搜档网
当前位置:搜档网 › 白糖的理化性质

白糖的理化性质

白糖的理化性质
白糖的理化性质

白糖的理化性质

蔗糖(C12H22O11)是由葡萄糖及果糖各一个分子脱水缩合而成的非还原性的双糖。

蔗糖的物理性质

蔗糖极易溶于水,其溶解度随温度的升高而增大。蔗糖还易溶于苯胺、氮苯、乙酸乙酯、乙酸戊酯、熔化的酚、液态氨、酒精与水的混合物及丙酮与水的混合物,但不能溶于汽油、石油、无水酒精、三氯甲烷、四氯化碳、二硫化碳和松节油等有机溶剂。蔗糖属结晶性物质。纯蔗糖晶体的比重为1.5879,蔗糖溶液的比重依浓度和温度的不同而异。

蔗糖的化学性质

蔗糖及蔗糖溶液在热、酸、碱、酵母等的作用下,会产生各种不同的化学反应。反应的结果不仅直接造成蔗糖的损失,而且还会生成一些对制糖有害的物质。

1.热分解作用

结晶蔗糖加热至160℃,便熔化成为浓稠透明的液体,冷却时又重新结晶。加热时间延长,蔗糖即分解为葡萄糖及脱水果糖。在190—220℃的较高温度下,蔗糖便脱水缩合成为焦糖。焦糖进一步加热则生成二氧化碳、一氧化碳、醋酸及丙酮等产物。在潮湿的条件下,蔗糖于100℃时分解,释出水分,色泽变黑。

蔗糖溶液在常压下经长时间加热沸腾,溶解的蔗糖会缓慢分解为等量的葡萄糖及果糖,即发生转化作用。蔗糖溶液若加热至108℃以上,则水解迅速,糖溶液浓度愈大,水解作用愈显著。煮沸容器所用的金属材料,对蔗糖转化速率也有影响。例如:蔗糖溶液在铜器中的转化作用,远比在银器中的大,玻璃容器几乎没有什么影响。

2.酸的作用

蔗糖溶液为酸性时,蔗糖转化更快。浓酸对糖液的分解作用更大,如浓硫酸能使固体蔗糖迅速脱水,焦化成为黑色产物。在纯蔗糖溶液中,只要有少量的游离酸存在,就能使蔗糖的转化作用迅速进行。但是,对于压榨蔗汁中的蔗糖来说,情况就不是这样。因为蔗汁中含有弱酸的中性盐会抑制蔗糖的转化。

3.碱的作用

稀碱溶液如氢氧化钙,氢氧化钾及钠的溶液,甚至在煮沸的情况下也不会使蔗糖分解。浓碱溶液加在糖液中加热时蔗糖分解成糠醛、丙酮、乳酸、乙酸、甲酸、二氧化碳等产物。分解程度及产物种类视氢氧离子浓度及温度而定。蔗糖能与中等浓度的碱化合生成碱性的蔗糖盐。

4.盐类的作用

水中同时有蔗糖与盐类存在时,它们的溶解度都要发生变化,变化的程度取决于双方的浓度和盐类的性质。

5.氧化作用

蔗糖燃烧或在生物氧化中,都产生二氧化碳及水,在中性或酸性的溶液中,高锰酸钾可使蔗糖氧化成二氧化碳、甲酸、乙酸及草酸,但在碱性条件下,只能部分地变为草酸及二氧化碳。

6微生物对蔗糖的作用

蔗糖的稀薄溶液易受微生物的感染,但感染机会随糖汁增浓而减少。此外还跟糖汁的温度及pH值有关。一般微生物繁殖的最适温度都在30—45℃之间,而加热到80℃时则多数微生物都能被抑制或杀灭。

玉米淀粉基本知识

淀粉基本知识 1、淀粉合成、结构、成份 淀粉是纯碳水化合物,分子式可简写为(C6H10O5)n 淀粉颗粒按结构可分为: 支链淀粉:70~80% 支杈状结构粘性分子量32000~16000 直链淀粉:20~30% 直链状结构易和有机物或碘生成化合物,10~100万。 2、物理性质 ①外观:白色粉末(或微带浅黄色阴影)淀粉密度1.61 偏光十字:在偏光显微镜下观察,淀粉颗粒具有双折射性,在淀粉粒面上可以看到以粒径为中心的黑心十字形。 ②淀粉水份含量: 平衡水份:淀粉在不同温度和湿度的空气中含有的水份。 一般水份12~13%,受空气的温度和湿度影响较大。 ③糊化: 若将淀粉的悬浮液加热,达到一定温度时,淀粉颗粒突然膨胀,因膨胀的体积达到原来的数百倍之大,所以悬浮液变为粘稠的胶体溶液这种现象称为淀粉的糊化。 玉米淀粉在55℃开始膨胀,64℃开始糊化,72℃糊化完成。 淀粉糊化的本质(宏观): 三个阶段: A、吸水,淀粉粒内层膨胀,外形未变→可逆的润胀。 B、水温升高至糊化温度时突然膨胀,大量吸水,偏光十字消失,晶体解体→不可逆的溶胀。 C、温度升高,溶胀的淀粉粒继续分解,溶液黏度增高。晶体结构解体,无法恢复成原有的晶体结构。 (微观)本质:水分子进入淀粉颗粒的微晶体结构,拆散淀粉间的缔合状态,淀粉分子或其它集聚体经高度水化形成胶体体系。 ④淀粉遇碘变兰: 鉴别淀粉的存在:加热到70℃时兰色消失,故中和应冷却至70℃以下。 本质:这种反应不是化学反应,而是由于直链淀粉“吸附”碘形成的络合结构。 ⑤淀粉的凝沉作用: 淀粉的衡溶液在低温下静置一定时间后,溶液变浑浊,溶解度降低,而沉淀析出,如果浓度大时间长,则沉淀物可形成硬块不再溶解,也不易被酶作用,这种现象称为淀粉的凝沉作用,也叫老化作用。 凝沉本质:在温度逐渐降低的情况下,溶液中淀粉分子的运动减弱后,

粉尘与气体的物理性质

粉尘与气体的物理性质 分散性的尘粒一般称为粉尘或尘灰,是将固体破碎或研磨成粉末或将液体喷成雾沫而成,或由于其它机械原因,致使固体或液体成为微粒,飞扬而悬浮于气体中。粉尘微粒大小,通常大于1um。 凝聚性的尘粒系气体或蒸汽质点的凝聚,或由两种气体或蒸气经过化学反应而得。凝聚所得微粒,固体的称为烟,液体的称为雾。如氯化氢与氨生成的氯化铵,三氧化硫与水蒸气生成的硫酸雾,各种炉烟中的粉尘也属此类。烟与雾的尘粒大小通常在10~0.01um之间。表为各种粒径范围的物质名称及其适用的除尘装置形式。 从表中可以看出,由于尘粒的粒径由大变小,其气相悬浮系将由非均一系统转变为均一系统。因为粒径小到0.2~0.3um时,布朗运动就变得显著了,而均相的气体及其大分子的粒径可以大到0.005um。粒径在0.2~0.001um的分散体系属胶体溶液范畴。由于尘粒大小不同,将形成不同性质的物系,因此测定粒径的方法和从分散体系中除去尘粒的方法也就不同。还可以看到各种除尘设备操作范围有一定程度的交叉,这是由于选择设备不但要按照尘粒大小,而且还要依据气量、粉尘浓度及粉尘的物理化学性质等因素而定。 为了正确地设计和选择除尘器,必须掌握粉尘的各种物理化学性质及粉尘浓度等,以便确定本工程的设计卫生标准、回收价值和防尘措施。 现就主要物性,简述如下。 (一) 尘粒粒径与分散度 尘粒如呈球形,可取其直径为粒径。但实际上尘粒的形状是很复杂

的,多为不定形的。若要求得单一尘粒粒径需借用不同的方法测出其代表性尺寸,叫做尘粒粒径。用得比较多的有如下几种方法: (1) 显微镜粒径。对细微尘粒是借用透过的光测得多个尘粒的投影像的一边尺寸的平均值,作为平均粒径。还有以尘粒的投影面积与同面积的圆的直径或与正方形的一边尺寸表示的当量粒径。 (2) Stokes 粒径。按尘粒在分散介质中的平均沉降速度而确定的粒径。这种方法主要适合对38um以下的尘粒粒径的测定。 (3) 筛分粒径。对38um以上的粗尘粒可通过筛网分出尘粒大小,叫做筛分粒径。 由于测试方法不同,同一粉尘的粒径,一般是不会相同的。 粉尘的各种粒级(某一粒径范围,如5~10um,10~15um等)所占重量或颗粒数的百分比(%),称为重量分散度或颗数分散度。粉尘的粒径值是粉尘的主要特性之一,其粒径分布大部分是细尘粒还是粗尘粒,是最关键的数据。 粉尘分散度对除尘工作具有重要意义,是除尘器设计、管径计算以及选择除尘设备的主要依据之一。 (二) 尘粒的重度与堆积重度 尘粒本身有其重度(或真重度),而作为集合体,堆积状态的重度叫做堆积重度(或容重)。 重度对重力、惯性、离心式除尘器的除尘率关系很大,而堆积重度则与设计粉尘的贮存设备和粉尘的再飞扬问题有关。当粉尘的重度与堆积重度之比为10以上时,需要特别注意解决粉尘的二次飞扬问题。

(完整word版)环己烯的制备及其思考题

环己烯的制备 【实验目的】 1、学习、掌握由环己醇制备环己烯的原理及方法。 2、了解分馏的原理及实验操作。 3、练习并掌握蒸馏、分液、干燥等实验操作方法。 【实验原理】 主反应为可逆反应,本实验采用的措施是:边反应边蒸出反应生成的环己烯和水形成的二元共沸物(沸点70.8℃,含水10%)。但是原料环己醇也能和水形成二元共沸物(沸点97.8℃,含水80%)。为了使产物以共沸物的形式蒸出反应体系,而又不夹带原料环己醇,本实验采用分馏装置,并控制柱顶温度不超过90℃。 反应采用85%的磷酸为催化剂,而不用浓硫酸作催化剂,是因为磷酸氧化能力较硫酸弱得多,减少了氧化副反应。分馏的原理就是让上升的蒸汽和下降的冷凝液在分馏柱中进行多次热交换,相当于在分馏柱中进行多次蒸馏,从而使低沸点的物质不断上升、被蒸出;高沸点的物质不断地被冷凝、下降、流回加热容器中;结果将沸点不同的物质分离 【试剂】 环己烯,浓硫酸,食盐,无水氯化钙,5%碳酸钠 【实验步骤】 在50毫升干燥的圆底烧瓶中,放进15g环己烯(15.6ml,0.15mol)、1ml浓硫酸和几粒沸石,充分振摇使混合均匀。烧瓶上装一短的分馏柱作分馏装置,接上冷凝管,用锥形瓶作接受器,外用冰水冷却。 将烧瓶在石棉网上用小火慢慢加热,控制加热速度使分馏柱上真个温度不要超过90℃,馏液为带水的混合物。当烧瓶中只剩下很少量的残渣并出现阵阵白雾时,即可停止蒸馏。全部蒸馏时间约需1h。 将蒸馏液用精盐饱和,然后加进3—4ml 5%碳酸钠溶液中和微量的酸。将此液体倒进小分液漏斗中,振摇后静置分层。将下层水溶液自漏斗下端活塞放出、上层的粗产物自漏斗的上口倒进干燥的小锥形瓶中,加进1-2克无水氯化钙干燥。 将干燥后的产物滤进干燥的蒸馏瓶中,加进沸石后用水浴加热蒸馏。收集80-85℃的馏分于一已称重的干燥小锥形瓶中。产率7-8g。 【注意事项】 1、环己醇在常温下是粘碉状液体,因而若用量筒量取时应注意转移中的损失。所以,取样时,最好先取环己醇,后取硫酸。 2、环己醇与磷酸应充分混合,否则在加热过程中可能会局部碳化,使溶液变黑。 3、安装仪器的顺序是从下到上,从左到右。十字头应口向上。 4、由于反应中环己烯与水形成共沸物(沸点70.8℃,含水l0%);环己醇也能与水形成共沸物(沸点97.8℃,含水80%)。因比在加热时温度不可过高,蒸馏速度不宜太快,以减少末作用的环己醇蒸出。文献要求柱顶控制在73℃左右,但反应速度太慢。本实验为了加快蒸出的速度,可控制在90℃以下。 5、反应终点的判断可参考以下几个参数:(1)反应进行40min左右。(2)分馏出的环己烯和水的共沸物达到理论计算量。(3)反应烧瓶中出现白雾。(4)柱顶温度下降后又升到85℃以上。 6、洗涤分水时,水层应尽可能分离完全,否则将增加无水氯化钙的用量,使产物更多地被干燥剂吸附而招致损失。这里用无水氯化钙干燥较适合,因它还可除去少量环己醇。无

变性淀粉理化性质

变性淀粉的理化性质 淀粉的可利用性取决于淀粉颗粒的结构和淀粉中直链淀粉和支链淀粉的含量,不同种类的淀 粉其分子结构和直链淀粉、支链淀粉的含量不相同。直链淀粉和支链淀粉在若干性质方面存在很大差异,直链淀粉与碘能形成螺旋络合结构,呈现深蓝色,支链淀粉与碘液呈现紫红色,故常用碘液鉴定淀粉。因此,不同来源的淀粉原料具有不同的可利用性。如薯类淀粉,颗粒大而松,易让水分子进去,糊化温度低,峰黏高,分子量大且直链淀粉少,不易分子重排,另外含有0·07% ~0·09%的磷,析水性强,不易回生。谷类淀粉,颗粒小而紧,水分子难进入,糊化温度高,峰黏低,分子小且直链淀粉多,易重排;另外还含有脂肪,直链淀粉与脂肪结合不易吸收,故易胶凝回生,透明性差。天然淀粉在广泛采用新工艺、新设备的现代工业生产中应用是有限的,大多数的天然淀粉都不具备能被有效的、很好的利用性能,因此在保持原淀粉基本性质的基 础上,变性淀粉具有了以下性质:如1)具有了耐酸性;2)耐热性;3)抗剪切等性能。这些性能都使得变性淀粉更适应现代生产工艺的要求。淀粉糊化后具有增稠、凝胶、粘合、成膜及其它功能,不同品种淀粉的特性存在着差别。表1列出各类淀粉的性能,并对其进行比较。这些都是影响淀粉应用的特性。

马铃薯、木薯淀粉、玉米和小麦淀粉糊化后,其黏度存在很大差别(如图1所示)。马铃薯、木薯淀粉较玉米、小麦淀粉易糊化,在较低温度开始糊化,黏度上升快,达到最高值,继续搅拌受热,黏度快速降低,在95℃继续保温1 h,黏度缓慢降低,继续降温至50℃,黏度有所回升;相反玉米、小麦淀粉较难糊化,在降温过程中黏度出现最大峰值,这也说明玉米、小麦淀粉的凝沉性要强于马铃薯和木薯淀粉[2]。

化学品理化性质检测

化学品理化性质 闪点的测定 快速平衡闭杯法 ISO 3679-2004 闪点EC440-2008.A.9 自燃温度(固体)固体相对自燃温度EC440-2008 A.16 熔点 化学品测试方法102熔点/熔点范围(国家环境保护总局2004,ISBN7-80163-712-7)OECD化学品测试准则102 熔点/熔点范围 EC440-2008 A.1熔点/冰点 沸点 化学品测试方法103沸点(国家环保总局2004,ISBN7-80163-712-7) 沸点OECD化学品测试准则 103 沸点EC440-2008 A.2 相对密度(固体/液体) 化学品测试方法109液体和固体密度(国家环保总局2004,ISBN7-80163-712-7 OECD化学品测试准则109液体和固体密度 相对密度EC440-2008 A.3 蒸气压 蒸气压EC761-2009 A.4 蒸气压OECD 化学品测试准则104 化学品测试方法104蒸气压(国家环保总局2004,ISBN7-80163-712-7) 表面张力 表面张力EC440-2008 A.5 水溶液的表面张力OECD化学品测试准则115 化学品测试方法115水溶液的表面张力(国家环保总局2004,ISBN7-80163-712-7)表面及界面张力测定方法 SY/T5370-1999 分配系数(正辛醇/水)—摇瓶法 分配系数EC440-2008 A.8 OECD化学品测试准则107分配系数(正辛醇/水)—摇瓶法 化学品测试方法 107分配系数(正辛醇/水)—摇瓶法(国家环保总局2004, ISBN7-80163-712-7) 水溶解度 水溶解度EC440-2008 A.6

粉尘的种类及特性

安全管理编号:LX-FS-A80812 粉尘的种类及特性 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

粉尘的种类及特性 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1.粉尘的种类 按粉尘的成分可分为无机粉尘、有机粉尘和混合性粉尘;按粉尘的颗粒大小可分为可见粉尘粒径大于10微米,显微粉尘粒径为0.25~10微米,起显微粉尘粒径小于0.25微米;按燃烧和爆炸性质可分为易燃易爆粉尘和非易燃易爆粉尘按卫生角度可分为呼吸性粉尘和非呼吸粉尘,呼吸性粉尘粒径小于5 微米,能进入人的细支气管到达细胞,对人体健康危害最大。 2.粉尘特性 (1)粉尘的粒径分布

木薯淀粉的理化性质

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2 ↑ 叶绿素 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

直链淀粉是由葡萄糖单位通过α××105。此值相当于分子中有200-980个葡萄糖单位。木薯淀粉的直链淀粉,其含量(干基)为17%,平均聚合度为2600,平均聚合度质量为6700,表现的聚合度分布为580-2200。 支链淀粉具有高度分支结构,由线型直链淀粉短链组成,其分子较直链淀粉大,相对分子

十六种常见危险化学品理化特性

目录 目录 (1) 表1涉及化学品目录 (2) 表2 丙酮物质特性表 (3) 表3 盐酸物质特性表 (4) 表4 硫酸物质特性表 (5) 表5 过氧化氢物质特性表 (6) 表6 次氯酸钠物质特性表 (7) 表7 1,1-二氯-1-氟乙烷的特性 (8) 表8 聚乙二醇物质特性表(以PEG200为例) (9) 表9 乙二酸(草酸)物质特性表 (10) 表10 亚硫酸氢钠物质特性表 (11) 表11 氢氧化钠物质特性表 (12) 表12 聚合氯化铝物质特性表 (13) 表13 FR-110 物质特性表 (14) 表14 L-1110物质特性表 (15) 表15 CF-5物质特性表 (16) 表16 表面活性剂物质特性表 (17)

根据《易制毒化学品管理条例》(国务院令第445号),盐酸、硫酸和丙酮属于第三类易制毒化学品,是可以用于制毒的化学配剂。 表1涉及化学品目录 序号物质名称用途危险性类别火灾危险性分类有毒危害程度分级 1 丙酮 第3.1类 低闪点液体 甲类Ⅳ级(轻度危害) 2 盐酸 第8.1类 酸性腐蚀品 / Ⅲ级(中度危害) 3 硫酸 第8.1类 酸性腐蚀品 / Ⅲ级(中度危害) 4 (双氧水)过氧化 氢 第5.1类 氧化剂 乙类/ 5 NaOCl (次氯酸钠 溶液[含有效氯> 5%]) 第8.3类 腐蚀品 / Ⅲ级(中度危害) 6 1,1 - 二氯-1 - 氟 乙烷(HCFC-141b) 第6.1类 毒害品 / Ⅲ级(中度危害) 7 聚乙二醇/ 乙类第六项Ⅳ级(轻度危害) 8 乙二酸第6.1类 毒害品 / Ⅳ级(轻度危害) 9 NaHSO3 第8.1类 酸性腐蚀品 / / 10 NaOH 第8.2类 酸性腐蚀品 / / 11 PAC(聚合氯化 铝) 第8.1类酸 性腐蚀品 / / 12 FR-110 / / Ⅱ级(高度危害) 13 L-1110 / / / 14 CF-5 / / / 15 表面活性剂(Poly 化学成分油脂类 东西) / / /

常用危险化学品理化特性

乙酸 Acetic Acid 其它名称:中文:醋酸 英文: 国内危规编号:81601 UN编号:2789 包装分类:Ⅱ包装标志:20 熔点(℃):16.7 沸点(℃):118.1 相对密度(水=1):1.05 相对密度(空气=1):2.07 稳定性:稳定聚合性:不聚合 爆炸上限(%):17.0 爆炸下限(%):4.0 分子式:C2H4O2 闪点(℃):39 危险性类别:8.1类酸性腐蚀品污染类别:D 船型:3 舱型:2G 溶解性:溶于水、醚、甘油,不溶于二硫化碳 外观性状:无色透明液体,有刺激性酸味 灭火方法:雾状水、二氧化碳、抗溶性泡沫、干粉 危险特性:易燃,其蒸气与空气形成爆炸性混合物,遇明火、高热能引起爆炸,与强氧化剂可发生反应。 应急措施:057 盐酸 Hydrochloric Acid 其它名称:中文:氢氯酸,盐镪水,焊锡药水 英文:chlorichydro Acid 国内危规编号:81013 UN编号:1789 包装分类:Ⅰ包装标志:20 熔点(℃):-114.8(纯洁) 沸点(℃):108.6(20%) 相对密度(水=1):1.20 相对密度(空气=1):1.26 稳定性:稳定聚合性:不聚合 爆炸上限(%):无意义爆炸下限(%):无意义 分子式:HCl 闪点(℃):无意义 危险性类别:8.1类酸性腐蚀品污染类别:D 船型:3 舱型:1G 溶解性:与水互溶,溶于碱液 外观性状:无色或微黄色发烟液体,有刺激的酸味

灭火方法:雾状水、砂土 危险特性:能与一些活性金属粉末发生反应,放出氢气。具有较强的腐蚀性,与大事发生中和反应,放出大量热。 应急措施:057 硫酸 Sulfuric Acid 其它名称:中文: 英文: 国内危规编号:81007 UN编号:1830 包装分类:I 包装标志:20 熔点(℃):10.5 沸点(℃):330.0 相对密度(水=1):1.83 相对密度(空气=1):3.4 稳定性:稳定聚合性:不聚合 爆炸上限(%):无意义爆炸下限(%):无意义 分子式:HSO4 闪点(℃):无意义 危险性类别:8.1类酸性腐蚀品污染类别:C 船型:3 舱型:2G 溶解性:与水互溶,溶于碱液 外观性状:无色透明油状液体 灭火方法:砂土、干粉、二氧化碳,禁用水、 危险特性:能易燃物和有机物接触发生剧烈反应,放出氢气。具有较强的腐蚀性,与水放出大量热。 应急措施:057 硝酸 Nitric Acid 其它名称:中文: 英文: 国内危规编号:81002 UN编号:2031 包装分类:I 包装标志:20 熔点(℃):-42(无水) 沸点(℃):86(无水) 相对密度(水=1):1.50(无水) 相对密度(空气=1):2.17 稳定性:稳定聚合性:不聚合 爆炸上限(%):无意义爆炸下限(%):无意义

(推荐)粉尘及其危害概述

粉尘及其危害概述 1. 什么是粉尘? 答:粉尘是指能较长时间悬浮在空气中的微小固体颗粒。人类各种生产活动和生活活动中可产生大量的粉尘,自然界的分化腐蚀随着气体的流动也会产生粉尘。 2. 什么是生产性粉尘?生产性粉尘有哪几种? 答:生产性粉尘是指在生产中形成的并能长时间悬浮在空气中的固体微粒。它是污染作业环境、损害劳动者健康的重要职业性有害因素,可引起多种职业性疾患。 按照生产性粉尘的性质,可概括为两大类: (1)无机粉尘包括:矿物性粉尘,如石英、石棉、滑石、煤等;金属性粉尘,如铅、锰、铁、铍、锡、锌等及其化合物;人工无机粉尘,如金刚砂、水泥、玻璃纤维等。 (2)有机粉尘包括:动物性粉尘,如皮毛、丝、骨质等;植物性粉尘,如棉、麻、谷物、亚麻、甘蔗、木、茶等粉尘;人工有机粉尘,如有机染料、农药、合成树脂、橡胶、纤维等粉尘。 在生产环境中,以单纯一种粉尘存在的较少见,大部分情况下为两种以上粉尘混合存在,一般称之为混合性粉尘。 3. 生产性粉尘的来源? 答:工业生产中用外力和机械对固体物质进行加工是生产性粉尘的主要来源,如矿石、石料的开采、钻孔、粉碎、研磨、打光、切削,粉碎的固体物质的筛分、搅拌、运输等,都可产生大量粉尘。其次是固体粉末物质的包装、搬运、混合、搅拌,如水泥制造和运输;金属冶炼和加热过程中产生的蒸汽在空气中遇冷后凝集形成固体微粒状的烟雾,如电焊、铸造及金属加工产生的金属烟雾粉尘。飘落的粉尘在空气流动或由机械振动再次漂浮于空气中,则可形成二次扬尘。 4. 粉尘是如何进入人体导致疾病的? 答:粉尘通过呼吸道进入体内,大部分又可通过呼吸被排出体外,只有少量粉尘能滞留在下呼吸道和肺泡内。由于生产性粉尘的理化性质不同,可使机体产生不同的病理改变。长期吸入某些生产性粉尘,可引起以肺组织纤维性病变为主的全身性慢性疾病—尘肺。 5. 影响粉尘致病作用的主要因素有哪些? 答:粉尘的物理化学性质以及粉尘在肺内的蓄积量决定了粉尘对人体危害的性质和程度。(1)粉尘的化学性质粉尘的化学组成是决定粉尘生物学作用的主要因素。矿物粉尘致肺纤维化能力的强弱,主要决定于粉尘中致纤维化粉尘的性质及含量。致纤维化粉尘的含量越高,其致纤维化作用越强,病变发生越快、进展也越快,其中致纤维化能力最强的粉尘是游离二氧化硅粉尘。 (2)粉尘的分散度分散度是指生产过程中物质被粉碎的程度,粉尘中小的颗粒越多,分散度就越高,大的颗粒越多,其分散度就越低。不同的生产过程和生产工艺所产生的粉尘颗粒的大小组成比例是不同的。粉尘颗粒的分散度越高,在空气中飘浮的时间就越长,被吸入的可能性就越大。而较大的粉尘颗粒会很快在空气中沉降,吸入的可能性较低,即使被吸入,也会被阻留在上呼吸道,难以到达下呼吸道和肺泡。真正能够进入肺泡而沉积于肺内引起生物学作用的是粒径小于5微米的粉尘。小于5微米的粉尘称呼吸性粉尘。 (3)粉尘的浓度同样生产过程产生的粉尘,其化学性质和分散度相同时,其致病作用的强

激素性质

玉米素(反式)zeatin(Trans-Isomer) 化学名称:6-反式-4-羟基-3-甲基-丁-2-烯基氨基嘌呤 分子式:C10H13N5O 分子量:219.25 CAS登录号:1637-39-4 一种细胞分裂素,也是核糖核酸(RNA)中的稀有成分。有顺式玉米素和反式玉米素。两者很难分离。顺玉米素为灰白色或黄色粉末,反式玉米素为白色或灰白色粉末。商品系反式异构体或顺反式异构体混合物。 熔点:207-208℃。 紫外吸收值:pH=1 λmax=207nm(ε14500);275nm(ε14650) λmin=235nm pH=7 λmax=212nm(ε17100);270nm(ε16200) λmin=233nm pH=13 λmax=220nm(ε15900);276nm(ε14650) λmin=242nm 以6-甲硫基嘌呤、4-氨基-2-甲基-2-丁烯-醇(顺式或反式)为原料,经反应后精制而得。应用:1.促进愈伤组织发芽(须和生长素配用),浓度1ppm。 2.促进座果,玉米素100ppm+GA3 500ppm+NAA20ppm,花后10、25、40天喷果。3.叶菜,20ppm喷洒,可延缓叶片发黄。 另外,对一些作物种子进行处理,可促进发芽;苗期处理,有促进生长作用。 脱落酸(诱抗素,abscisic acid,ABA) 化学名称:[S-(Z,E)]-5-(1'羟基-2',6',6'-三甲基-4'-氯代-2'-环己烯-1'-基)-3-甲

基-2-顺-4反-戊酸 分子式:C15H20O4 相对分子质量:264.32 CAS登录号:21293-29-8 诱抗素(原名脱落酸)是一种植物体内存在的具有倍半萜结构的植物内源激素,与生长素、赤霉素、乙烯、细胞分裂素并列为世界公认的五大类天然植物激素。 1963年由Ohkuma、Addicott、Eagles、Wareing等人分别从棉花幼铃及槭树叶片分离出来,尔后经鉴定命名为脱落酸。1978年F.Kienzl等人首先人工合成了脱落酸,然而生物活性没有天然的高。 理化性质:脱落酸有多种异构体,天然发酵为(+)-2-顺,4-反诱抗素其生物活性最高.从乙酸乙酯/正己烷中所得脱落酸的结晶体,其熔点为161~163℃,120℃升华,[α]D20+411.40,[α]D20+426.50。脱落酸溶在碳酸氢钠、乙醇、甲醇、氯仿、丙酮、乙酸乙酯、乙醚、三氯甲烷、微溶于水(1~3克/升,20℃)。紫外最大吸收光为252nm。脱落酸稳定性较好,常温下放置两年,但对光敏感,属强光分解化合物。 毒性:脱落酸为植物体内的天然物质,大鼠急性口服LD50>2500毫克/千克。对生物和环境无任何副作用。 作用特性:脱落酸在植物的生长发育过程中,其主要功能是诱导植物产生对不良生长环境(逆境)的抗性,如诱导植物产生抗旱性、抗寒性、抗病性、耐盐性等,脱落酸是植物的“抗逆诱导因子”,被称为是植物的“胁迫激素”。 逆境胁迫时,脱落酸在细胞间传递逆境信息,诱导植物机体产生各种对应的抵抗能力:

木薯淀粉的理化性质定稿版

木薯淀粉的理化性质 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2

↑ 叶绿素 葡萄糖又经一系列的生物化学反应,最后生成淀粉、纤维素等多聚糖。淀粉的分子式为(C6H10O5)n,光合作用分子量是n(162.14)。n是一个不定数,表示淀粉分子是由许多个葡萄糖单位组成。组成淀粉分子的葡萄糖单位数量称为聚合度,聚合度乘以葡萄糖单位分子量162.14便得淀粉分子量〔为了与游离葡萄糖(C6H12O6)区别,通常称 (C6H10O5)为葡萄糖单位〕。在组成淀粉的元素中,碳占44.5%,氢占6.2%,氧占 49.3%。干淀粉燃烧生成二氧化碳和水,并放出大量的热,其反应式为: 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

生产性粉尘的危害及防护

生产性粉尘的危害及防护 生产性粉尘由于种类和理化性质的不同,对机体的损害也不同。按其作用部位和病理性质,可将危害归纳为尘肺、局部作用、全身中毒、变态反应和其他五个部分。 1、尘肺 尘肺( pneumoconiosis)是指在工农业生产过程中,长期吸入粉尘而发生的以肺组织纤维化为主的全身性疾病。按其病因不同又分为五类: (1) 矽肺(silicosis)在生产过程中长期吸入含有游离二氧化硅粉尘而引起的以肺纤维化为主的疾病。 (2) 硅酸盐肺(silicatosis)是指长期吸入含有结合状态的二氧化硅的粉尘所引起的尘肺,如石棉肺、滑石肺、云母肺等。 (3) 炭尘肺(carbon pneumoconiosis)是指长期吸入煤、石墨、碳黑、活性炭等粉尘引起的尘肺。 (4) 混合性尘肺(mixed dust pneumoconiosis)是指长期吸入含有游离二氧化硅和其他物质的混合性粉尘(如煤矽肺、铁矽肺等)所致的尘肺。 (5) 其他尘肺长期吸入铝及其氧化物引起的铝尘肺,或长期吸入电焊烟尘所引起的电焊工尘肺等。 上述各类尘肺中,以矽肺、石棉肺、煤矽肺较常见,危害性则以矽肺最为严重。 2、局部作用 吸入的粉尘颗粒作用于呼吸道黏膜,早期可引起其功能亢进、充血、毛细血管扩张,分泌增加,从而阻留更多粉尘,久之则酿成肥大性病变,黏膜上皮细胞营养不足,最终造成萎缩性改变;粉尘产生的刺激作用,可引起上呼吸道炎症;沉着于皮肤的粉尘颗粒可堵塞皮脂腺,易于继发感染而引起毛囊炎、脓皮病等;作用于眼角膜的硬度较大的粉尘颗粒,可引起角膜外伤及角膜炎等。 3、全身中毒作用 吸入含有铅、锰、砷等毒物的粉尘,可被吸收引起全身中毒。 4、变态反应 某些粉尘,如棉花和大麻的粉尘可能是变应原,可引起支气管哮喘、上呼吸道炎症、湿疹和偏头痛等变态反应性疾病。

粉尘的理化特性

粉尘的理化特性 生产性粉尘的理化特性与其生物学作用和防尘措施等有着米密切关系,故在劳动卫生学上研究粉尘的理化特性有很大意义。 1.化学成分不同化学组成的粉尘对机体的危害不同。一般来说,粉尘与其所形成的固体物质的化学成分基本相同,但由于原固体物质中易被破碎、比重较小和不易吸水的成分可能更易飞扬到空气中,故粉尘中各种成分的含量与原环境的重要依据,其含量越高,引起病变的程度就越高,病变发展越快。 除游离二氧化硅外,粉尘中的其他化学成分及其浓度也不能忽视。如煤尘中二氧化硅是引起工尘肺发生发展的主要因素,但大量研究表明,除二氧化硅外,煤尘中其他化学成分也能影响煤工尘肺的进展。 2.浓度即单位体积空气中的粉尘含量。一般来讲,浓度越大,吸入量越大,对机体的危害越烈。了解不同浓度的粉尘对机体的危害十分有用,可以此为依据,制定出生产性粉尘的最高容许浓度。 粉尘浓度有两种表示法,一种是质量浓度,即每立方米空气中所含粉尘的毫克数;另一种是粒数浓度,即单位体积空气中所含粉尘尘粒数目。 3.分散度粉尘粒子的大小决定了它在空气中分布的情况。把粉尘粒子按直径大小分组,用分组方法表示粉尘的粗细程度即为分散度,也称粒度分布。粉尘的分散度可用分组粒径的百分数表示。粉尘粒子越小,分散度越大,反之则分散度越小。 粉尘分散度不同,对人体的危害以及除尘机理都有不同。分散度是影响粉尘在体内沉降的重要因素,分散度也与粉尘在呼吸道中的阻流有着密切关系。一般来说,大的尘粒被阻留在上呼吸道,小的尘可通过上呼吸道而被吸入肺的深部,造成危害。 分散度的大小与粉尘表面积有关。同一种粉尘,在总重量不变的条件下,粉尘分散度越大,尘粒就越小,其总面积就越大理化活性也就越高,更易参与理化反应。如可溶性粉尘,由于分散度大,尘粒表面积增大,溶解速度也显著增快,对人体的危害就越强。 近年来,部分学者对粉尘分散度越高,对机体危害性越大的说法提出了异议。有实验证明大粒径的粉尘也可在肺内沉着并引起严重的纤维化。尸检资料也证明肺内可以看到数十微米的粉尘颗粒,因此对粉尘分散度的评价还有待深入研究。 4.悬浮性是微细粉尘的一种物理特性。分散度高的粉尘粒子小,重量轻,可以较长时间地在空中悬浮。粉尘悬浮状态的持续时间取决于两个相互作用的力:尘粒的重力和空气的阻力(微粒在空气中运动时产生的摩擦力)。粉尘降落的速度增加,空气阻力呈正比增大。在静止空气中,可见微粒是加速下降的。如果微粒重力较小(粒子直径较小),随着下降速度的增加,会使空气阻力与空气重力完全平衡,加速降落停止,而进行等速沉降。显微微粒的降落速度随体积的减小而急剧降低。 5.粒子的布朗运动和扩散作用含尘气体中微粒与热运动着的气体分子碰撞而发生布朗运动,亦即不规则的长时间运动。粒子越小,布朗运动就越活跃,对粒子的扩散作用和凝聚作用所产生的影响也越大。 烟雾粒子浓度如存在空间差别,则粒子就从高浓度区域向浓度低区域扩散移动,即具有趋向于浓度均匀化的性质。布朗运动的粒子越细微,由于扩散作用

环己烯的理化性质

环己烯 1.物质的理化常数: 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品有麻醉作用,吸入后引起恶心、呕吐、头痛和神志丧失。对眼和皮肤有刺激性。 二、毒理学资料及环境行为 急性毒性:小鼠吸入45~50g/m3×2小时,血压下降,严重者死亡。

亚急性和慢性毒性:大鼠豚鼠吸入0.25g/m3,6小时/天,每周5天,引起碱性磷酸酶增加。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热极易燃烧爆炸。与氧化剂能发生强烈反应,引起燃烧或爆炸。长期储存,可生成具有潜在爆炸危险性的过氧化物。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法《空气中有害物质的测定方法》(第二版)杭士平主编 5.环境标准: 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

二、防护措施 呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴乳胶手套。 其它:工作现场严禁吸烟。避免长期反复接触。 三、急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,就医。 灭火方法:喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。 1.物质的理化常数: 国标编号32022 CAS号110-83-8 中文名称环己烯 英文名称cyclohexene;tetrahydrobenzene 别名1,2,3,4-四氢化苯;甲氢化苯,四氢化苯 分子式C6H10;CHCH(CH2)4 外观与性状无色液体,有特殊刺激性气味 分子量82.15 蒸汽压21.33kPa/38℃闪点:<-20℃ 熔点-103.7℃沸点:83.0℃溶解性不溶于水,溶于乙醇、醚 密度相对密度(水=1)0.81;相对密度(空气=1)2.8 稳定性稳定 危险标记7(中闪点易燃液体) 主要用途用于有机合成、油类萃取及用作溶剂

【MSDS】危险化学品管理规定-三氯氧磷理化特性

三氯氧磷-基本信息 中文名称:三氯氧磷 英文名称:phosphorus oxychloride 别名:氧氯化磷;氯化磷酰;磷酰氯;三氯氧化磷 CAS No.:10025-87-3 分子式:POCl3 分子量:153.33 危险标记:20(酸性腐蚀品) 包装类别:O52 包装方法:闭口厚钢桶,采用2~3毫米厚的钢板焊接制成,桶身套有两道滚箍。螺纹口、盖、垫圈等封口件配套完好,每桶净重不超过300 公斤;玻璃瓶或塑料桶(罐)外全开口钢桶;玻璃瓶或塑料桶(罐)外普通木箱或半花格木箱;磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱;安瓿瓶外普通木箱。 三氯氧磷-理化性质 主要成分:含量:工业级≥99.0%。 外观与性状:无色透明发烟液体,有辛辣气味。 熔点(℃):1.2 沸点(℃):105.1

相对密度(水=1):1.68 相对蒸气密度(空气=1): 蒸气压(kPa):5.33(27.3℃) 闪点: 燃烧热(kJ/mol): 化合物在水中的溶解度(S): 稳定性和反应活性:稳定 危险特性:遇水猛烈分解, 产生大量的热和浓烟, 甚至爆炸。对很多金属尤其是潮湿空气存在下有腐蚀性。 溶解性: 禁配物:强还原剂、活性金属粉末、水、醇类。 三氯氧磷-应急处置 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,无腐蚀症状者洗胃。忌服油类。就医。

呼吸系统防护:可能接触其蒸气时,必须佩戴自吸过滤式防毒面具(全面罩)或隔离式呼吸器。紧急事态抢救或撤离时,建议佩戴空气呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿橡胶耐酸碱服。 手防护:戴橡胶耐酸碱手套。 其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。单独存放被毒物污染的衣服,洗后备用。保持良好的卫生习惯。 泄漏应急处理:迅速撤离泄漏污染区人员至安全区,并立即隔离150m,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。小量泄漏:用砂土、蛭石或其它惰性材料吸收。大量泄漏:构筑围堤或挖坑收容。在专家指导下清除。 有害燃烧产物:氯化氢、氧化磷、磷烷。 灭火方法:灭火剂:干粉、干燥砂土。禁止用水。 三氯氧磷-管理方法 操作的管理:密闭操作,注意通风。操作尽可能机械化、自动化。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(全面罩),穿橡胶耐酸碱服,戴橡胶耐酸碱手套。避免产生烟雾。防止烟雾和蒸气释放到工作场所空气中。避免与还原剂、活性金属粉末、醇类接触。尤其要注意避免与水接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。

环己烯的理化性质

环己烯1.物质的理化常数: 环境的影响: 一、50g0.25g验室监测方法: 气相色谱法《空气中有害物质的测定方法》(第二版)杭士平主编5.环境标准:

6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至 质的理化常数: 国标编号 32022 CAS号 110-83-8 中文名称环己烯 英文名称 cyclohexene;tetrahydrobenzene 别名 1,2,3,4-四氢化苯;甲氢化苯,四氢化苯 分子式 C6H10;CHCH(CH2)4 外观与性状无色液体,有特殊刺激性气味 分子量蒸汽压 38℃闪点:<-20℃ 熔点 -103.7℃沸点:83.0℃溶解性不溶于水,溶于乙醇、醚 密度相对密度(水=1);相对密度(空气=1) 稳定性稳定 危险标记 7(中闪点易燃液体) 主要用途用于有机合成、油类萃取及用作溶剂 环己烯 1.物质的理化常数: 国标编号 32022 CAS号 110-83-8 中文名称环己烯 英文名称 cyclohexene;tetrahydrobenzene 别名 1,2,3,4-四氢化苯;甲氢化苯,四氢化苯 分子式 C6H10;CHCH(CH2)4 外观与性状无色液体,有特殊刺激性气味 分子量蒸汽压 38℃闪点:<-20℃ 熔点 -103.7℃沸点:83.0℃溶解性不溶于水,溶于乙醇、醚 密度相对密度(水=1);相对密度(空气=1) 稳定性稳定 危险标记 7(中闪点易燃液体) 主要用途用于有机合成、油类萃取及用作溶剂 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。

健康危害:本品有麻醉作用,吸入后引起恶心、呕吐、头痛和神志丧失。对眼和皮肤有刺激性。 二、毒理学资料及环境行为 急性毒性:小鼠吸入45~50g/m3×2小时,血压下降,严重者死亡。 亚急性和慢性毒性:大鼠豚鼠吸入0.25g/m3,6小时/天,每周5天,引起碱性磷酸酶增加。危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热极易燃烧爆炸。与氧化剂能发生强烈反应,引起燃烧或爆炸。长期储存,可生成具有潜在爆炸危险性的过氧化物。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法《空气中有害物质的测定方法》(第二版)杭士平主编 5.环境标准: 前苏联车间空气中有害物质的最高容许浓度 50mg/m3 前苏联(1975) 水体中有害物质最高允许浓度 L 前苏联(1975) 污水排放标准 L 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 二、防护措施 呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴乳胶手套。 其它:工作现场严禁吸烟。避免长期反复接触。 三、急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,就医。 灭火方法:喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。

危险化学品理化特性表汇总(很全哦).doc

项目 标识 理化性质 燃烧爆炸危 险性 甲烷理化特性表 内容 中文名甲烷别名沼气 分子式CH4 危险货物类别第类易燃气体 分子量危险货物编号21007 CAS 74-82-8 UN 编号1971 外观与性状无色无臭气体。 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造。 溶解性微溶于水,溶于醇、乙醚。 熔点 (℃) 燃烧热 (kJ/mol) 沸点 (℃) 饱和蒸汽压 (kPa) ℃ ) 相对密度 (水=1) (-164 ℃) 临界温度 (℃ ) 相对密度 (空气 =1) 临界压力 (MPa) 火灾危险类别甲类稳定性 闪点 (℃) -188 聚合危害 引燃温度 (℃) 538 避免接触的条件 爆炸下限 (V/%) 燃烧 (分解 )产物一氧化碳、二氧化碳。爆炸上限 (V/%) 15 禁忌物强氧化剂、氟、氯。燃爆危险本品易燃,具窒息性。 包装与储存运输 毒性与健康 危害性危险特性 灭火方法 包装标志 包装方法 储存注意事项 运输注意事项 接触极限 毒性 健康危害 侵入途径 环境危害 皮肤接触 眼睛接触 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化 溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话 将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。 包装类别052 钢质气瓶。 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过 30℃。应与氧化剂等分开存 放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工 具。储区应备有泄漏应急处理设备。 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向, 不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运 输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装 置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装混运。夏季应 早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线 行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。中国 MAC(mg/m 3):未制定标准 前苏联 MAC(mg/m 3):300 TLVIN: ACGIH 窒息性气体 TLVWN:未制定标准 LD50:无资料 LC50:无资料 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲 烷达 25%~ 30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共 济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 若有冻伤,就医治疗。 急救措施防护措施 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止, 吸入 立即进行人工呼吸。就医。 食入 工程控制生产过程密闭,全面通风。 呼吸系统防护一般不需要特殊防护,但建议特殊情况下,佩戴自吸过滤式防毒面具(半面罩)。眼睛防护一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。 身体防护穿防静电工作服。 手防护戴一般作业防护手套。

相关主题