搜档网
当前位置:搜档网 › 高中物理竞赛辅导 电磁感应

高中物理竞赛辅导 电磁感应

高中物理竞赛辅导  电磁感应
高中物理竞赛辅导  电磁感应

高中物理竞赛:电磁感应

§3。1 基本磁现象

由于自然界中有磁石(43O Fe )存在,人类很早以前就开始了对磁现象的研究。 人们把磁石能吸引铁`钴`镍等物质的性质称为磁性。 条形磁铁或磁针总是两端吸引铁屑的能力最强,我们把这吸引铁屑能力最强的区域称之为磁极。 将一条形磁铁悬挂起来,则两极总是分别指向南北方向,指北的一端称北极(N 表示);指南的一端称南极(S 表示)。 磁极之间有相互作用力,同性磁极互相排斥,异性磁极互相吸引。 磁针静止时沿南北方向取向说明地球是一个大磁体,它的N 极位于地理南极附近,S 极位于地理北极附近。

1820年,丹麦科学家奥斯特发现了电流的磁效应。 第一个揭示了磁与电存在着联系。 长直通电导线能给磁针作用;通电长直螺线管与条形磁铁作用时就如同条形磁铁一般;两根平行通电直导线之间的相互作用……,所有这些都启发我们一个问题:磁铁和电流是否在本源上一致? 1822年,法国科学家安培提出了组成磁铁的最小单元就是环形电流,这些分子环流定向排列,在宏观上就会显示出N 、S 极的分子环流假说。近代物理指出,正是电子的围绕原子核运动以及它本身的自旋运动形成了“分子电流”,这就是物质磁性的基本来源。

一切磁现象的根源是电流,以下我们只研究电流的磁现象。

§3。2 磁感应强度

3.2.1、磁感应强度、毕奥?萨伐尔定律

将一个长L ,I 的电流元放在磁场中某一点,电流元受到的作用力为F 。 当电流元在某一方位时,这个力最大,这个最大的力m F 和IL 的比值,叫做该点的磁感应强度。 将一个能自由转动的小磁针放在该点,小磁针静止时N 极所指的方向,被规定为该点磁感应强度的方向。

真空中,当产生磁场的载流回路确定后,那

空间的磁场就确定了,空间各点的B

也就确定

了。 根据载流回路而求出空间各点的B

要运用

l I ?

//B

一个称为毕奥—萨伐尔定律的实验定律。毕—萨定律告诉我们:一个电流元I ?L(如图3-2-1)在相对电流元的位置矢

量为r

的P 点所产生的磁场的磁感强度B ?大小为

2sin r L I K θ

?=

,θ为顺着电流I ?L 的方向与r

方向的夹角,B

?的方向可用右手螺旋法则确定,即伸出右手,先把四指放在I ?L 的方向上,顺着小于π的角转向r

方向时大拇指方向即为B

?的方向。式中K 为一常数,K=7

10-韦伯/安培?米。载流回路是由许多个I ?L 组成的,求出每个I ?L 在P 点

的B ?后矢量求和,就得到了整个载流回路在P 点的B 。

如果令

πμ=

40

K ,7

0104-?π=μ特斯拉?米?安1-,那么B ?又可写为

20sin 4r L I B θ?πμ=

?

0μ称为真空的磁导率。

下面我们运用毕——萨定律,来求一个半径为R ,载电流为I 的圆电流轴线上,距圆心O 为χ的一点的磁感应强度

在圆环上选一I l ?,它在P 点产生的磁感应强度

2020490sin 4r l

I r l I B ?πμ=?πμ=? ,其方向垂直于I l ?和r 所确定的平面,将B

分解到沿OP 方向//B ?和垂直于OP 方向⊥?B ,环上

所有电流元在P 点产生的⊥?B 的和为零,

r R

r l I B B ??=

?=?2

0//4sin ,πμα

B=

∑∑

π?πμ=?πμ=?R r RI

l r RI B 2443030//(∑

=?R l π2线性一元叠加) 2/32220)(2R I

R +χμ=

在圆心处,0=χ,

R I B 20μ=

3.2.2、 由毕——萨定律可以求出的几个载流回路产生的磁场的磁感应强度B

(1)无限长载流直导线

为了形象直观地描述磁场,引进了与电感线相似的磁感线。

长直通电导线周围的磁感线如图3-2-3所示。如果导线中通过的电流强度为I ,在理论上和实验中都可证明,在真空中离导线距离为r 处的磁感强度

r I B πμ=20 或

r I K

B = 式中0μ称为真空中的磁导率,大小为m T /1047

-?π。

1

7102--??=m T K

(2)无限长圆柱体

无限长载流直导线

r I

B πμ20

=

r 为所求点到直导

线的垂直距离。半径为R ,均匀载有电流,其电流密度为j 的无限长圆柱体

当r <R ,即圆柱体内

2

22

R rI r j

B πμμ=

=

当r >R ,即圆柱体外

r I r j R B πμ=

ππμ=22020 (3)长直通电螺线管内磁场

长直导电螺线管内磁场如图图3-2-4所示可认为是匀强磁场,场强大小可近似用无限长螺线管内B 的大小表示

nI B 0μ=内

n 为螺线管单位长度的匝数

(4)螺绕环的磁场与长直通电螺线管内磁场的磁场相同。 3.2.3、磁感应线和磁通量

为了形象地描绘磁场的分布,在磁场中引入磁感应线,亦即磁力线。磁力线应满足以下

图3-2-3

两点:

第一,磁感应线上任一点的切线方向为该点磁感应强度

B 的方向;第二,通过垂直于B

的单位面积上的磁感应线的

条数应等于该处磁感应强度B

的大小。

图3-2-5的(a)和(b)分别给出了无限长载流导线和圆电流的磁场的磁力线。从图中可看到:磁力线是无头无尾的闭合线,与闭合电路互相套合。磁感线是一簇闭合曲线,而静电场的电感线是一簇不闭合的曲线(或者是从正电荷到负电荷,

或者是从正电荷到无穷远处,从无穷远处到负电荷)。这是一个十分重要的区别,凡是感线为闭合曲线的场都不可能是保守场。

磁感强度是一个矢量,如果两个电流都对某处的磁场有贡献,就要用矢量合成的方法。如果有a 、b 两根长直通电导线垂直于纸面相距r 放置,电流的大小I I a =,I I b 2=(图3-2-6)那么哪些位置的磁感强度为零呢?在a 、b 连线以外的位置上,两根导线上电流所产生的磁感强度a B 和b B 的方向都不在一直线 上,不可能互相抵消;在a 、b 连线上,a 左边或b 右边的位置上,a B 和b B 的方向是相同的,也不可能互相抵消;因此只有在a 、b 中间的连线上,a B 和b B 才有可能互相抵消,设离a 距离为χ的P 处合磁感应强度为零(图3-2-6)

B A B B B ∑+=(矢量式)=0

2=χ-'-χ'r I

k I k

χ-'=χ'

r I k I k 2,3r =χ

通过一给定曲面的总磁力线数称为通过该曲面的磁通量,磁通量的单位是韦伯,1韦伯=1特斯拉?1米2

。图3-2-7(a)中,通过匀磁场中与磁力线垂直的平面0S 的磁通量为0BS =Φ;而通过与磁力线斜交的S 面的磁通量为:

θcos BS =Φ

(b)

3-2-5

(a ) (b )

图2-3-7

(θ角即是两个平面S 和S 0的夹角,也是S 面的法线与B

的夹角)。

而在(b)中,磁场和曲面都是任意的,要求出通过S 面的磁通量应把通过S 面上每一小面元i S ?的磁通量求出后求和,即:

∑?=Φi i i S B θcos

3.2.4、磁场中的高斯定理

考虑到磁力线是无头无尾的封闭曲线,对磁场中任一封闭曲面来说,有多少根磁力线穿入,必有多少根穿出,即通过磁场中任一封闭曲面的磁通量为零。这就是磁场的高斯定理,它表明了磁场一个重要性质,即磁场是无源场,自然界中没有单独的N 极或S 极存在。

3.2.5、典型例题

例1:图3-2-8所示,两互相靠近且垂直的长直导线,分别通有电流强度1I 和2I 的电流,试确定磁场为零的区域。

分析:建立图示直角坐标系,用安培定则判断出两电流形成的磁场方向后,可以看出在Ⅰ、Ⅲ两象限内,两磁场方向相反,因此合磁场为零区域只能出现在这两个象限内。

解:设P(x 、y)点合磁感强度为零,即有

21=-y I

k x I k 得

x I I y 12= 这就是过原点的直线方程,其斜率为I 2/I 1。

例2:如图3-2-9所示,将均匀细导线做成的圆环上任意两点A 和B 与固定电源连接起来,计算由环上电流引起的环中心的磁感强度。

分析:磁感强度B 可以看成圆环上各部分(将圆环视为多个很小长度部分的累加)的贡献之和,因为对称性,圆环上各部分电流在圆心处磁场是相同或相反,可简化为代数加减。

解:设A 、B 两点之间电压为U ,导线单位长度电阻ρ,如图3-2-10所示,则二段圆环电流

x

y

Ⅱ Ⅲ

3-2-8

图3-2-9

ραR U I =

1ραπ?-=R U

I )2(2

磁感强度B 可以是圆环每小段l ?部分磁场B ?的叠加,在圆

心处,B ?可表达为

R l

I k

B ??=?,所以:

α

α11111kI R R I

k R l I k B =?== )2()2(22222απαπ-=?-?==kI R R l

k R l I k

B

因 ραπραR I R I )2(21-=故21B B =,即两部分在圆心处产生磁场的磁感强度大小相等,但磁场的方向正好相反,因此环心处的磁感强度等于零。

§3。3 磁场对载流导体的作用

3.3.1、安培力

一段通电直导线置于匀磁场中,通电导线长

L ,电流强度为I ,磁场的磁感应强度为B ,

电流I 和磁感强度B 间的夹角为θ,θsin ?=

BIL F 电流方向与磁场方向平行时, 0=θ,或

180

=θ,F=0,电流方向与磁场方向垂直时,

90=θ,安培力最大,F=BIL 。

安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。

当一段导电导线是任意弯曲的曲线时,如图3-3-1所

示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为

θsin BIL F =

3.3.2、安培的定义

如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。

图3-2-10

B ?

B

载流导线1在导线2处所产生的磁感应强度为 a I B πμ21

021=

方向如图示。

导线2上长为

2L ?的线段所受的安培力为:

2sin

21222π

B L I F ?=?

=

2

2

1021222L a I I B L I ?=

?πμ

其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力

a I I L F πμ22

1022=??

同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22

101

1=

??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。

国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27

10-?牛顿时,各导线上的电流的电流强度为1安培。

3.3.3、安培力矩

如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1

和L 2

,电流强度为I ,线框平面的法线n 与B

之间的

夹角为θ,则各边受力情况如下:

2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者

图3-3-3

图3-3-2

θθπ

cos )2

sin(11BIL BIL f bc =-= 方向向下

θ

θπ

cos )2

sin(

11BIL BIL f da =+= 方向向上

bc f 和da f 大小相等,方向相反且在一条直线上,互

相抵消。

ab f 和cd f 大小相等,指向相反,但力作用线不在同

一直线上,形成一力偶,力臂从图3-3-3中可看出为

θ

θπ

sin )2

cos(

11L L =-

故作用在线圈上的力矩为:

θθsin sin 121L BIL L f M ab == 而21L L 为线圈面积S ,故 θ=sin BIS M

我们称面积很小的载流线圈为磁偶极子,用磁偶极矩m P 来描绘它。其磁偶极矩的大小为平面线圈的面积与所载电流的电流强度之乘积,即IS P m =,其方向满足右手螺旋法则,即伸

出右手,四指绕电流流动方向旋转,大拇指所指方向即为磁偶极矩的方向,如图3-3-4中n 的

方向,则θ角即为磁偶极矩m P 与磁感应强度B 的正方向的夹角。这样,线圈所受力矩可表为

θ=sin B P M m

我们从矩形线圈推出的公式对置于均匀磁场中的任意形状的平面线圈都适合。 典型例题

例1. 距地面h 高处1水平放置距离为L 的两条光滑金属导轨,跟导轨正交的水平方向的线路上依次有电动势为ε的电池,电容为C 的电容器及质量为m 的金属杆,如图3-3-5,单刀双掷开关S 先接触头1,再扳过接触头2,由于空间有竖直向下的强度为B 的匀强磁场,使得金属杆水平向右飞出做平抛运动。测得其水平射程为s ,问电容器最终的带电量是多少?

分析:开关S 接1,电源向电容器充电,电量ε=C Q 0。S 扳向2,电容器通过金属杆放

电,电流通过金属杆,金属杆受磁场力向右,金属杆右边的导轨极短,通电时间极短,电流

ab

图3-3-4

并非恒定,力也就不是恒力。因此不可能精确计算每个时刻力产生的效果,只能关心和计算该段短时间变力冲量的效果,令金属杆离开导轨瞬间具有了水平向右的动量。根据冲量公式q BL t BLi t F ?=?=?,跟安培力的冲量相联系的是t ?时间内流经导体的电量。由平抛的高度与射程可依据动量定理求出q ?,电容器最终带电量可求。

解:先由电池向电容器充电,充得电量εC Q =0。之后

电容器通过金属杆放电,放电电流是变化电流,安培力BLi F =也是变力。根据动量定理:

mv q BL t BLi t F =?=?=?

其中 v =s/t ,h=21

gt 2

综合得

h g s

v 2=

h g BL ms BL mv q 2=

=?

电容器最终带电量

h g

BL ms C q Q Q 20-

ε=?-=

点评:根据动量定理来研究磁场力冲量产生的效果,实际上就是电量和导体动量变化的关系,这是磁场中一种重要的问题类型。

例2 图3-3-6中,无限长竖直向上的导线中通有恒定电流0I ,已知由0I 产生磁场的公式是

r I k

B 0

=,k 为恒量,r 是场点到0I 导线的

距离。边长为2L 的正方形线圈轴线O O '与0I 导线平行。某时刻线圈的ab 边与0I 导线相距2L 。已知线圈中通有电流I 。求此时刻线圈所受的磁场力矩。

分析:画俯视图如图3-3-7所示,先根据右手螺旋法则确定1B 和2B

的方向,再根据左手

图3-3-5

2L

图3-3-6

图3-3-7

2L F 1

定则判断ab 边受力1F 和cd 边受力2F 的方向,然后求力矩。

解:根据右手螺旋法则和左手定则确定1B 和2B 、1F 和2F 的方向,如图3-3-7所示。

L I k

B 20

1=

L I K

B 2202= I kI LI B F 0112==,

I kI LI B F 022222=

=

1F 对O O '轴产生的力矩 IL kI L F M 011==

2F 对O O '轴产生的力矩

IL kI L F M 02

221

22== 两个力矩俯视都是逆时针同方向的,所以磁场对线圈产

生的力矩

IL kI M M M 02123

=

+=

点评:安培力最重要的应用就是磁场力矩。这是电动机的原理,也是磁电式电流表的构造原理。一方面要强调三维模型简化为二维平面模型,另一方面则要强调受力边的受力方向的正确判断,力臂的确定,力矩的计算。本题综合运用多个知识点解决问题的能力层次是较高的,我们应努力摸索和积累这方面的经验。

§3。4 磁场对运动电荷的作用

3.4.1、洛伦兹力

载流导线所受的安培力,我们可看为是磁场作用给运动电荷即自由电子的力,经自由电子与导体晶格的碰撞而传递给导线的。

根据安培定律θsin L IB F ?=,而电流强度与运动电荷有关系

qnvs I =,θ角既是电流元L I ?与B 的夹角,也可视为带电粒子的速度v 与B

之间的夹角,

L ?长导线中有粒子数LS n N ?=,则每个电子受到的力即洛伦兹力为

θ=?θ?==

sin sin qvB LS n L qnvSB N F f

洛伦兹力总是与粒子速度垂直,因此洛伦兹力不作功,不能改变运动电荷速度的大小,只能改变速度的方向,使路径发生弯曲。

洛伦兹力的方向从图3-4-1可以看出,它一定与磁场(B)的方向垂直,也与粒子运动(v )方向垂直,即与v 、B 所在的平面垂直,具体方向可用左手定则判定。但应注意,这里所说的粒子运动方向是指正电荷运动的方向,它恰与负电荷沿相反方向运动等效。

3.4.2、带电粒子在匀强磁场中的运动规律

带电粒子在匀强磁场中的运动规律与粒子的初始状态有关具体如下:

如果带电粒子原来静止,它即使在磁场中也不会受洛伦磁力的作用,因而保持静止。 如果带电粒子运动的方向恰与磁场方向在一条直线上,该粒子仍不受洛伦磁力的作用,粒子就以这个速度在磁场中做匀速直线运动。

带电粒子速度方向与磁场方向垂直,带电粒子在垂直于磁场方向的平面内以入射速度v 作匀速圆周运动。带电粒子在匀强磁场中作匀速圆周运动的四个基本公式。

(1)向心力公式:

R v m

qvB 2

= (2)轨道半径公式:

Bq m v R =

(3)周期、频率和角频率公式,即:

Bq m v R T π=π=22,m Bq T f π==21,m Bq f T =π=π=ω22 (4) 动能公式:

m BqR m p mv E k 2)(2212

22=

== 如图3-4-2所示,在洛伦兹力作用下,一个作匀速圆周运动的粒子,不论沿顺时针方向运动还是沿逆时针方向运动,从A 点到B 点,均具有下述特点:

(1)轨道圆心(O)总是位于A 、B 两点洛伦兹力(f)的交点上或AB 弦的中垂线O O '与任一个f 的交点上。

(2)粒子的速度偏向角?等于回旋角a ,并等于AB 弦与切线的夹角(弦切角θ)的两倍,即t a ω=θ==?2。

磁场中带电粒子运动的方向一般是任意的,但任何一个带电粒子运动的速度(v )都可以在垂直于磁场方向和平行于磁场方向进行分解,得到⊥v 和//v 两个分速度。根据运动的独立性可知,这样的带电粒子一方面以//v 在磁场方向上作匀速运动,一方面又在垂直于磁场的方向上作速率为⊥v 的匀速圆周运

动。实际上粒子作螺旋线运动(如图3-4-3),这种螺旋线运动的周期和螺距大小读者自己分析并不难解决。其螺旋运动的周期qB m T /2π=,其运动规律:

螺旋运动回旋半径:

qB m v r θ=

sin

螺旋运动螺距:qB mv T v h /cos 2//θπ=?= 3.4.3、霍尔效应

将一载流导体放在磁场中,由于洛伦兹力的作用,会使带电粒子(或别的载流子)发生横向偏转,在磁场和电流二者垂直的方向上出现横向电势差,这一现象称为霍尔效应。

如图3-4-4所示,电流I 在导体中流动,设导体横截面高h 、宽为d 匀强磁场方向垂直与导线前、后两表面向外,磁感强度为B ,导体内自由电子密度为n ,定向移动速度v

d nevh I ?=

由于洛伦兹力作用,自由电子向上表面聚集,下表

面留下正离子,结果上下表面间形成电场,存在电势差U ,这个电场对电子的作用力方向向下,大小为

图3-4-3

h U e eE F ?

==

当F 与洛伦磁力f 相平衡时,上、下表面电荷达到稳定,则有

evB h U

e

=

ned IB U =

如果导电的载流子是正电荷,则上表面聚集正电荷,下表面为负电势,电势差正、负也正好相反。

下面来分析霍尔电势差,求出霍尔系数。

在图3-4-5中,设大块导体的长和宽分别为L 和d ,单位体积自由电荷密度为n ,电荷定向移动速率为v ,则电流

nqLdv I =。

假定形成电流的电荷是正电荷,其定向移动方向就是电流方向。根据左手定则,正电荷向上积聚,下表面附近缺少正电荷则呈现负电荷积聚,上正下负电压为a Ua ',正电荷受到跟

磁场力反向的电场力

L a Ua q

qE F '

==的作用。

电场对正电荷向上的偏移积聚起阻碍作用,当最后达到平衡时qBv L a Ua q

='

,可得

nq d BI nqLd I BL

BLv a Ua 1

?

==='。可见,理论推导的结果跟实验结果完全一致,系数

nq k 1

=

既然k 跟n 有关,n 表征电荷浓度,那么通过实验测定k 值可以确定导体或半导体的电荷浓度n ,半导体的n 值比金属导体小得多,所以k 值也大得多。此外根据左手定则还可知,即使电流I 就是图3-4-6中的流向,如果参与流动的是正电荷,那么电压就是上正下负;如果参与定向移动的是自由电子,那么电压就是上负下正了。霍尔电势的高低跟半导体是p 型的还是n 型的有如此的关系:上正下负的是p 型半导体,定向载流子是带正电的空穴:上负下正的是n 型半导体,如果k 值小得多就是金属导体,定向载流子是自由电子。

图3-4-5

3.4.4、磁聚焦

运动电荷在磁场中的螺旋运动被应用于“磁聚焦技术”。

如图3-4-7,电子束经过a 、b 板上恒定电场加速后,进入c 、d 极板之间电场,c 、d 板上加交变电压,所以飞出c 、d 板后粒子速度v 方向不同,从A 孔穿入螺线管磁场中,由于v 大小差不多,且v 与B 夹角θ很小,则

v v v ≈θ=cos //

θ≈θ=⊥v v v sin

由于速度分量⊥v 不同,在磁场中它们将沿不同半径的螺旋线运动。但由于它们速度//v 分量近似相等,经过

qB mv

qB mv h π≈π=

22//后又相聚于A '点,这与光束经

透镜后聚焦的现象有些类似,所以叫做磁聚焦现象。磁聚焦原理被广泛地应用于电真空器件如电子显微镜。

3.4.5、复合场中离子的运动 1.电场和磁场区域独立

磁场与电场不同,磁场中,洛伦磁力对运动电荷不做功,只改变带电粒子速度方向,所以在匀强磁场中带电粒子的运动主要表现为:匀速圆周运动、螺旋运动、匀速直线运动。而电场中,电荷受到电场力作

用,电场力可能对电荷做功,因而改变速度大小和方向,但电场是保守场,电场力做功与运动路径无关。处理独立的电场和磁场中运动电荷问题,是分开独立处理。

例:如图3-3-8所示,在xoy 平面内,y >O 区域有匀强电场,方向沿-y 方向,大小为E ,y <O 区域有匀强磁场,方向垂直纸面向里,大小为B ,一带电+q 、质量为m 的粒子从y 轴上一点P 由静止释放,要求粒子能经过x 轴上Q 点,Q 坐标为(L ,O),

试求粒子最初释放点

图3-4-7

B

E

图3-4-9

图3-4-8

P 的坐标。

分析:解决上述问题关键是明确带电粒子的受力和运动特点。从y 轴上释放后,只受电场力加速做直线运动,从O 点射入磁场,然后做匀速圆周运动,半圈后可能恰好击中Q 点,也可能返回电场中,再减速、加速做直线运动,然后又返回磁场中,再经半圆有可能击中Q 点,……。那么击中Q 点应满足L R n =?2的条件。

2.空间区域同时存在电场和磁场 (1) (1) 电场和磁场正交

如图3-4-9所示,空间存在着正交的电场和磁场区域,电场平行于纸面平面向下,大小为E ,磁场垂直于纸面向内,磁感强度为B ,一带电粒子以初速0v 进入磁场,E v ⊥0,B v ⊥0,设粒子电量+q ,则受力:f 洛=B qv 0方向向上,F 电=qE 方向向下。若满足:

B qv 0=qE 0v =E/B

则带电粒子将受平衡力作用做匀速直线运动,这是一个速度选择器模型。

若粒子进入正交电磁场速度0v v ≠,则可将v 分解为10v v v +=,粒子的运动可看成是0v 与1v 两个运动的合运动,因而粒子受到的洛伦兹力可看成是B qv 0与B qv 1的合力,而B qv 0与电场力qE 平衡,粒子在电场中所受合力为B qv 1,结果粒子的运动是以0v 的匀速直线运动和以速度1v 所做匀速圆周运动的合运动。

例:如图3-4-10正交电磁场中,质量m 、带电量+q 粒子由一点P 静止释放,分析它的运动。

分析:粒子初速为零释放,它的运动轨迹是如图3-4-10所示的周期性的曲线。初速为零,亦可看成是向右的0v 与向左-0v 两个运动的合运动,其中0v 大小为:0v =E/B

所以+q 粒子可看成是向右0v 匀速直线运动和逆时针的匀速圆周运动的合运动。电场方向上向下最大位移

R d m 2=

图3-4-10

20qB mE

qB mv R =

=

22qB mE d m =

一个周期向右移动距离L 即PP 1之距为

T v L ?=0

qB m T π2=

代入,得:

22qB m E L π=

最低点Q 点速度 02v v Q = (2) (2) 电场和磁场平行

如图3-4-11所示的空间区域有相互平行的电场和磁场E 、B 一带电+q 粒子以初速0v 射入场区E v ⊥0(或B)。则带电粒子在磁场力作用下将做圆周运动,电场力作用下向上做加速运动,由于向上运动速度分量1v 始终与B 平行,故粒子受洛伦磁力大小恒为B qv 0,结果粒子运动是垂直于E(或B)平面的半径R=m 0v /qB 的匀速圆周运动和沿E 方向匀加速直线运动的合运动,即一个螺距逐渐增大的螺旋运动。

(3) (3) 电场力、洛伦磁力都与0v 方向垂直,粒子做匀速圆周运动。

例如电子绕原子核做匀速圆周运动,电子质量m ,电量为e ,现在垂直轨道平面方向加一匀强磁场,磁感强度大小为B ,而电子轨道半径不变,已知电场力3倍与洛伦磁力,试确定电子的角速度。

在这里电子绕核旋转,电场力、洛伦磁力提供运动所需向心力,即

f 电+f 洛=r m v /2

而f 洛可能指向圆心,也可能沿半径向外的,因而可能是

r mv evB evB /32=+

B

υ

图3-4-11

r mv evB evB /32=-

m eB 21=

ω或m eB

42=ω

典型例题

例1.在如图3-4-12所示的直角坐标系中,坐标原点O 固定电量为Q 的正点电荷,另有指向y 轴正方向(竖直向上方向),磁感应强度大小为B 的匀强磁场,因而另一个质量为m 、电量力为q 的正点电荷微粒恰好能以y 轴上的O '点为圆心作匀速圆周运动,其轨道平面(水平面)与xoz 平面平行,角速度为ω,试求圆心O '的坐标值。

分析:带电微粒作匀速圆周运动,可以确定在只有洛伦磁力和库仑力的情况下除非O '与O 不重合,必须要考虑第三个力即重力。只有这样,才能使三者的合力保证它绕O '在水平面内作匀速圆周运动。

解:设带电微粒作匀速圆周运动半径为R ,圆心的O '纵坐标为y ,圆周上一点与坐标原

点的连线和y 轴夹角为θ,那么有

y R tg =

θ

带电粒子受力如图3-4-13所示,列出动力学方程为 mg=F 电cos θ

(1)

f 洛-F 电R m 2

sin ω=θ? (2)

f 洛=RB q ω (3) 将(2)式变换得

f 洛-=R m 2

ωF 电θsin (4)

将(3)代入(4),且(1)÷(4)得

R y

R m RB q mg =

-2ωω

图3-4-13

消去R 得

2ωωm B q mg

y -=

例2.如图3-4-14所示,被1000V 的电势差加速的电子从电子枪发射出来,沿直线a 方向运动,要求电子击中在a 方向、距离枪口5cm 的靶M ,对以下两种情形求出所用的均匀磁场的磁感应强度B .

(1)磁场垂直于由直线a 与点M 所确定的平面。 (2)磁场平行于TM 。

解: (1)从几何考虑得出电子的圆轨道的半径为(如图3-4-15)

a d r sin 2=

按能量守恒定律,电荷Q 通过电势差U 后的速度v 为

UQ mv =221

m UQ

v 2=

作用在电荷Q 上的洛伦磁力为 QBv F =

这个力等于向心力 QBv

r m v =2

故所需的磁感应强度为 rQ m v

B =

用上面的半径和速度值,得到

Q U d a B m

2sin 2=

由于kg m 311011.9-?=,C Q 19

106.1-?=,所以

B=0.0037T

(2)在磁场施加的力与速度垂直,所以均匀恒定磁场只改变电子速度的方向,不改变速度的大小。

图3-4-14

图3-4-15

图3-4-16

我们把电子枪发射的电子速度分解成两个直线分量:沿磁场B 方向的a v cos 和垂直磁场的a v sin ,因为a v cos 在磁场的方向上,磁场对它没有作用力(图3-4-16)。

电子经过d/a v cos 时间后到达目标M 。由于磁场B 和垂直的速度分量a v sin ,电子在圆轨道上运动,由

a BQv r a

mv sin sin 22=

得到圆半径为

QB a m v r sin =

电子在目标M 的方向上也具有速度a v cos ,结果是电子绕B 方向作螺旋线运动。电在在d/a v cos 时间内,在绕了k 圈后击中目标。K 是一个整数。圆的周长为

QB a mv r /sin 22ππ=

由于绕圆周运动的速度是a v sin ,故绕一周的时间是 QB m

a QBv a mv ππ2sin sin 2=

这个值乘上整数k ,应等于 d/a v cos k QB m

a v d ?=π2cos

因此,所需的磁感应强度为

Q U d a k v Qd a m k B m

2cos 2cos 2π=??

=

k=1时,电子转一圈后击中目标:k=2时,电子转两圈后击中目标,等等。只要角度a 相同,磁场方向相反与否,无关紧要。

用给出的数据代入,得 B=k ×0.0067T

例3.一根边长为a 、b 、c(a >>b >>c)的矩形截面长棒,如图3-4-17所示,由半导体锑化铟制成,棒中有平行于a 边的电流I 通过,该棒放在垂直于c 边向外的磁场B 中,电流I 所产生的磁场忽略不计。该电流的载流子为电子,在只有电场存在时,电子在半导体中的平均速度E v μ=,其中μ为迁移率。

(1) (1) 确定棒中所产生上述电流的总电场的大小和方向。

图3-4-17

(2) (2) 计算夹c 边的两表面上相对两点之间的电势差。

(3) (3) 如果电流和磁场都是交变的,且分别为t I I ωsin 0=,

?ω+=t B B sin(0),求(2)中电势差的直流分量的表达式。

已知数据:电子迁移率s V m ?=/8.72

μ,电子密度3

22/105.2m n ?=,I=1. 0A ,B=0.1T ,

b=1.0cm ,c=1.0mm ,e=1.6×10-19C

分析: 这是一个有关霍尔效应的问题,沿电流方向,导体内存在电场,又因为霍尔效应,使得电子偏转,在垂直电流方向产生电场,两侧面间有电势差的存在

解: (1)因为 c nevb I ?=

s m nebc v /251

==

所以电场沿a 方向分量

m V v E /2.3///==μ

沿c 方向的分量 ⊥=qE qvB m V vB E /5.2==⊥ 总电场大小:

m V E E E /06.422//=+=⊥

电场方向与a 边夹角a ,a = 38)2.35

.2()(

1//1==-⊥-tg E E tg

(2) 上、下两表面电势差

V c E U 3105.2-⊥⊥?=?=

(3)加上交变电流和交变磁场后,有前面讨论的上、下表面电势差表达式

nec IB

U =

,可得:

)sin(sin 0

0?+ω?ω==

⊥t t nec B I nec IB U

=???????+?+ωcos 21)2cos(2

100t nec B I y

x

z

O

E

B

图3-4-18

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

高三物理复习——电磁感应综合练习

高三物理复习——电磁感应综合练习 1.如图所示,在光滑水平面上有一个竖直向上的匀强磁场,分布在宽度为l 的区域内。现有一个边长为a 的正方形闭合导线框(a < l ),以初速度v 0垂直于磁场边界沿水平面向右滑过该磁场区域,滑出时的速度为v 。下列说法中正确的是 A.导线框完全进入磁场中时,速度大于(v 0+ v )/2 B.导线框完全进入磁场中时,速度等于(v 0+ v )/2 C.导线框完全进入磁场中时,速度小于(v 0+ v )/2 D.以上三种都有可能 2.如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直。现用一平行于导轨的恒力F 拉ab ,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率 A.等于F 的功率 B.等于安培力的功率的绝对值 C.等于F 与安培力合力的功率 D.小于iE 3.两根相距为L 的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R 0。整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下以速度v 1沿导轨匀速运动时,cd 杆也正好以速度v 2向下匀速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为R v L B mg 2122-μ B.cd 杆所受摩擦力为零 C.回路中的电流强度为()R v v BL 221+ D.μ与v 1大小的关系为1 222v L B Rmg =μ 4.均匀导线制成的单匝正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m 。将其置于磁感应强度为B 的水平匀强磁场上方h 处,如图所示。线框由静止自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界面平行。当cd 边刚进入磁场时,⑴求线框中产生的感应电动势大小;⑵求cd 两点间电势差大小;⑶若此时线框加速度恰好为零,求线框下落的高 度h 所应满足的条件。 B

高三物理电磁感应1

电磁感应 一. 典例精析 题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L ,在磁场区域的左侧相距为L 处,有一边长为L 的形导体线框,总电阻为R ,且线框平面与磁场方向垂直. 现使线框以速度v 匀速穿过磁场区域. 以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B 垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的是 ( ) 解析:在第一段时间,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。 在第二段时间,BLvt BS ==Φ,BLv E =,R BLv R E I = =,R BLv P 2)(=。 在第三段时间, BLvt BS 2==Φ,BLv E 2=,R BLv R E I 2==,R BLv P 2)2(= 在第四段时间, BLvt BS ==Φ,BLv E =,R E I =,R BLv P 2)(=。此题选B 。 规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:

⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。 ⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状。 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。 题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t =0时刻,磁感应强度为B 0,adeb 恰好构成一个边长为L 的形.⑴若从t =0时刻起,磁感应强度均匀增加,增加率为k (T/s),用一个水平拉力让金属棒保持静止.在t =t 1时刻,所施加的对金属棒的水平拉力大小是多大?⑵若从t =0时刻起,磁感应强度逐渐减小,当金属棒以速度v 向右匀速运 动时,可以使金属棒中恰好不产生感应电流则磁感应强度B 应怎样随时间t 变化?写出B 与t 间的函数关系式. 解析: 规律总结: 题型3.(电磁感应中的能量问题)如图甲所示,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在以OO ′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计. 在距边界OO ′也为L 处垂直导轨放置一质量为m 、电阻r 的金属杆ab . B d c a b e f

高二物理电磁感应测试题及答案

高二物理同步测试(5)—电磁感应 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试用时60分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的,全部选对得4分,对而不全得2分。) 1.在电磁感应现象中,下列说法正确的是 () A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动,一定产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 2. 为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势来测量 海水的流速.假设海洋某处的地磁场竖直分量为B=×10-4T,水流是南北流向,如图将两个电极竖直插入此处海水中,且保持两电极的连线垂直水流方向.若 两极相距L=10m,与两电极相连的灵敏电压表的读数为U=2mV,则海水 的流速大小为() A.40 m/s B.4 m/s C. m/s D.4×10-3m/s 3.日光灯电路主要由镇流器、起动器和灯管组成,在日光灯正常工作的情况下,下列说法正确的是() A.灯管点燃后,起动器中两个触片是分离的 B.灯管点燃后,镇流器起降压和限流作用 C.镇流器在日光灯开始点燃时,为灯管提供瞬间高压 D.镇流器的作用是将交变电流变成直流电使用 4.如图所示,磁带录音机既可用作录音,也可用作放音,其主要部件为

可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象,下面对于它们在录音、放音过程中主要工作原理的说法,正确的是 ( ) A .放音的主要原理是电磁感应,录音的主要原理是电流的磁效应 B .录音的主要原理是电磁感应,放音的主要原理是电流的磁效应 C .放音和录音的主要原理都是磁场对电流的作用 D .放音和录音的主要原理都是电磁感应 5.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导 体环,当A 以如图所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流。则( ) A .A 可能带正电且转速减小 B .A 可能带正电且转速增大 C .A 可能带负电且转速减小 D .A 可能带负电且转速增大 6.为了测出自感线圈的直流电阻,可采用如图所示的电路。在测量完毕后将电路解体时应该( ) A .首先断开开关S 1 B .首先断开开关S 2 C .首先拆除电源 D .首先拆除安培表 7.如图所示,圆形线圈垂直放在匀强磁场里,第1秒内磁场方向指向纸里,如图(b ).若磁感应强度大小随时间变化的关系如图(a ),那么,下面关于线圈中感应电流的说法正确的是 ( ) A .在第1秒内感应电流增大,电流方向为逆时针 B .在第2秒内感应电流大小不变,电流方向为顺时针 C .在第3秒内感应电流减小,电流方向为顺时针 D .在第4秒内感应电流大小不变,电流方向为顺时针 8.如图所示,xoy 坐标系第一象限有垂直纸面向外的匀强磁 场,第 x y o a b

高中物理电磁感应专题复习

电磁感应·专题复习 一. 知识框架: 二. 知识点考试要求: 知识点 要求 1. 右手定则 B 2. 楞次定律 B 3. 法拉第电磁感应定律 B 4. 导体切割磁感线时的感应电动势 B 5. 自感现象 A 6. 自感系数 A 7. 自感现象的应用 A 三. 重点知识复习: 1. 产生感应电流的条件 (1)电路为闭合回路 (2)回路中磁通量发生变化?φ≠0 2. 自感电动势 (1)E L I t 自=? ?? (2)L —自感系数,由线圈本身物理条件(线圈的形状、长短、匝数,有无铁芯等)决定。 (2)自感电动势的作用:阻碍自感线圈所在电路中的电流变化。 (4)应用:<1>日光灯的启动是应用E 自 产生瞬时高压 <2>双线并绕制成定值电阻器,排除E 自 影响。 3. 法拉第电磁感应定律 (1)表达式:E N t =??φ N —线圈匝数;?φ—线圈磁通量的变化量,?t —磁通量变化时间。

(2)法拉第电磁感应定律的几个特殊情况: i )回路的一部分导体在磁场中运动,其运动方向与导体垂直,又跟磁感线方向垂直时,导体中的感应电动势为E B l v = 若运动方向与导体垂直,又与磁感线有一个夹角α时,导体中的感应电动势为:E B l v =s i n α ii )当线圈垂直磁场方向放置,线圈的面积S 保持不变,只是磁场的磁感强度均匀变化时线圈中的感应电动势为E B t S = ?? iii )若磁感应强度不变,而线圈的面积均匀变化时,线圈中的感应电动势为:E B S t =?? iv )当直导线在垂直匀强磁场的平面,绕其一端作匀速圆周运动时,导体中的感应电动势为:E Bl =12 2ω 注意: (1)E B l v =s i n α用于导线在磁场中切割磁感线情况下,感应电动势的计算,计算的是切割磁感线的导体上产生的感应电动势的瞬时值。 (2)E N t =??φ ,用于回路磁通量发生变化时,在回路中产生的感应电动势的平均值。 (3)若导体切割磁感线时产生的感应电动势不随时间变化时,也可应用E N t =??φ ,计算E 的瞬时值。 4. 引起回路磁通量变化的两种情况: (1)磁场的空间分布不变,而闭合回路的面积发生变化或导线在磁场中转动,改变了垂直磁场方向投影面积,引起闭合回路中磁通量的变化。 (2)闭合回路所围的面积不变,而空间分布的磁场发生变化,引起闭合回路中磁通量的变化。 5. 楞次定律的实质:能量的转化和守恒。 楞次定律也可理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因。 (1)阻碍原磁通量的变化或原磁场的变化 (2)阻碍相对运动,可理解为“来拒去留”。 (3)使线圈面积有扩大或缩小的趋势。 (4)阻碍原电流的变化(自感现象)。 6. 综合题型归纳 (1)右手定则和左手定则的综合问题 (2)应用楞次定律的综合问题 (3)回路的一部分导体作切割磁感线运动 (4)应用动能定理的电磁感应问题 (5)磁场均匀变化的电磁感应问题 (6)导体在磁场中绕某点转动 (7)线圈在磁场中转动的综合问题 (8)涉及以上题型的综合题 【典型例题】 例1. 如图12-9所示,平行导轨倾斜放置,倾角为θ=?37,匀强磁场的方向垂直于导轨平面,磁感强度B T =4,质量为m k g =10.的金属棒ab 直跨接在导轨上,ab 与导轨间的动摩擦因数μ=025.。ab 的电阻r =1Ω,平行导轨间的距离L m =05.,R R 1218== Ω,导轨电阻不计,求ab 在导轨上匀速下滑的速度多大?此时ab 所受

最新初中物理电磁感应发电机知识点与习题(含答案)好

电磁 安培定律 法拉第电磁感应定律 电流的磁效应 电磁感应 右手螺旋定则右手定则 安培力 左手定则1.安培定律:表示电流和电流激发磁场的 磁感线方向间关系的定则,也叫 右手螺旋定则。(1)通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (2)通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致 ,那么大拇指所指的那一端是通电螺线管的N 极。 左手反之。

应用:电能转化为磁,可以用于人造磁铁等。 2. 法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁 通变化率成正比。 右手定则:使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把 右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向产生的感应电流的方向。 应用:将动能转化为电能,发电机。 3.安培力:电流导体在磁场中运动时受力。 左手定则:左手平展,使大拇指与其余四指垂直,并且都跟手掌在一个 平面内。把左手放入磁场中,让磁感线垂直穿入手心(手心对准N极,手背对准S极),四指指向电流方向(既正电荷运动的方向)则大拇指的方向 就是导体受力方向。 应用:通过磁场对电流的作用,将电磁能转化为机械能:电动机。 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时, 导体中就会产生电流,这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线

运动的方向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。

高三物理电磁感应

高三物理电磁感应 (时间:60分钟总分:100分) 一、选择题(每小题5分,共35分) 1.要使b线圈中产生图示I方向的电流,可采用的办法有 [ ] A.闭合K瞬间 B.K闭合后把R的滑动片向右移 C.闭合K后把b向a靠近 D.闭合K后把a中铁芯从左边抽出 2.如图所示,一个闭合线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度B,随时间均匀变化,线圈导线电阻率不变,用下述哪个方法可使线圈上感应电流增加一倍[ ] A.把线圈匝数增加一倍 B.把线圈面积增加一倍 C.把线圈的半径增加一倍 D.改变线圈轴线对于磁场的方向 3.如图,与直导线AB共面的轻质闭合金属圆环竖直放置,两者彼此绝缘,环心位于AB的上方.当AB中通有由A至B的电流且强度不断增大的过程中,关于圆环运动情况以下叙述正确的是[ ]

A.向下平动 B.向上平动 C.转动:上半部向纸内,下半部向纸外 D.转动:下半部向纸内,上半部向纸外 4.如图所示,两个相互连接的金属环,已知大环电阻是小环电阻的1/4;当通过大环的磁通量变化率为△φ/△t时,大环的路端电压为U.,当通过小环的磁通量的变化率为△φ/△t时,小环的路端电压为(两环磁通的变化不同时发生)[ ] 5 如图所示,把线圈从匀强磁场中匀速拉出来,第一次以速率v拉出,第二 次以2v的速率拉出.如果其它条件都相同.设前后两次外力大小之比F1:F2=K;产生的热量之比Q1:Q2=M;通过线框导线截面的电量之比q1:q2=N.则 [ ] A. K=2:1,M=2:1,N=1:1 B. K=1:2,M=1:2,N=1:2 C. K=1:1,M=1:2,N=1:1 D. 以上结论都不正确 6 如图所示,要使金属环C向线圈A运动,导线AB在金属导轨上应 [ ]

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 B.通过导线某一横截面的电荷量之比是1:1 C.拉力做功之比是1:4 D.线框中产生的电热之比为1:2 4.图12-5,条形磁铁用细线悬挂在O点。O点正下方固定一 个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的 是() R v a b θ d 图12-1 M N v B 图12-3

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

初中物理 电磁感应讲解学习

初中物理电磁感 应

一、【教学过程】 (一)复习引入 1. 师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢? 生答:导线中电流的方向、磁感线的方向有关。 2. 师问:通过上节的学习,我们得到了电动机的工作原理是什么呢? 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中是否能够产生电呢?本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,

这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线运动的方 向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。 3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。 磁铁(定子) 线圈(转子) 滑环 电刷 4. 直流电与交流电: (1)方向不变的电流叫做直流电大小和方向作周期性改变的电流叫做交流电。(2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就是时间的单位秒(s)。 (3)交流电的频率:电流每秒发生周期性变化的次数。其单位是赫兹,符号是Hz。频率和周期的数值互为倒数。 5.电动机与发电机的比较:

(完整版)高二物理电磁感应知识点

一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量Φ=B?S?sinα(α是B与S的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB S sinα ②B、α不变,S改变,这时ΔΦ=ΔS B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 C、从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒. 3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。 用以判断感应电流的方向,其步骤如下: 1)确定穿过闭合电路的原磁场方向; 2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小); 3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向. 三、法拉第电磁感应定律 1、定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路

初中物理 电磁感应

初中物理电磁感应 适用学科物理适用年级初中三年级 适用区域人教版课时时长(分钟) 60分钟 知识点 1.电磁感应现象; 2.交流发电机的工作原理与能量转化; 教学目标 1.记忆并理解电磁感应现象; 2.知道交流发电机的工作原理及其能量的转化; 教学重点 1.电磁感应现象的理解与运用; 2、交流发电机的工作原理以及能量的转化。 教学难点运用电磁感应现象解决实际问题。 一、【教学过程】 (一)复习引入 1、师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢? 生答:导线中电流的方向、磁感线的方向有关。 2、师问:通过上节的学习,我们得到了电动机的工作原理就是什么呢? 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中就是否能够产生电呢?本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向与导体切割磁感线运动的方向有关。

(2)感应电流的产生条件: a 、电路必须就是闭合电路; b 、只就是电路的一部分导体在磁场中; c 、这部分导体做切割磁感线运动(包括正切、斜切两种情况)。 3.交流发电机 (1)原理:发电机就是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环与电刷。 4、 直流电与交流电: (1)方向不变的电流叫做直流电大小与方向作周期性改变的电流叫做交流电。 (2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就就是时间的单位秒(s)。 (3)交流电的频率:电流每秒发生周期性变化的次数。其单位就是赫兹,符号就是Hz 。频率与周期的数值互为倒数。 5、电动机与发电机的比较: 原理 通电导体在磁场中受力转动 电磁感应现象 结构 转子:线圈与换向器 定子:磁体与电刷 转子:线圈与铜环 定子:磁体与电刷 (实际生产中常采用线圈不动、磁极旋转) 能量 把电能转化为机械能 把机械能转化为电能 其她 换向器的作用:改变线圈中电流的方向 线圈在磁场中转动一转,感应电流的方向改变 磁铁(定子) 线圈(转子) 滑环 电刷

高二物理电磁感应教案

高二物理电磁感应教案 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉

提问:根据实验目的,本实验应选择哪些实验器材?为什么? 师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书:

北京市高三物理二轮复习 电磁感应专题教学案

高考综合复习电磁感应专题(二) 一、电磁感应现象:一切电磁感应现象都可以归结为磁通量的变化引起的: 如: 二、感应电流的方向判断: 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 对于导体切割磁感线时的感应电动势方向的判断,也可以利用右手定则:伸开右手,让磁场穿过掌心,大拇指指向运动方向,四指指向导体内感应电流方向或导体内感应电动势的正极。 三、法拉第电磁感应定律: (1)在电磁感应现象中产生的感应电动势大小,跟穿过这一回路的磁通变化率成正比。 表达式:——平均值

(2)导体在磁场中切割磁感线产生电动势。 表达式:ε=BLv(垂直切割)——瞬时值 若v不与B垂直,则可以将v分解为垂直于B和平行于B,其中垂直分量产生感应电动势。 (3)自感现象:由于通过导体本身电流发生变化而引起的电磁感应现象。 自感电动势,即与电流的变化率成正比,式中L为自感系数由线圈本身的长度、横截面积、匝数以及有无铁芯决定。 [例题分析] 例1、通电直导线与闭合金属框彼此绝缘,它们处于同一平面内,导 线位置与线框轴重合。为了使线框中产生如图所示方向的感应电流,可 以采取的措施是: A、减弱直导线中的电流强度 B、线框以直导线为轴转动 C、线框向右平动 D、线框向左平动 分析:通电直导线产生磁场的磁感线是以电流为圆心的同心圆。闭 合线框在如图所示状态下磁通量j为零。当直导线中电流强度发生变化或线框以直导线为轴转动时,通过线框的磁通量j始终是零,Δj=0,故无感应电流产生。 当线框向右或向左平动时,通过线框的磁通量j都要增加。向右平动原磁场方向为“x”,向左平动原磁场方向为“·”为了阻碍磁通量的增加产生题目中要求感生电流的方向。由楞次定律可判断线框应向左平动,故D选项是正确的。 例2、如图所示,用金属导线变成闭合正方形导线框边长为L,电阻 为R,当它以速度v匀速地通过宽也为L的匀强磁场区过程中,外力需做 功W,则该磁场磁感应强度应为多大?若仍用此种导线变成边长为2L的正 方形导线框,以相同速度通过同一磁场区,外力应做功为原来的几倍? 解:正方形线框匀速通过磁场ΣF=0,当进入磁场时,cd边切割磁感 线产生ε→产生I→受F安:F外=F安。当出磁场时ab边切割磁感线产生ε→产生I→受F安,则F外=F安。 外力功W=F外·2L=F安×2L=BIL×2L=2BL2× 。 则磁感应强度。 当线框边长为2L时,此时真正产生感应电流的时候是当cd、ab边在磁场中运动时,外力功W'为:(此时电阻为原来的2倍)

北京市高三物理二轮复习 电磁感应专题教学案

一、电磁感应现象:一切电磁感应现象都可以归结为磁通量的变化引起的: 如: 二、感应电流的方向判断: 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 对于导体切割磁感线时的感应电动势方向的判断,也可以利用右手定则:伸开右手,让磁场穿过掌心,大拇指指向运动方向,四指指向导体内感应电流方向或导体内感应电动势的正极。 三、法拉第电磁感应定律: (1)在电磁感应现象中产生的感应电动势大小,跟穿过这一回路的磁通变化率成正比。 表达式:——平均值 (2)导体在磁场中切割磁感线产生电动势。

表达式:ε=BLv(垂直切割)——瞬时值 若v不与B垂直,则可以将v分解为垂直于B和平行于B,其中垂直分量产生感应电动势。 (3)自感现象:由于通过导体本身电流发生变化而引起的电磁感应现象。 自感电动势,即与电流的变化率成正比,式中L为自感系数由线圈本身的长度、横截面积、匝数以及有无铁芯决定。 [例题分析] 例1、通电直导线与闭合金属框彼此绝缘,它们处于同一平面内,导 线位置与线框轴重合。为了使线框中产生如图所示方向的感应电流,可 以采取的措施是: A、减弱直导线中的电流强度 B、线框以直导线为轴转动 C、线框向右平动 D、线框向左平动 分析:通电直导线产生磁场的磁感线是以电流为圆心的同心圆。闭 合线框在如图所示状态下磁通量j为零。当直导线中电流强度发生变化或线框以直导线为轴转动时,通过线框的磁通量j始终是零,Δj=0,故无感应电流产生。 当线框向右或向左平动时,通过线框的磁通量j都要增加。向右平动原磁场方向为“x”,向左平动原磁场方向为“·”为了阻碍磁通量的增加产生题目中要求感生电流的方向。由楞次定律可判断线框应向左平动,故D选项是正确的。 例2、如图所示,用金属导线变成闭合正方形导线框边长为L,电阻 为R,当它以速度v匀速地通过宽也为L的匀强磁场区过程中,外力需做 功W,则该磁场磁感应强度应为多大?若仍用此种导线变成边长为2L的正 方形导线框,以相同速度通过同一磁场区,外力应做功为原来的几倍? 解:正方形线框匀速通过磁场ΣF=0,当进入磁场时,cd边切割磁感 线产生ε→产生I→受F安:F外=F安。当出磁场时ab边切割磁感线产生ε→产生I→受F安,则F外=F安。 外力功W=F外·2L=F安×2L=BIL×2L=2BL2× 。 则磁感应强度。 当线框边长为2L时,此时真正产生感应电流的时候是当cd、ab边在磁场中运动时,外力功W'为:(此时电阻为原来的2倍) W'=F外'×2L= F安'×2L=BI'×2L×2L =4BL2×

九年级物理电磁感应现象教学设计人教版.docx

电磁感应现象教学设计 一、教学设计思想 这节课的设计思想是:把电磁感应现象的发现过程,从教育的角度编制成既有一定难度、又有操作可能的科学探究活动,让学生通过科学探究,认识电磁感应现象,体会实验探索的艰辛,进一步提高科学探究能力,学习科学家执着探究科学真理的精神。 二、教学目的 《一》、知识目标 1.启发学生观察实验现象,从中分析归纳出产生感应电流的条件,从而进一步理解电磁感应现象,理解产生感应电流的条件。 2.培养学生运用所学知识,独立分析问题的能力。 3.培养学生观察、实验操作能力和概括能力。 《二》教学目标 1.知识与技能:认识电磁感应现象。 2.过程与方法:经历科学探究的过程,提高科学探究的能力。 3.情感态度与价值观:培养热爱科学的情感和实事求是的科学态度。 三、教学重难点: 1.教学重点:电磁感应现象及电磁感应现象的科学探索过程。 2.教学难点:对切割磁感线运动的认识及探究过程中问题的提出和解决问 题办法的猜想。 初三学生已经具有了初步的动手操作能力、初步的空间想象能力和逆向思维能力,经过教师的提示点拨、分析比较与实际的动手操作,可以探究并归纳出产生电磁感应现象的条件。 四、教学过程

引入: 1820 年,丹麦物理学家奥斯特发现了——电流的磁效应,揭示了电 和磁之间存在着联系,受到了这一发现的启发,人们开始考虑这样一个问题:既然“电能生磁”,“磁能不能生电”呢?不少科学家进行了这方面的探索,英国 平民科学家法拉第,坚信电与磁有密切的联系。经过10 年坚持不懈的努力,在 无数次的挫折与失败之后,终于在1831 年一个偶然的机会里,发现了利用磁场 产生电流的条件。法拉第的发现使发电机等用电设备的发明和应用成为可能,我们现在能很方便的用电。我国令人瞩目的三峡工程等都与法拉第的发现有着联 系。 我手中就有一个发电机模型(简介其结构),它为什么能发电呢?其发电的 条件是什么呢?带着这些问题,我们一起来学习第一节:电磁感应现象。 师:同学们,我们在初中就学过,导体切割磁感线时,闭合电路中有电流产 生。 (教师演示)在这个实验中,磁场是由马蹄形磁体提供的。是不是只有马蹄形磁铁才能提供磁场呢? 生:不,电流也能产生磁场,通过电螺线管也能产生磁场。 师:通电螺线管的磁场与哪种磁体周围的磁场相似? 生:条形磁铁。 师:好。除了这个演示实验所示的方法外,还有没有另外的利用磁场产生电流的办法呢?请大家选用桌上的实验器材,两个同学一组,共同探究利用磁场怎么样才能产生电流。将你们的实验过程及实验现象记录在表格中。若实验器材不够,请到台前来取。 实验探究产生感应电流的条件的记录表格 探究设计活动过程现象记录初步分析初步结论 活动 1 活动 2 活动 3

相关主题