搜档网
当前位置:搜档网 › 22014微弧氧化技术的研究与应用剖析

22014微弧氧化技术的研究与应用剖析

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微 弧氧化;后处理三部分。其工艺流程如下:铝基工件7化学除油7清洗7微弧氧化7清洗7后处理7成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 砂10g/L, Na2O2 4?6g/L, NaF 0.5? 1g/L, CH3COONa 23g/L, Na3VO3 1 ?3g/L;溶液pH 为11 ?13;温度为20?50 C;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5?10S,然后将阳极氧化电压上升至450V,电解5?10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O?nSiO2 (钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min; 第二步:将经第一步微弧氧化后的铝基工件水洗后在 70g/L的 Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢 板;溶液温度为20?50 C o (3)影响因素 ①合金材料 及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、 高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得

到修复变得更均匀平整;而对于粗糙度较低的工件, 经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH 范围一般在9?13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之, 成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制 对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200?600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时, 通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于

高级氧化技术

1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物 的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。·OH反应是高级氧化反应的根本特点 2.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过 程。·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。 可以说高级氧化技术是以产生·OH自由基为标志 3.高级氧化技术有什么特点? 1)反应过程中产生大量氢氧自由基·OH 2)反应速度快 3)适用围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染 4)可诱发链反应 5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解; 6)操作简单,易于控制和管理 4.·OH自由基的优点 1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底

5.高级氧化技术分为哪几类? 1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法 4)超临界水氧化法 5)光催化氧化法6)超声波氧化法 7)过硫酸盐氧化法 6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。 自由基反应的三个阶段:链的引发、链的传递、链的终止 自由基反应具有无选择性,反应迅速的特点。 7. 产生羟基自由基的途径:Fe2+/H2O2、 UV/H2O2、 H2O2/O3、 UV/O3、UV/H2O2/O3、光催化氧化(TiO2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton、 Fenton、 O3/US、O3、O3/UV、UV/H2O2、UV。 8. Fenton试剂:亚铁离子(Fe2+)和过氧化氢(H2O2)的组合。 Fenton反应: Fenton反应是以亚铁离子作为催化剂来催化过氧化氢(H2O2),使其产生羟基自由基(·OH),进行有机物的氧化,羟基自由基具有強的氧化能力,可与大部分的芳香族有机物进行反应,同时亚铁离子氧化成铁离子(Fe3+),(铁离子有混凝作用也可去除部分有机物)铁离子又会与双氧水反应,并还原成亚铁离子(Fe2+). 反应机理:H2O2与Fe2+反应分解生成羟基自由基(·OH)和氢氧根离子(OH-),并引发连锁反应从而产生更多的其它自由基,然后利用这些自由基进攻有机质分子,从而破坏有机质分子并使其矿化直至转化

高级氧化工艺优缺点的比较

高级氧化工艺优缺点的比较 常用的高级氧化Fenton氧化法,光催化氧化法,电催化氧化法,铁碳微电解氧化法等,现对这几种方案进行比较。 Fenton氧化法:Fenton(芬顿)试剂法是针对一些特别难降解的机有污染物如高COD,利用硫酸亚铁和双氧水的强氧化还原性,生成反应强氧化性的羟基自由基,与难降解的有机物生成自由基,最后有效的氧化分解(芬顿(Fenton)试剂反应机理)其化学反应机制如下: 2+--3+→Fe(OH)↓+OHHO+Fe →OH+Fe322随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(·OH)处理有机物的技术。 光催化氧化法:光化学氧化法包括光激发氧化法(如O3/UV)和光催化氧化法(如TiO2/UV)。光激发氧化法主要以O3、H202、O2和空气作为氧化剂,在光辐射作用下产生羟基自由基HO·。光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光(UV)的照射下产生HO·,两者都是通过HO·的强氧化作用对有机污染物进行处理。其中,氧化效果较好的是紫外光催化氧化法,它的作用原理是让有机化合物中的C-C、C-N键吸收紫外光的能量而断裂,使有机物逐渐降解,最后以CO2的形式离开体系。 电催化氧化法:电化学氧化法是指通过阳极表面上放电产生的羟基自由基HO·的氧化作用,HO·亲电进攻吸附在阳极上的有机物而发生氧化反应,从而去除污染物。研究表明,在酸性介质和PbO2固定床电极反应器中,经过5h的降解,苯胺的去除率可达97%以上;在碱性介质中,苯胺和4-氯苯胺在Pb箔上的阳极氧化呈现出一级反应特征,在3h内,这类物质的去除率为99%,而且所有的中间产物也可被彻底氧化。含有卤代物和硝基化合物 以上。Ti的废水通过电化学氧化处理,采用、PbO2或碳纤维阳极,其去除率可达95%的条件下,PH3-4铁碳微电解氧化法:铁炭微电解是基于电化学中的原电池反应。在废水的电极电位差,因而会形成无1.2VFe当铁和炭浸入电解质溶液中时,由于和C之间存在阳极反应产生的新生态二价铁离子具有较强在其作用空间构成一个电场。,数的微电池系统N-)=如羧基—的还原能力,可使某些有机物还原,也可使某些不饱和基团(COOH、偶氮基-N的双键打开,使部分难降解环状和长链有机物分解成易生物降解的小分子有机物而提高可生化性。此外,二价和三价铁离子是良好的絮凝剂,特别是新生的二价铁离子具有更高的可使铁离子变成氢氧化物的絮状沉淀,吸附污水中的悬浮pH-絮凝活性,调节废水的吸附或胶体态的微小颗粒及有机高分子,可进一步降低废水的色度,同时去除部分有机污染物,在偏酸性的条件下,这些活性[O]质使废水得到净化。阴极反应产生大

钛合金的微弧氧化

轻金属表表面处理 0908030227 彭睿

钛合金的微弧氧化 关键词钛合金微弧氧化氧化膜 摘要:着科学技术的发展与进步,钛及其合金的应用越来越广泛,虽然它们具有很多优良的性能,但其表面的耐磨、耐蚀性能还不能满足某些关键零部件的要求,尤其在航天、航空领域,微弧氧化技术的出现则较好地解决了这个问题。本文介绍了钛合金的微弧氧化基本原理、氧化膜特点、对氧化膜的影响因素、以及发展前景和一些问题。 前言:钛合金是一种以钛为基加入适量其他合金元素组成的合金,耐海水腐蚀性能优异。它具有重量轻、比强度大、热稳定性好等优良的综合性能,广泛应用于航空、航天以及民用工业中。但美中不足的是钛合金的表面硬度较低、耐磨性及耐腐蚀较差,特别是钛合金与其它金属接触时很容易发生接触腐蚀,严重制约了其进一步应用,为此国内外先后对钛合金表面进行了改性研究,以提高其表面性能。传统的表面改性技术有阳极氧化、PVD/CVD、离子注入、热喷涂及热氧化法等。钛合金阳极氧化膜厚度一般小于1um,达到2~3um已属不易,而且硬度较低,因此有必要发展新的低成本高性能的涂层制备技术。微弧氧化这一高新技术综合地解决了上述难题。微弧氧化又称微等离子体氧化,是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化的概况 早在20世纪30年代初德国科学家A.Gunterschulze和H.Betz第一次报道了在高电场下浸在液体里的金属表面出现火花放电现象,火花对氧化膜具有破坏作用,在没有发现产生硬质层的条件下,做出了“为了得到高质量的涂层,就不应该用高于出现火花时的电压”的结论,但他们为火花阳极氧化奠定了初步的理论基础。这一观点一直延续到20世纪70年代,尽管少数学者对这一现象持保留观点,但始终没能彻底改变这个结论。1969年,前苏联科学家G.A.Markov在向铝及铝合金材料施加高于火花区电压时,突破性地获得了高质量的氧化膜,这种膜层具有很好的耐磨性和耐腐蚀性,他把这种在微电弧条件下通过氧化获得涂层的过程称为微弧氧化(Microarc Oxidation,MAO)。此后G.A..Markov课题组进行大量基础性研究,并在此基础上进行了应用研究。期间美国、德国对此技术也进行广泛的研究,其中包括实际应用。从文献上看,美国、德国、前苏联三国基本上各自独立地发展这项技术,相互之间文献引用很少№’7J。这一技术在20世纪80年代开始在世界范围内进行广泛交流。进入20世纪90年代,美国、德国、俄国、日本等国都加快了该项技术的研究开发工作。从文献看,所用电源模式各异,但研究结果表明,使用交流电源,在铝、镁、钛等合金表面生长的氧化膜的性能好于直流电源,因此交流模式是当今微弧氧化技术的重要发展方向。从前苏联到今天的俄罗斯,在该项技术上的研究与开发应用一直处于世界领先地位,在机理上提出了自己的理论,并且已成功应用于许多工业领域,如航空、纺织、石油、交通等部门。 其它国家如美国、德国等在该项技术上的研究及应用也有较高的水平。从20世纪90年代国内开始关注此项技术,主要有哈尔滨工业大学、北京师范大学、西

高级氧化技术中非均相体系氧化技术研究

高级氧化技术中非均相体系氧化技术研究 焦化废水属有毒有害、难降解的高浓度有机废水,其中有机物以酚类化合物居多,约占总有机物的一半,有机物中还包括多环芳香族化合物和含氮、氧、碳的杂环化合物等。高级氧化技术处理难度较大,已成为现阶段环境保护领域亟待解决的一个难题。 目前,在国内各焦化企业大多采用生化法处理焦化废水。据国家冶金局统计资料,绝大多数焦化企业对焦化废水的处理效果不理想,生化出水的COD含量均很高,大部分企业不达标。而传统的物理化学方法在去除废水毒性以及提高废水的可生化性等方面存在不足。近年来,国内外对焦化废水的处理方法也做过多方面的研究,提出过各种各样的改进,各种新的技术不断产生,尤其是高级氧化技术,引起越来越多水处理工作者的注意。 高级氧化技术与传统的处理方法相比具有明显的优势,如该技术采用的设备简单,反应速度快,不会产生大量的生物污泥,对废水中不可生化的有机污染物的降解能力强等优点。本文就国内外应用高级氧化技术处理焦化废水的研究进展情况进行了较为全面的综述,阐述了几种不同高级氧化技术的原理、特点,并提出了今后应用研究中需要进一步关注的问题。 1 高级氧化技术概述 高级氧化技术是近年来水处理领域兴起的新技术,通常指在环境温度和压力下通过产生具有高反应活性的氧化降解有机污染物的处理方法。高级氧化技术的关键是产生高活性的羟基自由基,一般采用加入氧化剂、催化剂或借助紫外光、超声波等多种途径产生。按所用的氧化剂及催化条件的不同,高级氧化技术通常包括试剂法及试剂法、组合类臭氧法、半导体光催化氧化法、超声化学氧化法等。但无论是哪种高级氧化体系,羟基自由基都是氧化剂的主体。高级氧化技术就是不断地提高羟基自由基生成率和利用率的过程。羟基自由基反应是高级氧化技术的根本特点。 2 高级氧化法在焦化废水处理中的研究进展 光催化氧化技术比传统的化学氧化法具有明显的优势,如无需化学试剂,操作条件容易控制,无二次污染,加之化学稳定性高、无毒且成本低,具有潜在的优势。但该方法也存在一定的局限性,主要表现在催化剂的催化效率低和光高浓度废水中的传导效率低等方面。 3 高级氧化技术的集成研究 高级氧化技术是集众多复杂影响因素于一体的综合过程,包括诸如水溶液化学、光化学、水力学,以及微界面物理化学等过程。高级氧化技术的高效性取决于高效的氧化剂、催化剂及与之匹配的高效反应器,高效经济的自动投药技术及原水水质化学等多方面因素。不同的高级氧化技术表现出不同的氧化特点,从而要求与之反应特征相适应的高效反应器。 焦化废水是一种相当难于处理的废水,单一的处理技术存在处理效果差、处理成本高等问题。因此,多种方法组合联用以达到处理效果与经济成本的最优化将成为焦化废水处理技术的发展方向之一。

高级氧化技术在污水处理中的应用

高级氧化技术在污水处理中的应用 光化学氧化法 由于反应条件温和、氧化能力强光化学氧化法近年来迅速发展,但由于反应条件的限制,光化学法处理有机物时会产生多种芳香族有机中间体,致使有机物降解不够彻底,这成为了光化学氧化需要克服的问题。光化学氧化法包括光激发氧化法(如03/UV)和光催化氧化法(如Ti02/UV)。 光激发氧化法主要以03、H202、02和空气作为氧化剂,在光辐射作用下产生OH;光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光的照射下产生OH,两者都是通过OH的强氧化作用对有机污染物进行处理。 催化湿式氧化法 催化湿式氧化法(CWAO)是指在高温(123℃~320℃)、高压(0.5~10MPa)和催化剂(氧化物、贵金属等)存在的条件下,将污水中的有机污染物和NH3-N氧化分解成C02、N2和H20等无害物质的方法。 声化学氧化 声化学氧化中主要是超声波的利用。超声波法用于垃圾渗滤液的处理主要有两个方面:一是利用频率在15kHz~1MHz 的声波,在微小的区域内瞬间高温高压下产生的氧化剂(如OH)去除难降解有机物。另外一种是超声波吹脱,主要用于废水中高浓度的难降解有机物的处理。 臭氧氧化法

臭氧氧化法主要通过直接反应和间接反应两种途径得以实现。其中直接反应是指臭氧与有机物直接发生反应,这种方式具有较强的选择性,一般是进攻具有双键的有机物,通常对不饱和脂肪烃和芳香烃类化合物较有效;间接反应是指臭氧分解产生OH,通过OH与有机物进行氧化反应,这种方式不具有选择性。 臭氧氧化法虽然具有较强的脱色和去除有机污染物的能力,但该方法的运行费用较高,对有机物的氧化具有选择性,在低剂量和短时间内不能完全矿化污染物,且分解生成的中间产物会阻止臭氧的氧化进程。可见臭氧氧化法用于垃圾渗滤液的处理仍存在很大的局限性。 电化学氧化法 电化学氧化法是指通过电极反应氧化去除污水中污染物的过程,该法也可分为直接氧化和间接氧化。直接氧化主要依靠水分子在阳极表面上放电产生的OH的氧化作用,OH亲电进攻吸附在阳极上的有机物而发生氧化反应去除污染物;间接氧化是指通过溶液中C12/C10。的氧化作用去除污染物。电化学氧化对垃圾渗滤液中的COD和NH3一N都有很好的去除效果,缺点是能耗较大。 Fenton氧化法 Fenton法是一种深度氧化技术,即利用Fe和H202之间的链反应催化生成OH自由基,而OH自由基具有强氧化性,能氧化各种有毒和难降解的有机化合物,以达到去除污染物的

纯镁微弧氧化膜层形成过程研究

目录 第一章绪论 (1) 1.1 选题背景及意义 (1) 1.2 微弧氧化技术 (3) 1.2.1 微弧氧化的基本原理 (3) 1.2.2 微弧氧化技术特点 (3) 1.2.3 微弧氧化的影响因素 (4) 1.2.4 镁合金微弧氧化技术研究方向 (6) 1.3 微弧氧化成膜过程的研究进展 (7) 1.4 本文的研究目的和研究内容 (11) 第二章实验方法及材料 (13) 2.1 实验材料 (13) 2.2 实验设备 (13) 2.3 实验过程 (13) 2.3.1 试样制备 (13) 2.3.2 实验方案 (14) 2.4 技术路线 (15) 2.5 膜层性能表征 (16) 第三章微弧氧化膜层微观形貌及元素分布 (17) 3.1 膜层表观形貌分析 (17) 3.2 膜层表面微观形貌分析 (17) 3.3 膜层表面元素分布分析 (25) 3.4 膜层截面微观形貌及元素分布分析 (31) 3.5 本章小结 (35) 第四章微弧氧化膜层形成过程讨论 (37) 4.1 膜层形成过程讨论 (37) 4.2 本章小结 (40) 结论 (42) 展望 (43) 参考文献 (44) 攻读硕士学位期间取得的研究成果 (48) v 万方数据

致谢 (49) vi 万方数据

第一章绪论 第一章绪论 1.1 选题背景及意义 镁金属是日渐受到重视和应用的一种轻质金属。纯镁在293 K条件下密度为1.73 g/cm3,具有比强度及比刚度高,良好的导热导电性,尺寸较稳定,优良的电磁屏蔽性、耐凹陷性、铸造加工性以及便于再循环利用等优良性能[1]。镁合金是以镁金属为基体,向其中添加一定种类和数量的合金元素(如铝、锌、锰、硅、锆、稀土等)后获得的合金材料,以使镁的耐蚀性、耐磨性等性能得到显著提高,从而扩大其应用范围。 目前为止,镁及镁合金主要应用于汽车、航空航天、电子产品、生物医疗等方面[2]。 汽车工业中主要应用高强韧镁合金,其中凸轮轴、转向盘轴、支架类部件是其主要应用方面;耐热镁合金多用于机动车中承受高温的部件,如汽车变速箱、离合器活塞、叶片导向器等;以及耐腐蚀性镁合金等。目前通用、大众、福特等汽车生产公司已将其投入使用[3]。镁合金在航空航天领域主要用于制造设备支架、机轮轮毂、操纵系统支座、发动机附件机匣、仪器仪表壳体、直升机变速箱、座舱骨架、发动机架等零件,例如美国生产的B-52H轰炸机中在操纵系统、起落架机轮等非承力或次承力结构上使用了较多量的镁合金;上海交通大学已经成功制备了一种型号的直升机尾部减速机匣,其中使用了大量JDM2铸造镁合金[4]。医用方面,镁合金主要以其远优于钢植入材料的可降解性、强韧性和生物相容性被用作可降解的植入材料,近年来骨科材料和心血管支架是海内外对于医用镁合金植入材料的主要关注方向和应用领域[5]。在3C产品领域,镁合金因其具有低密度、良好减震性、能够对电磁波进行屏蔽的优良性能,被大量应用于便携式的电子电器通信器材,具有减少了信号损失,提高了通讯质量,减轻电磁波对人体健康伤害等特点[6]。 然而,镁的一些缺点也限制了其应用。镁的标准电极电位约为-2.37 V,因此耐蚀性较差,在NaCl溶液中的腐蚀电位是全部结构用金属材料中最低的。同时,镁合金中不可避免地存在的合金成分和杂质,会导致镁合金零件易因与其他金属接触而形成电位差发生电化学腐蚀;镁的塑性较差,较难进行塑形加工,因而镁合金多以铸造件被应用;高温蠕变性能差;燃点低。 为改善镁及其合金的耐腐蚀性能,目前重要的、常用的思路有合金化和表面改性两个方向。合金化即在熔炼过程中添加合金元素以提高其腐蚀电位,但这种方法成本较高, 1 万方数据

探究有机污水处理中高级氧化技术的联合应用

探究有机污水处理中高级氧化技术的联合应用 发表时间:2014-10-08T14:19:45.670Z 来源:《工程管理前沿》2014年第9期供稿作者:郑兴兴 [导读] 随着我国城市化进程的加快,城市建设发展所带来的环境问题日益严重,人们越来越来重视逐步恶化的环境问题。 郑兴兴 浙江汉蓝环境科技有限公司浙江杭州 310053 摘要:近年来,随着我国城市化进程的加快,城市建设发展所带来的环境问题日益严重,人们越来越来重视逐步恶化的环境问题。由于水质标准的提高,对一些难降解、有毒的、高浓度的工业废水、渗滤液等这类废水的处理一直困扰着环境工作人员,利用物化方法很难达到预期的处理效果,并且还有因处理成本高且物化处理后二次污染的问题。所以急需开展一种新的方法来处理这些物质。本文结合作者近两年污水处理工作经验,以工业污水的处理为目标,分析了高级氧化处理技术的联合应用,着重探讨了高级氧化技术的特性、使用范围以及处理技术的发展方向等问题,仅供参考! 展方向 关键词: 工业污水处理;高级氧化技术;联合应用;发展 前言: 在现代污水处理技术中,高级氧化技术是近几年发展起来,越来越受到人们关注的一种去除有机污染物的新技术。随着我国国民经济的增长,科学技术快速进步,在工业生产过程中所涉及到的原料、产物都在持续不断的发生着变化,而大量工业原料实际上都存在着一定的毒性,这些毒性直接导致污水之中出现了高浓度的毒性物质,并且这部分物质难以采取其实影响的措施来加以降解处理,这是工业污水一直以来难以处理的关键性问题。以往传统的污水技术在现代工业体系之中已经无法充分的满足各个方面的需求,在这期间高级氧化技术作为一种现代化的新型污水处理技术进入到了人们的眼中,该技术在对于印染、农药、制药废水、垃圾渗透液等方面的高污染性、高毒性的污水处理中有着较大的优势。 1 高级氧化技术的特点 在现代污水处理中,高级氧化技术的主要有氧化能力强、选择性小、反应速率快等特点;而且反应条件温和,无需高温高压。其主要是使用电、磁、声、光等方面的物理原理以及化学过程来产生的相应羟基自由基·OH物质。而作为反应过程中所存在的中间性产物,诱发之后所呈现出的链反应,会直接由于OH 物质的存在而和废污水之中的污染物进行反应,在这一过程中形成对于污染物的快速反应,最大限度的提升物质的可生化性,所以,高级氧化技术实际上有着较高的使用范围、反应速率以及氧化执行能力。其主要分为Fenton氧化法、光催化氧化法、臭氧氧化法、超声氧化法、湿式氧化法和超临界水氧化法等几类。 2 高级氧化技术的应用研究 2.1 Fenton 氧化法 Fenton氧化法是在pH为2~5的条件下利用Fe2+催化分解H2O2产生的·OH降解污染物,同时生成的Fe2+能够发生混凝沉淀作用去除有机物,因此Fenton试剂在水处理中具有氧化和混凝两种作用。Fenton法单独使用成本高,通常是将其作为生化处理的预处理或深度处理,以提高处理效果和降低成本。运用Fenton法对经A2O工艺处理的焦化废水进行深度处理,出水各项指标均达到《城市污水再生利用工业用水水质》(GB/T19923—2005)的要求。Fenton法的催化剂难以重复利用,含铁污泥产生二次污染,增加后续处理的难度和成本。如何将Fe2+固定在离子交换膜、分子筛、膨润土等载体上,或以铁的氧化物、复合物代替Fe2+,提高催化剂的回收利用率成了研究热点。部分研究人员进行大量试验之后,研制了一种廉价、高效的多孔介质的固体非均相催化剂,使用时不需投加Fe2+,还可大幅度减少H2O2使用量,有效避免了Fenton试剂的技术缺点。 2 . 2 光催化氧化法 光催化氧化技术常以半导体为催化剂,反应中,催化剂与其表面吸附的H2O、O2反应生成很活泼的羟基自由基(·OH)和超氧离子自由基(·O2-),进而把各种有机物氧化成CO2、H2O等无机小分子。TiO2以其稳定性和无毒性的优点成为目前应用最广泛的催化剂。 通过TiO2/WO3光催化反应降解对氯苯酚,取得了很好的效果。采用阳极氧化法制备TiO2纳米管薄膜光催化电极,降解亚甲基蓝,找出了氧气热处理的TiO2纳米管阵列薄膜光电催化降解MB反应的影响因素。研究表明,固载型杂多酸与TiO2光催化氧化法耦合对酸性品红染料废水具有较高的降解效率,光解效率高达83.1%。纳米TiO2仅在紫外光范围有响应,对可见光的利用率低,近年的研究热点集中在了寻找光域范围更广的催化剂上。以对可见光有较好光电化学响应的纳米CuO为催化剂,采用太阳光/CuO/H2O2体系降解染料废水中的中间体间氯甲苯,取得了很好的效果,提高了对光的利用率。 2 . 3 超声氧化法 超声氧化措施,本身主要是使用16kHz-1MHz的相应超声波形式来对溶液进行辐射,以此来促使溶液之中能够形成局部性质的高温、高压超声空化现象,如此以来便能够通过超声波技术来生产浓度较高的氧化物质·OH 和H 2O 2,通过这部分氧化物质,能够迅速的对于污染物进行降解。超声氧化法实际上自身集合了自由基氧化、超临界水、焚烧等多个方面的水处理技术特性,降解条件较为温和、适用范围广,总之该技术属于一项应用前景较广的技术。 2 . 4 超临界水氧化法 超临界水氧化法是是实际就是通过将超临界作为反应的介质,使用H 2O 2以及氧气的方式来对于有机物质进行氧化分解。并且超临界水实际上和有机溶剂之间存在着较大的相似性,能够切实有效的与CO2、O2等方面的非极性有机物质分子达到互溶的效果,完全将界面对于传热传质的相应阻力进行了消除,其中所呈现出的传质速率极为迅速,反应也极快。超临界水氧化措施在对废水进行处理的过程中,呈现出了较广的使用范围,并且反应速率极快,能够达到对污染物质进行降解的目的,不会出现二次污染的可能性,同时还兼具了无机组分极易对沉淀物质进行分离的优势,这属于一种现代化的高科技绿色水处理技术,这方面的技术将会逐渐成为污水处理过程中的热点所在。 2 . 5 各种高级氧化技术的优缺点及其应用范围 高级氧化技术虽然说在工业体系的污水处理工作中,呈现出了反应速率快、处理能力强、使用范围广、能够进行物质以及能量回收等方面的优势,但在实际应用期间,各种不同的高级氧化技术中都或多或少的存在着一定的缺陷。所以,在实际使用高级氧化技术来对于工

高级氧化技术与传统的处理方法及优势

高级氧化技术与传统的处理方法及优势 焦化废水属有毒有害、难降解的高浓度有机废水,其中有机物以酚类化合物居多,约占总有机物的一半,有机物中还包括多环芳香族化合物和含氮、氧、碳的杂环化合物等。高级氧化技术处理难度较大,已成为现阶段环境保护领域亟待解决的一个难题。 目前,在国内各焦化企业大多采用生化法处理焦化废水。据国家冶金局统计资料,绝大多数焦化企业对焦化废水的处理效果不理想,生化出水的COD含量均很高,大部分企业不达标。而传统的物理化学方法在去除废水毒性以及提高废水的可生化性等方面存在不足。近年来,国内外对焦化废水的处理方法也做过多方面的研究,提出过各种各样的改进,各种新的技术不断产生,尤其是高级氧化技术,引起越来越多水处理工作者的注意。 高级氧化技术与传统的处理方法相比具有明显的优势,如该技术采用的设备简单,反应速度快,不会产生大量的生物污泥,对废水中不可生化的有机污染物的降解能力强等优点。本文就国内外应用高级氧化技术处理焦化废水的研究进展情况进行了较为全面的综述,阐述了几种不同高级氧化技术的原理、特点,并提出了今后应用研究中需要进一步关注的问题。 1 高级氧化技术概述 高级氧化技术是近年来水处理领域兴起的新技术,通常指在环境温度和压力下通过产生具有高反应活性的氧化降解有机污染物的处理方法。高级氧化技术的关键是产生高活性的羟基自由基,一般采用加入氧化剂、催化剂或借助紫外光、超声波等多种途径产生。按所用的氧化剂及催化条件的不同,高级氧化技术通常包括试剂法及试剂法、组合类臭氧法、半导体光催化氧化法、超声化学氧化法等。但无论是哪种高级氧化体系,羟基自由基都是氧化剂的主体。高级氧化技术就是不断地提高羟基自由基生成率和利用率的过程。羟基自由基反应是高级氧化技术的根本特点。 2 高级氧化法在焦化废水处理中的研究进展 光催化氧化技术比传统的化学氧化法具有明显的优势,如无需化学试剂,操作条件容易控制,无二次污染,加之化学稳定性高、无毒且成本低,具有潜在的优势。但该方法也存在一定的局限性,主要表现在催化剂的催化效率低和光高浓度废水中的传导效率低等方面。 3 高级氧化技术的集成研究 高级氧化技术是集众多复杂影响因素于一体的综合过程,包括诸如水溶液化学、光化学、水力学,以及微界面物理化学等过程。高级氧化技术的高效性取决于高效的氧化剂、催化剂及与之匹配的高效反应器,高效经济的自动投药技术及原水水质化学等多方面因素。不同的高级氧化技术表现出不同的氧化特点,从而要求与之反应特征相适应的高效反应器。 焦化废水是一种相当难于处理的废水,单一的处理技术存在处理效果差、处理成本高等问题。因此,多种方法组合联用以达到处理效果与经济成本的最优化将成为焦化废水处理技术的发展方向之一。

钛合金微弧氧化

钛合金微弧氧化技术 1.钛合金微弧氧化概述 微弧氧化( Microarc oxidation,MAO) 又称微等离子体氧化(Micmplasma oxidation,MPO),由于在研究这项技术的过程中,对微弧氧化本质认识的不同,因此在发展过程中出现了不同的术语:阳极火花沉积,火花放电阳极氧化,等离子体电解阳极化处理,而一般称为微弧氧化或微等离子体氧化。 微弧氧化是指把有色金属放在电解液中,利用微弧放电在金属表面原位生长氧化膜的技术。该氧化膜具有优良的性质,主要应用于机械、电气、汽车、武器装备、航天和航空等行业的关键零部件的表面处理,解决表面的高温烧蚀、磨损和腐蚀等问题。比如,俄罗斯在制造洲际弹道导弹子母弹的生产过程中应用了微弧氧化技术,水上快艇高速发动机缸体下套与活塞经过微弧氧化处理后,耐磨性提高了几十倍,这些都是其它表面处理技术无法代替、无法比拟的。 早在20世纪30年代初德国科学家A.Gunterschulz和H.Betz 第一次报道了在高电场下浸在液体里的金属表面出现火花放电现象,火花对氧化膜具有破坏作用在没有发现产生硬质层的条件下,做出了“为了得到高质量的涂层,就不应该用高于出现火花时的电压”的结论,但他们为火花阳极氧化奠定了初步的理论基础。这一观点一直延续到2 0世纪7 O年代,尽管少数学者对这一现象持保留观点,但始终没能彻底改变这个结论。 1969年,前苏联科学家G.A.Markov 在向铝及铝合金材料施加高于火花区电压时,突破性地获得了高质量的氧化膜,这种膜层具有很好的耐磨性和耐腐蚀性,他把这种在微电弧条件下通过氧化获得涂层的过程称为微弧氧化( Microarc Oxidation,MAO) 。此后G.A. 一Markov 课题组进行大量基础性研究,并在此基础上进行了应用研究。期间美国、德国对此技术也进行广泛的研究,其中包括实际应用。从文献上看,美国、德国前苏联三国基本上各自独立地发展这项技术,相互之间文献引用很少。这一技术在20世纪80年代开始在世界范围内进行广泛交流。 钛合金具有重量轻、比强度大、热稳定性好等优良的综合性能,广泛应用于航空、航天以及民用工业中。但美中不足的是钛合金的表面硬度较低、耐磨性及耐腐蚀较差,特别是钛合金与其它金属接触时很容易发生接触腐蚀,严重制约了其进一步应用,为此国内外先后对钛合金表面进行了改性研究,以提高其表面性能。传统的表面改性技术有阳极氧化、P V D /C V D、离子注入、热喷涂及热氧化法等。钛合金阳极氧化膜厚度一般小于1μm,达到2~3μm己属不易,而且硬度低,目前仅在装饰涂层方面有所应用。P V D/C V D、离子注入及热氧化法在涂层制备过程中需要保持高温,在一定程度上改变了基体与涂层的结构,使基体的力学性能明显变坏( 塑性恶化) ;P V D/C V D及离子注入法需要昂贵的真空或气氛保护条件,制备成本明显提高;而热氧化法能耗大、时间长及劳动强度大,得到的涂层不均匀。因此有必要发展新的低成本高性能的涂层制备技术。微弧氧化这一高新技术综合地解决了上述难题,在实践中取得了很好的效果。 2.微弧氧化膜生成的基本原理及生长过程 微弧氧化是从普通阳极氧化发展而来的,它的基本原理是:突破了传统的阳极氧化对电流、电压的限制,把阳极电压由几十伏提高到几百伏,当电压达到某一临界值时,击穿阀金属表面形成的氧化膜(绝缘膜),产生微弧放电并形成放电通道,在放电通道内瞬间形成高温高压并伴随复杂的物理化学过程,使金属表面原位生长出性能优良的氧化膜。 在微弧氧化过程中,把工件放人电解槽中,通电后工件表面现象及膜层生长过程具有明

微弧氧化工艺及设备

微弧氧化工艺及设备 等离子体微弧氧化简称微弧氧化(MAO)又称为微等离子体氧化(MPO)、阳极火花沉积(ASD) 或火花放电阳极氧化(ANOF),还有人称之为等离子体增强电化学表面陶瓷化(PECC)。该技术的基本原理及特点是:在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而在以铝、钛、镁金属及其合金为材料的工件表面形成优质的强化陶瓷膜的方法。 该方法是通过用专用的微弧氧化电源在工件上施加高电压,使工件表面的金属与电解质溶液相互作用,在工件表面形成微弧放电,在高温、电场等因素的作用下,金属表面形成陶瓷膜,达到工件表面强化、硬度大幅度提高、耐磨、耐蚀、耐压、绝缘及抗高温冲击特性得到改善的目的。它是一种直接在有色金属表面原位生长陶瓷层的新技术,该技术是最近十几年在阳极氧化基础上发展起来的,但两者在机理上、工艺上以及膜层性能上都有许多不同之处。所谓等离子体就是由大量的自由电子和离子组成,且在整体上表现为电中性的物质,它被称为固态、气态和液态以外的第四态。处于热等离子态的物质具有强的导电性,且能量集中,温度较高,是一个高热、高温的能源。与传统的阳极氧化法相比,微弧氧化陶瓷膜与基体结合牢固,结构致密,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性、具有广阔的应用前景。 上世纪30年代初期,Günterschulze和Betz第一次报道了在高电场下,浸在液体里金属表面出现火花放电现象,火花对氧化膜具有破坏作用。后来研究发现利用此现象也可生成氧化膜。此技术最初采用直流模式,应用于镁合金的防腐上,直到现在,镁合金火花放电阳极氧化技术仍在研究开发之中。约从70年代开始,美国伊利诺大学和德国卡尔马克思城工业大学等单位用直流或单向脉冲电源开始研究Al、Ti等阀金属表面火花放电沉积膜,并分别命名为阳极火花沉积和火花放电阳极氧化。俄罗斯科学院无机化学研究所的研究人员1977年独立地发表了一篇论文,开始此技术的研究。他们采用交流电压模式,使用电压比火花放电阳极氧化高,并称之为微弧氧化。从文献上看,美、德、俄三国基本上是各自独立地发展该技术,相互间文献引用很少。进入90年代以来,美、德、俄、日等国加快了微弧氧化或火花放电阳极氧化技术的研究开发工作。我国目前绝大多数科研机构仍然处于起步阶段。总之,该技术已引起国内外许多研究者的关注,正成为国际材料科学研究热点之一。 我公司科研人员从1999年开始引进俄罗斯技术从事这方面的研究工作,对铝、镁、钛及其合金微弧氧化膜层的形成机理和陶瓷层的性能进行了深入的研究,从微观分析入手,对陶瓷膜层进行分析后,改进了溶液配方和工艺,显著地提高了陶瓷层的性能。我公司于2006年研制成功的“大功率微弧氧化电源”,居国内领先水平,适应产业化需要,目前已给多家汽车配件、纺织机械、印刷机械、医疗器械、电器设备、铝及镁合金制品等生产厂家和军工企业、国家科研院所、高等院校加工了种类繁多、满足技术要求的陶瓷化样品及零部件,正在与多家公司洽商“微弧氧化陶瓷”项目的合作,并已给国内一些公司建起了微弧氧化陶瓷生产线。运用我公司微弧氧化设备及工艺加工过的试样、产品,经国家权威测试机构测试及有关厂家、院校试验,其性能指标均达到了需求的各项技术指标。 (1)大幅度地提高了材料的表面硬度, 显微硬度在1000至2000HV(维氏硬度),最高可

微弧氧化技术重难点详解

微弧氧化技术重难点详解 微弧氧化又称微等离子体氧化,是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,生长出以基体金属氧化物为主的陶瓷膜层。具有材料表面硬度高、耐磨性能好、工艺可靠、设备简单、操作方便等特点。 近年来,铝合金微弧氧化技术在纯铝、铝镁合金、铝硅合金、铝铜镁合金以及铝基复合材料等基体上取得突破。通过这种工艺可以给金属加工多种微弧氧化膜涂层,包括耐腐蚀涂层,耐磨涂层,电防护涂层,装饰涂层,光学涂层等,微弧氧化技术已经在航空航天、兵器、医疗设备、仪表仪器、化工机械设备、汽车工业以及3C产品等许多领域广泛应用。 微弧氧化是从普通阳极氧化发展而来,他突破了传统的阳极氧化电流、电压法拉第区域的限制,把阳极电位由几十伏提高到几百伏,氧化电流从小电流发展到大电流,由直流发展到交流,致使在样品表面上出现电晕、辉光、微弧放电、甚至火花放电等现象。微弧氧化装置包括专用高压电源、氧化槽、冷却系统和搅拌系统。氧化液大多采用碱性溶液,对环境污染小。溶液温度以室温为宜,温度变化范围较宽。溶液温度对微弧氧化的影响比阳极氧化小得多,因为微弧区烧结温度达几千度,远高于槽液。 以下是微弧氧化的工艺特点: 1.工艺过程简单,占地小、处理能力强,生产效率高。

2.无毒环保,该液体不含有毒物质和重金属。再生重复使用效率高。 3.提高工件表面硬度、增强耐磨性能 4.抗腐蚀性能、绝缘性能优良。 5.通过改变工艺参数可得到不同特性的氧化膜层。如致密性、膜层厚度、抗腐蚀性,绝缘性等。 6.通过改变液体成分,可使膜层有特种性能,或得到不同颜色。 7.该工艺可代替阳极氧化,且效果远远优于阳极氧化。 微弧氧化膜的性能与膜层的表面质量和膜层总厚度及膜层中致密层和疏松层的比例密切相关。致密层占总膜厚的比例越大,膜的硬度和耐磨性、耐蚀性越好。 微弧氧化膜具有特殊的多孔质结构,使得它在金属材料功能化方面有着巨大的应用潜力,如在微弧氧化膜的细孔中填充润滑性物质,可以作为性能优良的减摩抗磨材料。下面列出了影响微弧氧化膜层性能的主要因素: 电流密度:(1)电流密度越大,氧化膜的生长速度越快,膜厚度不断增加,但易出现烧损现象;(2)随着电流密度的增加,击穿电压也升高,氧化膜表面粗糙度也增加;(3)随着电流密度的增加,氧化膜硬度增加。 氧化时间:(1)随着氧化时间的增加,氧化膜厚度增加,但有极限氧化膜厚度; (2)随着氧化时间的增加,膜表面微孔密度降低,但粗糙度变大。如果氧化时间足够长,达到溶解与沉积的动态平衡,对膜表面有一定的平整作用,表面粗糙度反而

高级氧化技术

高级氧化技术 高级氧化技术(AOPs)是基于羟基自由基(·OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。高级氧化技术主要是基于一系列产生羟基自由基的物化过程。 Fenton(1894)发现Fe2+和H202发生化学反应产生·OH,·OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(·OH )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成HO2-离子,诱发产生羟基自由基[4]。利用物理的方法,例如超声辐射(Ultrasonic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam,EB)等,诱发产生羟基自由基(·OH)[5,6]。还有超临界水氧化(Supercritical Water Oxidation,SWO)、湿式氧化(Wet Air Oxidation,WAO)或催化湿式氧化(Catalytic Wet Air Oxidation,CWAO)等[7]。20世纪70年代,Fujishima和Honda等发现光催化可产生·OH,从而揭开了光催化高级氧化技术研究的新领域[8]。最近,混合型高级氧化技术(Hybrid Advanced Oxidation Ploeesses,HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(Sono- photochemical Oxidation)、光Fenton技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,如SONIWO(SonoChemical Degradation followed by Wet Air Oxidation)等[9]。 1.1Fenton反应 芬顿反应(Fenton Reactions)是二价铁离子跟双氧水反应生成羟基自由基的过程。其中涉及到诸多单元反应,主要反应如下: 光芬顿反应(Photo-Fenton Reactions)是在波长小于400nm的紫外光照射下发生的复杂的光化学反应,其中包括了三价铁离子转化到二价铁离子的光化学反应,促使这个反应过程加速[10]:

镁合金微弧氧化综述

镁合金微弧氧化综述沈阳理工大学环境与化学工程学院

镁合金微弧氧化综述 摘要:简要介绍了国内外镁合金表面处理方法, 重点介绍了微弧氧化技术的发展现状、工艺和成膜性能。介绍了镁合金微弧氧化技术的发展,氧化膜形成的基本原理和生长规律,介绍了电解液体系对镁合金微弧氧化物陶瓷膜性能的影响对今后镁合金微弧氧化的发展趋势进行了展望。 关键词:镁合金;微弧氧化;氧化膜;腐蚀性;研究进展 引言: 镁合金作为一种发展迅猛的绿色环保合金材料,具有比重小(密度1.74g/ cm3)、比强度和比刚度高、容易切削成型、导热导电性能好,以及良好的减震和电磁屏蔽性能已广泛应用在航空航天工业、电子通讯和汽车、笔记本电脑等行业中, 是一种较理想的现代工业结构材料。近年来,镁合金的用量在全球范围内的年增长率高达20% ,显示了极好的应用前景。然而,镁的电极电位很低(-2.36V ),在大多数介质环境中易受到腐蚀,因此镁合金的腐蚀问题制约了镁合金的广泛应用和产业化为了提高镁合金的抗腐蚀性能,科学工作者就防护技术进行了大量的研究,也提出了一些表面处理技术,如添加合金元素化学转化膜金属涂层和阳极氧化等。微弧氧化表面处理技术具有工艺简单效率高无污染,处理工件能力强等优点,因此,引起世界各国研究人员的关注。 1、微弧氧化原理 微弧氧化又称微等离子体氧化或阳极火花沉积。它是在Mg、Al、Ti 等有色金属表面原位生长陶瓷膜的一种新技术。微弧氧化(MAO)突破传统阳极氧化技术的限制,电压由工作区域引入到高压放电区,电压由几十伏迅速提高到几百伏,氧化电流由小电流发展到大电流,使工件表面产生火花放电、辉光甚至火花斑。采用该技术能在合金表面生长一层致密的氧化物陶瓷膜,该膜与基体结合力强、厚度可控制,并且处理工件尺寸变化小,极大改善了合金的耐磨损、耐腐蚀、抗热冲击及绝缘性能,在航空、航天、机械、电子以及生物材料等领域有广泛的应用前景。微弧氧化表面处理技术开始于20世纪70年代中期的前苏联,我国则在20世纪90年代开始该领域的研究。随着镁合金的开发与应用,镁合金的微弧氧化表面处理技术已成为镁合金表面处理研究的热点,是一种很有前途的镁合金表面处理技术。 2、微弧氧化技术的发展 20世纪30年代初期, Cunterschulzet 和Betz第一次报道了在高电场下, 浸在液体里的金属表面出现火花放电现象, 火花对氧化膜具有破坏作用。后来研究发现利用此现象也可生成氧化膜。该技术最初采用直流模式, 应用于镁合金的防腐上, 直到现在,镁合金火花放电阳极氧化技术仍在研究开发之中。从20世纪70年代到80年代末, 美、德、俄三国独立地发展该技术, 论文量不大, 进展也不大。进入90年代以来, 美、德、俄、日等国加快了微弧氧化技术的研究工作, 论文量增长较快, 但总数仍只有一二百篇, 研究结果也有局限性。总之, 目前该技术已引起许多研究者的关注, 正成为国际材料科学研究的热点之一, 其主要研究单位如表2所示[1]。 在世界范围内, 各研究单位工作各具特色, 各种电源模式同时并存, 目前俄罗斯在研

相关主题