.

五、课后作业: 学生姓名:___________

1.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像至少向左平移__________个单位.

2.已知ω>0,函数y =3sin ?

????ωπx +π4的周期比振幅小1,则ω=________. 3.若f (x )=a sin x +3cos x 是偶函数,则实数a =________.

4.将函数y =2sin π3

x 的图像上每一点向右平移1个单位长度,再将所得图像上每一点的横坐标扩大为原来的π3

倍(纵坐标保持不变),得函数y =f (x )的图像,则f (x )的解析式为____________. 5.(xx 辽宁高考改编)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f (π2)=-23

,则f (0)=________. 6.如果函数y =3cos(2x +φ)的图象关于点(4π3

,0)中心对称,那么|φ|的最小值为________. 7.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在[-π,0]上的图象如图所示,则ω=_______.

8.给出下列命题:

①函数y =cos(23x +π2)是奇函数;②存在实数α,使得sin α+cos α=34;③x =π8

是函数y =sin(2x +5π4)的一条对称轴方程;④函数y =sin(2x +π3)的图象关于点(π12

,0)成中心对称图形.

其中正确的序号为____________.

9.已知函数f (x )=2sin ?

????2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在????

??-π2,π2上的图像.

10.已知函数()()()

πψωψω<>>+=,0,0,sin A x A x f 的图像经过点,图像上与点P 最近的一个最

高点是Q .

(1)求函数的解析式; (2)求出其递减区间;

(3)若存在使得,求的值.

11.如图,实线部分DE ,DF ,EF 是某风景区设计的游客观光路线平面图,其中曲线部分EF 是以AB 为

直径的半圆上的一段弧,点O 为圆心,△ABD 是以AB 为斜边的等腰直角三角形,其中AB=2千米,204EOA FOB x x π??∠=∠=<< ??

?.若游客在每条路线上游览的“留恋度”均与相应的线段或弧的长度成正比,且“留恋度”与路线DE ,DF 的长度的比例系数为2,与路线EF 的长度的比例系数为1,假定该风景区整体的“留恋度”是游客游览所有路线“留恋度”的和.

(1)试将表示为的函数;

(2)试确定当取何值时,该风景区整体的“留恋度”最佳?

三角函数解三角形综合

1.已知函数f(x)=sin(ωx)﹣2sin2+m(ω>0)的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0. (1)求函数f(x)的表达式; (2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值. 解:(Ⅰ). 依题意:函数. 所以. , 所以f(x)的最小值为m.依题意,m=0. . (Ⅱ)∵,∴ .. 在Rt△ABC中,∵, ∴. ∵0<sinA<1,∴. 2.已知函数(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为. (I)求y=f(x)的单调递增区间; (Ⅱ)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=c?cosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状. 【解答】解:(Ⅰ)∵ , =, ∵f(x)的对称轴离最近的对称中心的距离为,

∴T=π,∴,∴ω=1,∴. ∵得:, ∴函数f(x)单调增区间为; (Ⅱ)∵(2b﹣a)cosC=c?cosA,由正弦定理, 得(2sinB﹣sinA)cosC=sinC?cosA2sinBcosC=sinAcosC+sinCcosA=sin(A+C), ∵sin(A+C)=sin(π﹣B)=sinB>0,2sinBcosC=sinB, ∴sinB(2cosC﹣1)=0,∴,∵0<C<π,∴,∴, ∴.∴, 根据正弦函数的图象可以看出,f(B)无最小值,有最大值y max=1, 此时,即,∴,∴△ABC为等边三角形. 3.已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π: (1)求函数f(x)的解析式; (2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,?=,且a+c=4,试求b的值. 【解答】解:(1)f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1 ==. ∵T=,∴ω=2. 则f(x)=2sin(2x)﹣1; (2)由f(B)==0,得. ∴或,k∈Z. ∵B是三角形内角,∴B=. 而=ac?cosB=,∴ac=3.

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

三角函数-解三角形的综合应用

学思堂教育个性化教程教案 数学科教学设计 学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容 教学目标 重点 难点 教学过程 命题点二解三角形 难度:高、中、低命题指数:☆☆☆☆☆ 1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则 AC=________. 2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b, c.若a=2,c=2 3,c os A= 3 2 且b<c,则b=________. 3.(2015·北京高考)在△ABC中,a=3,b=6,∠A= 2π 3 ,则∠B= ________. 4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则 BC=________. 5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边, sin2B=2sin A sin C. (1)若a=b,求cos B;[来源:学科网ZXXK] (2)设B=90°,且a=2,求△ABC的面积. 教 学 效 果 分 析

教学过程 6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c. 已知cos B= 3 3 ,sin(A+B)= 6 9 ,ac=23,求sin A和c的值. 7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD= 2DC. (1)求 sin B sin C ; (2)若∠BAC=60°,求∠B. 8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b, c,已知tan ? ? ?? ? π 4 +A=2. (1)求 sin 2A sin 2A+cos2A 的值; (2)若B= π 4 ,a=3,求△ABC的面积.[来源:学科 教 学 效 果 分 析

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

三角函数与解三角形

课程标题三角函数与解三角形 求三角函数得定义域实质就就就是解三角不等式(组)、一般可用三角函数得图象或三角函数线确定三角不等式得解、列三角不等式,既要考虑分式得分母不能为零;偶次方根被开方数大于等于零;对数得真数大于零及底数大于零且不等于1,又要考虑三角函数本身得定义域; 求三角函数得值域得常用方法:1、化为求得值域; ,引入辅助角,化为求解方法同类型。 2、化为关于(或)得二次函数式; ,设,化为二次函数在上得最值求之; 周期问题一般将函数式化为(其中为三角函数,)、 ) ②y=tanx图象得对称中心(,0) (二)主要方法: 1、函数得单调增区间可由 解出,单调减区间可由解出; 周期 2、函数得单调减区间可由 解出,单调增区间呢。(自己导出)周期 3、函数得单调增区间可由 解出。(无增区间,重点掌握) 周期 课堂练习: 1.已知函数得定义域为,值域为,求常数得值 (化为求得值域)、 2、函数得单调递减区间就就是 3、函数得单调增区间为 2、函数,、 (Ⅰ)求函数得最小正周期;(Ⅱ)求函数在区间上得最小值与最大值、(化为求得值域)、 3、函数得一个单调增区间就就是 ???? 4、若函数,则就就是 最小正周期为得奇函数最小正周期为得奇函数 最小正周期为得偶函数最小正周期为得偶函数 5、函数得最大值 6、当函数得最大值为时,求得值、

7、函数得最大值就就是 8、已知函数,、 (1)求得最大值与最小值;(2)f(x)得最小正周期。 (3)若不等式在上恒成立,求实数得取值范围、 解三角形 正弦定理:, 余弦定理: 推论:正余弦定理得边角互换功能 ① ,, ②,, ③== ④ (4)面积公式:S=ab*sinC=bc*sinA=ca*sinB 课堂练习: 1、在中,角得对边分别为,已知,则( ) A、1 ?B.2 C、???D、 2、在△ABC中,AB=3,BC=,AC=4,则边AC上得高为( ) A、B、 C、D、 3、在ΔABC中,已知a=,b=,B=45°,求角A,角C得大小及边c得长度。 4、得内角A、B、C得对边分别为a、b、c,若a、b、c成等比数列,且,则() A、 B、 C、D、 【填空题】 5、在中,分别就就是、、所对得边。若,,,则__________ 6、在锐角△ABC中,边长a=1,b=2,则边长c得取值范围就就是_______、 7、已知锐角得面积为,,则角得大小为( ) ?A、75°?B、60° ?C、45°D、30° 8、在△中,若,则等于、 9、在中,已知,则得大小为 ( ) ??? 【解答题】 10、在中,分别就就是三个内角得对边、若,,求得面积、 11、如图,就就是等边三角形,就就是等腰直角三角形,∠=,交于,、 ?(1)求∠得得值; (2)求、 12、在中,角A、B、C所对得边分别为a,b,c,且满足

必修四三角函数与解三角形综合测试题(基础含答案)

必修四三角函数与解三角形综合测试题 (本试卷满分150分,考试时间120分) 第Ⅰ卷(选择题 共40分) 一.选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若点P 在3 2π的终边上,且OP=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 2.已知=-=-ααααcos sin ,4 5cos sin 则( ) A .47 B .169- C .329- D .32 9 3.下列函数中,最小正周期为 2 π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)6 4tan(π+=x y 4.等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924- B .924 C .9 7- D .97 5.函数y =sin (π4 -2x )的单调增区间是 ( ) A.[kπ-3π8 ,kπ+π8 ](k ∈Z ) B.[kπ+π8 ,kπ+5π8 ](k ∈Z ) C.[kπ-π8 ,kπ+3π8 ](k ∈Z ) D.[kπ+3π8 ,kπ+7π8 ](k ∈Z ) 6.将函数x y 4sin =的图象向左平移12 π个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12π- B .3π- C .3 π D .12π 7.οοοο50tan 70tan 350tan 70tan -+的值等于( ) A .3 B .33 C .33- D .3- 8.在△ABC 中,sinA >sinB 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.ABC ?中,π= A ,BC =3,则ABC ?的周长为( )

2019年三角函数和解三角形大题

2018-2019学年高三一模理分类---三角函数和解三角形 海淀(理) (15)(本小题满分13分) 已知函数()cos()cos 4 f x x x a π =-+ (Ⅱ)求a 的值; (Ⅱ)求函数()f x 的单调递增区间. 文)已知函数()cos()cos 4 f x x x a π =-+的图象经过点(O,l),部分图象如图所示. (I)求a 的值; (Ⅱ)求图中0x 的值,并直接写出函数()f x 的单调递增区间. 朝阳 (理)15.(本小题满分13分) 在ABC △中,a ,120A ∠=?,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos 2B 的值. (文)15.(本小题满分13分) 已知函数2 ()cos cos f x x x x =. (Ⅰ)求( )3 f π 的值及()f x 的最小正周期; (Ⅱ)若函数()f x 在区间[0,]m 上单调递增,求实数m 的最大值. 石景山

(文 理)15. (本小题13分) 在ABC △中,角A B C , ,的对边分别为a b c ,, ,b=3c =,1 cos 3 B=-. (Ⅰ)求sin C 的值; (Ⅱ)求ABC △的面积. 丰台 (理)15.(本小题13分) 已知函数2()cos(2)2sin ()3f x x x a a π =--+∈R ,且()03 f π=. (Ⅰ)求a 的值; (Ⅱ)若()f x 在区间[0,]m 上是单调函数,求m 的最大值. 延庆 (理)15.(本小题满分13分) 如图,在ABC ?中,点D 在BC 边上,cos ADB ∠=,3cos =5 C ∠,7AC =. sin CA D ∠(求Ⅰ)的值; (Ⅱ)若10BD =, 求AD 的长及ABD ?的面积. 怀柔 15.(本小题满分13分) 在 中,角,,所的对边分别是a ,b ,c , , . (Ⅰ)求边c 的值; (Ⅱ)若,求 的面积. 门头沟 A D B C

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高考真题:三角函数及解三角形综合

三角函数的概念、诱导公式与三角恒等变换 6.(2019浙江18)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124 y f x f x ππ =+ ++ 的值域. 解析(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有 sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ= 或3π2 . (2)2 2 22ππππsin sin 124124y f x f x x x ? ???????????=+++=+++ ? ? ? ???????????? ????? ππ1cos 21cos 213621cos 2sin 222222x x x x ??? ?-+-+ ? ? ??????=+=-- ? ??? π123x ? ?=+ ?? ?. 因此,函数的值域是[1- +. 27.(2018江苏)已知,αβ为锐角,4 tan 3 α= ,cos()5αβ+=-. (1)求cos2α的值; (2)求tan()αβ-的值. 【解析】(1)因为4tan 3α= ,sin tan cos ααα=,所以4 sin cos 3 αα=. 因为22sin cos 1αα+=,所以29 cos 25 α= ,

因此,27cos22cos 125 αα=-=- . (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为cos()αβ+=,所以sin()αβ+=, 因此tan()2αβ+=-. 因为4tan 3α=,所以22tan 24 tan 21tan 7 ααα==--, 因此,tan 2tan()2 tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 28.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过 点3 4(,)55 P --. (1)求sin()απ+的值; (2)若角β满足5 sin()13 αβ+= ,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4 sin 5α=-, 所以4 sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3 cos 5 α=-, 由5sin()13αβ+=得12 cos()13 αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16 cos 65 β=-. 29.(2017浙江)已知函数22 ()sin cos cos f x x x x x =--()x ∈R . (Ⅰ)求2( )3 f π 的值; (Ⅱ)求()f x 的最小正周期及单调递增区间. 【解析】(Ⅰ)由2sin 32π=,21 cos 32 π=-,

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做例题一:在△ ABC中,内角A , B , C所对的边分别为a , b , c,已知m n cosC,cos A,且m n . (1)求角A的大小; (2 )若b c 5 , △ ABC的面积为3,求a . n,AB 4 , BC .17,点D 在AC 边上,且cos (1 )求BD的长; (2)求△ BCD的面积. 例题三:△ ABC的内角A , B , C的对边分别为a , b , c,已知a 2c cosB bcosA 0 .a,c 2b , 例题二:如图,在厶ABC中,

(1 )求B ; (2)若b 3 , △ ABC的周长为3 2 3,求△ ABC的面积. 例题四:已知函数f x cos2 x 2 3 sin xcosx sin2 x . (1)求函数y f x的最小正周期以及单调递增区间; (2)已知△ ABC的内角A、B、C所对的边分别为a、b、c,若fC 1,c 2,sinC sin B A 2sin 2A,求△ ABC 的面积.

例题一:【答案】(1) A -; (2) a .13 . 3 【解析】(1)由m n ,可得 m n 0 ,艮卩2b cos A acosC ccosA , 即 2sin B cos A sin AcosC sin C cosA ,即 2sin BcosA sin A C , ?/ sin A C sin n B sin B , / ? 2sin B cosA sin B ,即 sin B 2cos A 1 0 , ?/ 0 B n, ? sin B 0 , ? cosA 1 2 ?/ 0 A n, ? A n . 3 (2) 由S A ABC J /3,可得 S A ABC 1 - bcsin A 3 , ? bc 4 , 2 又b c 5 , 由余弦定理得 2 .2 a b 2 2 c 2bccosA b c 3bc 13 ? a 13 . 例题二:【答案】(1) 3; ( 2) 4 2 . 【解析】(1)在△ ABD 中, ■/ cos ADB 1 ,? sin ADB 3 22 3 , BD AB ABsi n BAD 4 2 -Z 3 由正弦疋理一 ,? BD sin BAD sin ADB ' sin ADB 2 2 3 (2) ?/ ADB CDB n, 1 cos ADB -. 3 2 1 得 17 9 CD 2 2 3CD -,解得 CD 4或 CD 2 (舍). 3 2 例题三:【答案】(1) B 2 n; (2) S\ABC ??? △ BCD 的面积S -BD CD sin CDB 2 22 3 3.3 4 二 cos CDB cos n ADB 二 sin CDB sin n ADB sin ADB CDB 在厶BCD 中,由余弦定理 BC 2 3 2 BD 2 2 CD 2 2BD CD cos CDB ,

高考专题; 三角函数、解三角形综合问题

题型练3大题专项(一) 三角函数、解三角形综合问题 1.(优质试题浙江,18)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P. (1)求sin(α+π)的值; (2)若角β满足sin(α+β)=,求cos β的值. 2.(优质试题北京,理15)在△ABC中,a=7,b=8,cos B=-. (1)求A; (2)求AC边上的高. 3.△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为. (1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 4.已知函数f(x)=4tan x sin cos. (1)求f(x)的定义域与最小正周期;

(2)讨论f(x)在区间上的单调性. 5.已知函数f(x)=a cos2a sin ωx-a(ω>0,a>0)在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形. (1)求ω与a的值; (2)若f(x0)=,且x0∈,求f(x0+1)的值. 6.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈. (1)若m⊥n,求tan x的值; (2)若m与n的夹角为,求x的值.

题型练3大题专项(一) 三角函数、解三角形综合问题 1.解(1)由角α的终边过点P, 得sin α=-,所以sin(α+π)=-sin α= (2)由角α的终边过点P,得cos α=-, 由sin(α+β)=,得cos(α+β)=± 由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-或cos β= 2.解(1)在△ABC中,∵cos B=-,∴B, ∴sin B= 由正弦定理,得, ∴sin A= ∵B,∴A,∴A= (2)在△ABC中,sin C=sin(A+B)=sin A cos B+sin B cos A= 如图所示,在△ABC中,过点B作BD⊥AC于点D. ∵sin C=,∴h=BC·sin C=7, ∴AC边上的高为 3.解(1)由题设得ac sin B=,即c sin B= 由正弦定理得sin C sin B= 故sin B sin C= (2)由题设及(1)得cos B cos C-sin B sin C=-, 即cos(B+C)=- 所以B+C=,故A= 由题设得bc sin A=,即bc=8. 由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c= 故△ABC的周长为3+

解三角形与三角函数专题

三角函数与解三角形 1.已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期; (2)求f (x )在区间??????0,2π3上的最小值. 2.(2019·济南调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 3.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R ). (1)求f (x )的最小正周期; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =1 7,求△ABC 中线AD 的长.

4.(2018·湘中名校联考)已知函数f (x )=cos x (cos x +3sin x ). (1)求f (x )的最小值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),B 为锐角且m ∥n . (1)求角B 的大小; (2)如果b =2,求S △ABC 的最大值. 6.(2019·信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

2019-2020年高考数学一轮复习第三章三角函数、解三角形单元综合检测(三)理

2019-2020年高考数学一轮复习第三章三角函数、解三角形单元综合检测 (三)理 一、选择题(每小题5分,共45分) 1sin,则2sin2-1=() A.B.-C.D.± 1.B【解析】由已知得cos θ=,所以2sin2-1=-cos θ=-. 2.已知cos 31°=a,则sin 239°·tan 149°的值是() A.B.C.D.- 2.B【解析】sin 239° tan 149°=sin(270°-31°)tan(180°-31°)=(-c os 31°)(-tan 31°)=sin 31°=. 3y=sin(ωx+φ)(ω>0,φ∈[0,2π))的部分图象如图所示,则 φ=() A.B. C.D. 3.D【解析】由题可知=3-1?T=8,所以ω=.由函数图象过点(1,1),将其代入函数式,解得 φ=. 4a,b,c为三角形ABC三边,a≠1,b

5.D【解析】由f(x)=cos 2x向左平移个单位得到的是g(x)=cos 2,则g=cos 2=cos π=-1. 6.已知tan(π-α)=-2,则=() A.-3 B. C.3 D.- 6.D【解析】根据tan(π-α)=-2可得tan α=2,从而 =-. 7.在△ABC中,sin2A≤sin2B+sin2C-sin B sin C,则A的取值范围是() A.B.C.D. 7.B【解析】利用正弦定理化简sin2A≤sin2B+sin2C-sin B sin C得a2≤b2+c2-bc,变形得b2+c2-a2≥bc,∴cos A=,又∵A为三角形的内角,∴A的取值范围是. 8ABC中,AB=,AC=1,∠B=30°,△ABC的面积为,则C= () A.30° B.45° C.60° D.75° 8.C【解析】∵△ABC中,∠B=30°,AC=1,AB=,由正弦定理可得,∴sin ∠C=,∴∠C=60°或120°,当∠C=60°时,∠A=90°;当∠C=120°时,∠A=30°.当∠A=90°时,∴△ABC的面积为·AB·AC=;当∠A=30°时,∴△ABC的面积为·AB·AC·sin ∠A=,不满足题意,则∠ C=60°. 9.已知f(x)=x2+(sin θ-cos θ)x+sin θ(θ∈R)的图象关于y轴对称,则sin 2θ+cos 2θ的值为() A.B.2 C.D.1 9.D【解析】∵f(x)=x2+(sin θ-cos θ)x+sin θ(θ∈R)的图象关于y轴对称,∴y=f(x)为偶函数,即f(-x)=f(x),∴(-x)2+(sin θ-cos θ)(-x)+sin θ=x2+(sin θ-cos θ)x+sin θ,∴sin θ-cos θ=0,即sin θ=cos θ,∴sin 2θ+cos 2θ=2sin2θ+cos2θ-sin2θ=sin2θ+cos2θ=1. 二、填空题(每小题3分,共15分) 10ABC中,已知角C=,a2+b2=4(a+b)-8,则边c=. 10.2【解析】由a2+b2=4(a+b)-8得(a-2)2+(b-2)2=0,所以a=2,b=2,由余弦定理得 c2=a2+b2-2ab cos=4+4-2×2×2×=4,所以c=2. 11.已知tan α=2,tan(α+β)=,则tan β的值为.

相关主题