搜档网
当前位置:搜档网 › 小麦麸皮中膳食纤维提取工艺与应用的研究

小麦麸皮中膳食纤维提取工艺与应用的研究

小麦麸皮中膳食纤维提取工艺与应用的研究
小麦麸皮中膳食纤维提取工艺与应用的研究

Vo l.17,2010,No.4

粮食与食品工业

Cereal and Food I nd us tr y

粮油工程

收稿日期:2010-04-07 修回日期:2010-06-03

作者简介:王成忠,男,1964年出生,教授,研究方向为食品资源开发。

小麦麸皮中膳食纤维提取工艺与应用的研究

王成忠1,张玉倩1,赵乃峰2,杜爱莲3

1.山东轻工业学院食品与生物工程学院 (济南 250353)

2.山东广明实业有限公司 (邹平 256200)

3.烟台城乡建设学校 (烟台 264000)

摘 要:论述了国内膳食纤维的常用提取工艺,讨论了微波辐射在提取膳食纤维中的应用,概述了膳食纤维在食品中的应用状况及其对食品品质的影响。

关键词:膳食纤维;提取;微波;添加剂

中图分类号:T S210.9 文献标识码:B 文章编号:1672-5026(2010)04-0005-03

Research on extraction and application of dietary fiber from wheat bran

Wang Chengzho ng 1,Zhang Yuqian 1,Zhao Naifeng 2,Du Ailian 3

1.School of F ood &Bio eng ineer ing,Shandong Institute of L ig ht Industry (Jinan 250353)

2.Shandong G uang ming Industr y Co.,L td.(Zo uping 256200)

3.Y ant ai U rban and Rural Co nst ruct ion Scho ol (Y antai 264000)

Abstract:T he ex traction techno logy of dietary fiber in China is discussed.T he use o f m icro w ave in the extraction of dietary fiber is review ed.T he application situation o f dietary fiber in foo d and its im pact on food quality are sum marized.

Key words:dietar y fiber;ex traction;micr ow av e;additive 21世纪人们的饮食观念在发生质的改变,越来越讲究食品的营养性与功能性,膳食纤维(DF)对人体的功能保健作用已经被大量事实与研究成果证实。它有降血糖、防治糖尿病以及预防肥胖、便秘等功能,因此,膳食纤维素被营养学家称为 第七营养素 。联合国粮农组织颁布的纤维食品指导大纲指出,健康人每日常规饮食中应有30~50g(干重)纤维素;美国FDA 推荐的总膳食纤维的摄入量为人均20~35g /d(成人);澳大利亚报告膳食纤维人均摄入25g /d,可明显降低冠心病的发病率和死亡率。中国营养学会推荐我国成年人膳食纤维的适宜摄入量为30g/d 左右。根据我国2004年发布的居民营养健康调查结果表明,我国目前人均实际摄人量仅为14g/d 左右,摄入量严重不足,且摄入量随

食品精加工水平的提高呈逐步下降的趋势。每日补充一定量膳食纤维,均衡机体膳食结构观念已被更多的人群接受,研制具有辅助治疗、预防作用的膳食纤维健康食品势在必行。因此,深入研究高活性膳食纤维的提取工艺,以获取经济的、高产率的生产工艺条件是当前的一个重要课题。

1 膳食纤维的原料

膳食纤维的来源非常丰富,目前我国已研究开发的提取膳食纤维的原料可大致分为以下几种:(1)谷物薯类纤维,包括玉米皮、小麦麸皮、燕麦麸皮、荞麦麸皮、甘薯渣等;(2)豆类种子及种皮纤维,主要研究了大豆豆粕中膳食纤维的提取及其利用,大豆是我国研究膳食纤维较早的原料之一,目前研究的相对较成熟,市场上已有相关膳食纤维产品;(3)水果及蔬菜纤维:如:甜菜、魔芋、苹果渣、橘皮等;(4)微生物纤维多糖。我国作为农业大国,谷物尤其是小

5

粮油工程王成忠等:小麦麸皮中膳食纤维提取工艺与应用的研究

麦的消费量非常高,因此,麦麸中膳食纤维的制备研究与应用作为麸皮深加工的一个重要途径深受重视。麦麸膳食纤维总量占麦麸干物质成分的35% ~50%,近年对麦麸膳食纤维的加工与食品利用技术研究明显增多,尤其是在烘焙食品和面主食制品加工中添加麦麸膳食纤维的制备技术研究。

2 膳食纤维的提取工艺

2.1 水不溶性膳食纤维的提取

膳食纤维根据溶解性的不同可分为水溶性膳食纤维(SDF)和水不溶性膳食纤维(IDF)两大类。IDF是指膳食纤维中的一类不被消化道酶消化且不溶于热水的那部分非淀粉类结构性多糖,包括纤维素、半纤维素、木质素、壳聚糖和植物蜡等。水溶性膳食纤维主要是指植物细胞内的水溶性贮存物质和分泌物,另外还包括部分微生物多糖和合成多糖,其组成主要是一些胶类物质。SDF虽不被机体消化道酶消化,但可溶于热水。膳食纤维的重要生理功能如降血糖、防癌症等主要是SDF的功效。通常麸皮中的SDF含量很低,如华北地区小麦麸皮中的SDF只有4%左右,且在加热处理和洗涤去除淀粉和蛋白水解产物的过程中几乎全部损失掉了,所以我们在提取过程中主要得到的是不可溶性膳食纤维(IDF)。

国内膳食纤维的提取工艺曾有如下几种:酸法、碱法、双酶法、酶!化学法。强酸、强碱等制备膳食纤维,其优点是去除淀粉、蛋白质较彻底。但在这一过程中,不仅有超过50%的半纤维素和10%~30%的纤维素损失(IDF改性为SDF时,主要就是纤维素和半纤维素分子链断裂),而且由于酸碱法对膳食纤维结构的破坏,导致成品膳食纤维的持水力和膨胀力降低,从而降低其生理功能[1-2]。因此,酸法和碱法已很少被用于膳食纤维的提取中。双酶法即利用淀粉酶和蛋白酶的专一性、高效性去除原料中的淀粉和蛋白质的方法。制得的膳食纤维得率高但成本高,纯度低。曹新志等[3]试验证明,酶!化学法即淀粉酶水解淀粉,碱浸泡水解蛋白质,提取的膳食纤维纯度比单独用酶法提取的膳食纤维纯度要高。碱不仅在提取工艺中用来去除蛋白质,在膳食纤维的改性工艺(如挤压膨化工艺)中也起到了重要作用。下面以麸皮为原料简要概括国内常用于膳食纤维提取的双酶法和酶!化学法工艺。

原料的预处理:麸皮经筛选清洗之后,低温干燥粉碎过40目筛,备用。

2.1.1 双酶法

麸皮?煮沸去植酸?冷却?淀粉酶水解淀粉?蛋白酶水解蛋白质?煮沸灭酶?抽滤并洗涤?滤渣?水洗至中性?离心收集?干燥?水不溶性膳食纤维(IDF)

2.1.2 酶!化学法

麸皮?煮沸去植酸?冷却?淀粉酶水解淀粉?碱水解蛋白质?抽滤并洗涤?滤渣?水洗至中性?离心收集?干燥?水不溶性膳食纤维

刘玉林[4]在用酶法和碱法去除麸皮中淀粉的试验中得出结论:酶法制得的膳食纤维的主要组成成分是半纤维素(43 2%),其次是纤维素(16 5%)。而1 1m ol/L的碱处理则主要成分是纤维素(44 7%),其次是半纤维素(18 1%),半纤维素和纤维素都损失较大。同时,酶法和碱法得到的产品外在质量差异体现在色泽和口感上。碱处理的膳食纤维碱味浓重,色泽较深,对后续脱色不利。但双酶法得到的产品纯度低于酶化学法,相差近十个百分点。笔者认为,酶法去除淀粉和蛋白是比较温和的方法,而碱法相对比较彻底,但同时,碱法也大大损失了用以改性的纤维素和半纤维素,这会大大降低SDF的得率。

2.2 水溶性膳食纤维的提取

SDF与IDF在人体内所具有的生理功能和保健作用是不同的。研究表明,IDF的主要作用在于肠道产生机械蠕动效果,SDF则更多地发挥代谢功能,如影响可利用碳水化合物和脂类的代谢、降低血脂、胆固醇等[5]。具有生理功能的膳食纤维IDF和SDF的比例应为3#1。通常对SDF的获得有两种方法。

(1)提取过程中尽量保留原麸皮的SDF,可采取以下工艺:

原料去植酸?水解淀粉?水解蛋白质?煮沸灭酶?抽滤洗涤?滤渣?水洗至中性?离心收集?干

? %

上清液?浓缩?醇沉

燥?膳食纤维粗品

这种方法制得的膳食纤维成品因为对淀粉和蛋白分解产物没有进行洗涤去除,醇沉后必然导致SDF纯度低。此方法在豆渣的SDF提取中有所应用,但在小麦麸皮中应用很少。一般要得到具有生理功能膳食纤维需要通过改性的方法。

6

粮食与食品工业 Cer eal and Food I ndustr y Vo l.17,2010,N o.4

(2)物理或酶法改性,得到高品质的膳食纤维。膳食纤维的改性技术是指对膳食纤维进行适当的技术处理,导致不溶性膳食纤维大分子结构的部分连接键断裂,转变为小分子低聚体的膳食纤维降解产物,其物理、化学特性以及生物活性发生变化。目前已应用的膳食纤维改性方法有:物理方法如超微粉碎技术、挤压蒸煮技术、瞬时高压技术等;酶法主要是利用纤维素酶改性。刘达玉等[6]以甘薯渣为原料,采用酶法结合挤压膨化对薯渣膳食纤维进行改性。挤压膨化可使产品的SDF含量增加5 28%,总膳食纤维含量达到80 70%;朱红等[7]利用纤维素酶法对从甘薯中制得的膳食纤维改性,SDF含量达到了40 31%,膳食纤维持水力和膨胀力分别达到了910%和195mL/g。

3 微波辅助提取膳食纤维的研究

微波是指波长为1mm~1m,频率在30M H z ~30GH z之间的电磁波,微波的加热特性和干燥原理不同,它通过产生高频电磁场介质材料中的极性分子在电磁场中随着电磁场的频率不断改变极性取向,使分子来回振动,产生摩擦热。以麸皮为原料提取膳食纤维的过程中,面粉厂的下脚料麸皮需经过清洗去除杂质和淀粉后再干燥备用。在制得膳食纤维成品后也需要选择合适的干燥方法得到成品。这就需要研究干燥过程对麸皮膳食纤维的影响。王忠合等[8]研究了微波结合酶法从酱油渣中提取可溶性膳食纤维的工艺,在酶解之前将调整好料液比的湿料40W微波处理1min,结果表明,微波处理组提取的SDF为15 0186g/L,而对照组的SDF仅为9 4658g/L。但笔者认为,湿料状态下进行微波处理并不会有这么显著的效果。经试验发现,用功率400W的微波干燥麸皮样品,不仅干燥的速率远远高于热风干燥,在膳食纤维的提取率方面,微波辅助提取的膳食纤维纯度和得率都要高出4%~5%,持水力也明显高于热风干燥。究其原因,很可能是由于微波引起电子、离子的移动或缺陷偶极子的极化及高频振动,使物料在较短的加热时间内达到物料内外同时加热。纤维素、半纤维素、木质素以及一些大分子的非淀粉多糖如阿拉伯糖等,因为分子的高频振荡和高温产生分子键的断裂,使淀粉和蛋白更多地暴露出来。同样,醇沉后得到SDF也比其他干燥方法多。

可以肯定的是,微波用于麸皮的干燥和DF的提取是值得深入研究的课题。微波干燥具有穿透能力强、选择性加热、热惯性小、干燥速度快、时间短、符合环保要求和易于实现自动控制等特点。如果在麸皮的干燥中得以应用,不仅可以杀菌灭酶保证麸皮品质,而且会大大降低生产成本。

4 膳食纤维作为新兴添加剂的应用

膳食纤维的研究虽然在我国起步较晚,但是随着人们对其重要的生理功能认识越来越深刻,膳食纤维的生产和应用得到了深入的发展。现在我们不难看到各种含有膳食纤维的食品、保健品、减肥药品等产品。然而,膳食纤维的高持水力、高膨胀力、高吸油力以及较好的抗氧化能力等特点决定了它的应用将使加工食品更加健康和丰富。膳食纤维的应用有以下几点[9-10]。

(1)作为食品稳定剂和增稠剂。在面包和蛋糕中,添加膳食纤维来提高配料的分散性和稳定性,增加产品的持水性,更加疏松柔软,延长保质期。酱油中添加膳食纤维将不易产生沉淀,黏稠度增加,不但稳定性好,而且口感更加滑润。

(2)作为脂肪替代物。膳食纤维用于各种肉糜制品,如火腿肠、午餐肉、三明治、肉松等食品中,作为低热量的基料和非营养拼料来取代脂肪,从而降低脂肪和胆固醇的摄入,是减肥食品很好的基料。

(3)在高纤维饮料中的应用。各种高纤维饮料包括固体饮料(速溶饮品、麦片和豆奶粉)、碳酸饮料、矿泉水、运动饮料、植物蛋白饮料、全营养饮料和果汁等各种功能性饮品中添加膳食纤维,除具有保健作用外,还可以明显提高食品的稳定性、分散性和冲调性,防止结块。

(4)添加于乳制品中。将膳食纤维添加到奶粉、乳酸菌乳和冰淇淋等中,能将乳制品中乳糖转化为乳酸,更适合乳糖不耐症的消费者食用;在乳酸菌奶中添加膳食纤维,还能作为活性菌的营养源以保持其活性,使产品货架期延长,增强乳制品良好的口感和风味。

(5)保健品的必要添加剂。国内润肠通便、排毒养颜和减肥美容的保健品最为流行,而活性膳食纤维就是其功效的秘密所在。对补钙和补血的保健品而言,添加膳食纤维可促使体内产生乳酸,而乳酸可以分离溶解钙、镁、铁等矿物质,促进人体对矿物质元素的吸收。

(6)作为抗氧化剂。膳食纤维的(下转第10页)

7

粮油工程艾 鹏等:油菜籽膨化预榨新工艺的实践

膨化后的油料在输送中需要注意在采用提升刮板机的情况下,预榨的提升刮板一般采用内向型刮板,膨化后的油料黏度大,由于刮板机机头下料角度和刮板结构的原因,物料会粘在刮板上不能完全下料,造成回料,导致产量降低。解决方法:&在机头处增加刮刀,刮下粘住的物料;?减少机头与水平的夹角,利于刮板下料;(可以采用外向型刮板,对这种性质的物料输送更加适用。

烘干的目的是降低油菜籽膨化料的水分,使之达到最适宜压榨的低水分含量。

一般的膨化工艺有粕残油高的问题,为了解决这个问题,在预处理阶段增加预榨工序,分预榨、浸出两次出油,预榨饼含油低有利于浸出更彻底,从而降低粕残油。

3 结论

在实践中总结油菜籽膨化、预榨新工艺的优点如下:&毋须蒸炒。?对胚片要求低。(出油率高。)不经过高热处理,毛油质量好,精炼率高。?处理量提高。由于膨化料的容重比蒸炒料的容重大,从而使预榨机的处理量提高了15%,又由于预榨饼渗透性好,可缩短浸出时间,提高浸出处理量。+能耗低。首先,膨化过程中,蒸汽与料胚直接接触,热损失小;减少了高热处理,蒸汽或导热油热耗低。,浸出溶剂消耗低,饼粕、毛油色泽浅。

实践证明,该工艺是现阶段比较优秀的一套工艺,设备投资较传统工艺少,消耗低,加工出的油损失少、质量高,非常适合中小企业新建油厂和老厂的改造。

参考文献

[1]亢 霞,王彦峰,曲云鹤.油菜籽生产贸易情况及我国油

菜籽发展的对策建议[J].中国油脂,2009,34(12):1-5.

[2]秦卫国,徐建中,周仁楷.双低油菜籽加工工艺设计初探

[J].粮食与食品工业,2003(4):18-19,38.

(上接第7页)抗氧化性比TH A、T H B更有效,将其添加到食用油中可以有效防止油的酸败;膳食纤维作为优良的天然抗氧化剂应用于加工食品不仅倡导了绿色食品,更重要的是能够给人体补充膳食纤维,预防各种 富贵病。

参考文献

[1]李凤敏.微生物酶法生产高活性膳食纤维的研究[D].长

春:东北师范大学,2003.

[2]许 勤.短链脂肪酸的代谢及其在肠道外科中的应用

[J].肠外与肠内营养,1999,6(4):218-223.

[3]曹新志,明红梅,熊 俐,等.酶!化学法从麸皮中提取

膳食纤维的工艺研究[J].食品与饲料工业,2009(4):28 -30.

[4]刘玉林,李庆龙.麦麸膳食纤维的制备与改性研究[J].湖

北农学院学报,1998,18(1):43-47.[5]王 丽,李依若,杨 武,等.纤维素酶法制备高品质麦

麸膳食纤维条件的研究[J].粮食与饲料工业,2009(2): 24-25,28.

[6]刘达玉,黄 丹,李群兰.酶碱法提取薯渣膳食纤维及其

改性研究[J].食品研究与开发,2005,26(5):63-66. [7]朱 红,孙 健,张爱君,等.甘薯渣膳食纤维酶解法提

取工艺研究[J].江苏农业科学,2008(4):217-220. [8]王忠合,吴晓玉.酱油渣中可溶性膳食纤维微波辅助酶

法提取工艺研究[J].食品研究与开发,2009,8(30):84-

90.

[9]刘 伟,刘成梅,林向阳,等.膳食纤维的国内外研究现

状与发展趋势[J].粮食与食品工业,2003,10(4):25-

27.

[10]修建成,曹荣安,孙保华,等.膳食纤维的分类与应用

[J].农产品加工,2006(10):31-33.

?行业信息

中国将专项整治地沟油整治意见发布

国务院办公厅日前发布关于加强地沟油整治和餐厨废弃物管理的意见,将开展地沟油专项整治,严厉打击非法生产销售地沟油行为,严防地沟油流入食品生产经营单位。对使用地沟油的食品生产经营单位依法责令停产停业整顿,直至吊销许可证;涉嫌犯罪的依法移送司法机关,追究刑事责任。(麦 乐) 10

小麦麸皮中膳食纤维提取工艺与应用的研究

Vo l.17,2010,No.4 粮食与食品工业 Cereal and Food I nd us tr y 粮油工程 收稿日期:2010-04-07 修回日期:2010-06-03 作者简介:王成忠,男,1964年出生,教授,研究方向为食品资源开发。 小麦麸皮中膳食纤维提取工艺与应用的研究 王成忠1,张玉倩1,赵乃峰2,杜爱莲3 1.山东轻工业学院食品与生物工程学院 (济南 250353) 2.山东广明实业有限公司 (邹平 256200) 3.烟台城乡建设学校 (烟台 264000) 摘 要:论述了国内膳食纤维的常用提取工艺,讨论了微波辐射在提取膳食纤维中的应用,概述了膳食纤维在食品中的应用状况及其对食品品质的影响。 关键词:膳食纤维;提取;微波;添加剂 中图分类号:T S210.9 文献标识码:B 文章编号:1672-5026(2010)04-0005-03 Research on extraction and application of dietary fiber from wheat bran Wang Chengzho ng 1,Zhang Yuqian 1,Zhao Naifeng 2,Du Ailian 3 1.School of F ood &Bio eng ineer ing,Shandong Institute of L ig ht Industry (Jinan 250353) 2.Shandong G uang ming Industr y Co.,L td.(Zo uping 256200) 3.Y ant ai U rban and Rural Co nst ruct ion Scho ol (Y antai 264000) Abstract:T he ex traction techno logy of dietary fiber in China is discussed.T he use o f m icro w ave in the extraction of dietary fiber is review ed.T he application situation o f dietary fiber in foo d and its im pact on food quality are sum marized. Key words:dietar y fiber;ex traction;micr ow av e;additive 21世纪人们的饮食观念在发生质的改变,越来越讲究食品的营养性与功能性,膳食纤维(DF)对人体的功能保健作用已经被大量事实与研究成果证实。它有降血糖、防治糖尿病以及预防肥胖、便秘等功能,因此,膳食纤维素被营养学家称为 第七营养素 。联合国粮农组织颁布的纤维食品指导大纲指出,健康人每日常规饮食中应有30~50g(干重)纤维素;美国FDA 推荐的总膳食纤维的摄入量为人均20~35g /d(成人);澳大利亚报告膳食纤维人均摄入25g /d,可明显降低冠心病的发病率和死亡率。中国营养学会推荐我国成年人膳食纤维的适宜摄入量为30g/d 左右。根据我国2004年发布的居民营养健康调查结果表明,我国目前人均实际摄人量仅为14g/d 左右,摄入量严重不足,且摄入量随 食品精加工水平的提高呈逐步下降的趋势。每日补充一定量膳食纤维,均衡机体膳食结构观念已被更多的人群接受,研制具有辅助治疗、预防作用的膳食纤维健康食品势在必行。因此,深入研究高活性膳食纤维的提取工艺,以获取经济的、高产率的生产工艺条件是当前的一个重要课题。 1 膳食纤维的原料 膳食纤维的来源非常丰富,目前我国已研究开发的提取膳食纤维的原料可大致分为以下几种:(1)谷物薯类纤维,包括玉米皮、小麦麸皮、燕麦麸皮、荞麦麸皮、甘薯渣等;(2)豆类种子及种皮纤维,主要研究了大豆豆粕中膳食纤维的提取及其利用,大豆是我国研究膳食纤维较早的原料之一,目前研究的相对较成熟,市场上已有相关膳食纤维产品;(3)水果及蔬菜纤维:如:甜菜、魔芋、苹果渣、橘皮等;(4)微生物纤维多糖。我国作为农业大国,谷物尤其是小 5

豆渣中膳食纤维的提取工艺

豆渣膳食纤维的制备工艺 高庆 (常熟理工学院生物与食品工程学院,常熟215500) 摘要本文分别介绍了以酶碱法、酸碱处理法、超声波辅助法制备豆渣水不溶性膳食纤维,以机械法—酶解法制备豆渣水不溶性膳食纤维。 关键词豆渣膳食纤维,制备工艺优化 Preparing Condition of Soybean Dregs Dietary Fiber Gao Qing (School of Biology and Food Engineering, Changshu Institute of Technology,Changshu 215500) Abstract In the paper, enzyme-alkali method, acid-alkali treatment and ultrasonic wave-assisted method for soybean dregs insoluble dietary fiber ( IDF) ,and enzymolysis approach for soybean dregs soluble dietary fiber ( SDF) are introduced. Key words soybean dregs dietary fiber,optimization of preparing condition 1前言 现代医学和营养学认为食物膳食 纤维是“第七营养素”。膳食纤维是一种复杂的混合物,从溶解性看,可分为 水溶性膳食纤维和水不溶性膳食纤维 两大类。水溶性膳食纤维的组成主要 是一些胶类物质,水不溶性膳食纤维 的主要成分是纤维素、半纤维素、木 质素、原果胶、壳聚糖和植物腊等。 在我国充分开发应用膳食纤维对人类 的健康具有极其深远的意义。豆渣富 含膳食纤维,纤维质构好,可以加工 成高纯度、高质量、高附加值及应用 广泛的低热量的膳食纤维,是一种十 分理性的纤维源。[1]我国是大豆的故乡,黑龙江省是我国大豆的主要产区,年 产大豆达400—500万吨,其中部分大豆用于加工豆腐、豆乳、豆奶等豆制品,年产豆渣量约80万吨。多年来,这些豆渣一直未能得到充分开发利用,除少部分豆渣作饲料外,大部分作为 废料弃掉,资源浪费极大,同时又造 成环境污染。世界上一些发达国家十 分重视膳食纤维素研究,日本自60年代末至今,豆渣应用在食品工业方面 的专利已达50余项,我国在豆渣的综合利用方面几乎还是空自。80年代以来,人民膳食结构发生变化,大、中 城市出现膳食纤维摄入不足的现象, 因此积极开展对膳食纤维的应用研究,对提高人民的健康水平是十分有必要的。[2] 2水不溶性膳食纤维的制备工艺2.1酶碱法提取豆渣水不溶性膳食纤 维 通常,豆渣中含有一定量的蛋白 质和脂肪,蛋白质直接影响产品纯度,脂肪经氧化后会使产品产生异味,因

膳食纤维提取的研究进展

2010年第03期 中国食物与营养 FoodandNutritioni11ChinaNo.03,2010 膳食纤维提取的研究进展水 符琼,林亲录,鲁娜,周丽君 (中南林业科技大学食品科学-5工程学院,长沙410004) 摘要:膳食纤维对人类健康有积极的作用,在预防人体胃肠道疾病和维护胃肠道健康方面功能突出。本文综述了国内外膳食纤维提取的常用方法以及从不同原料中提取膳食纤维的工艺和原料的利用情况,并从所得膳食纤维的品质、特性及发展前景等方面进行了较全面的比较。 关键词:膳食纤维;提取;特性 膳食纤维(DF)是指不被人体消化的多糖类碳水化合物和木质素的总称,可分为水溶性膳食纤维和水不溶性膳食纤维两大类。其中,水溶性膳食纤维主要为植物细胞内的储存物质和分泌物,另外还包括部分微生物多糖和合成多糖,其组成主要是一些胶类物质和糖类物质。不溶性膳食纤维的主要成分是纤维素、半纤维素、木质素、原果胶和壳聚糖等。 膳食纤维对人类健康有积极的作用,在预防人体胃肠道疾病和维护胃肠道健康方面功能突出。早期的流行病学研究显示,膳食纤维能够预防结肠癌,一定程度上可以治疗慢性疾病,因而有“肠道清道夫”的美誉。虽然目前膳食纤维的准确作用机理仍然难以确定,但研究表明,膳食纤维含量充足的饮食,无论是在预防还是在治疗糖尿病方面都具有特殊的功效。膳食纤维还能够延缓和减少人体对重金属等有害物质的吸收,有减少和预防有害化学物质对人体的毒害作用。另外,膳食纤维可以改善食品的食用品质、加工特性和外观特性,在食品中的用途十分广泛。膳食纤维在蔬菜、水果、粗粮杂粮、豆类及菌藻类食物中含量丰富。在我国,有着丰富的纤维素原料,可用于制备膳食纤维的原料很多。本文总结了国内外提取膳食纤维的常用方法,为工业化生产和其他研究工作者提供一定的参考。 1膳食纤维的提取方法 目前国内外提取膳食纤维的方法主要有化学提取法、酶提取法、化学一酶结合提取法、膜分离法和发酵法。1.1化学提取法 化学分离方法是指将粗产品或原料干燥、磨碎后采用化学试剂提取而制备各种膳食纤维的方法,主要有直接水提法、酸法、碱法和絮凝剂法等。提取可溶性豆渣膳食纤维采用直接水提法制备最为简便。Prakongpan…研究菠萝膳食纤维(PDF),用乙醇提取获得的水溶性膳食纤维的纯度为99.8%,是很好的食品加工原料。姜竹茂等障1在提取温度100℃、自然pH、提取时间10min、加水量25m垤条件下实验,结果表明,可溶性膳食纤维产率由原来的6.55%提高到11.34%,增加了近一倍。碱法应用较普遍,日本不二公司以豆渣为原料,用含30%~70%碱性水溶液的亲水性有机溶剂乙醇抽提,再用酸中和、压榨、脱水、干燥得到固体多糖,产品为无臭、无味的白色粉末。从豆渣中提取出的大豆多糖含食物纤维60%。酸法使用较少,因为使用酸法制备膳食纤维的过程中,损失较大,得率不高。1.2酶提取法 酶法是用多种酶逐一除去原料中除膳食纤维外的其它组分,主要是蛋白质、脂肪、还原糖、淀粉等物质,最后获得膳食纤维的方法。所用的酶包括淀粉酶、蛋白酶、半纤维素酶、阿拉伯聚糖酶等。刘达玉等口1以干薯渣为原料,采用酶法水解淀粉、蛋白质的提取方法,探讨了薯渣中淀粉、蛋白质水解的工艺条件,提取的产品总膳食纤维含量达到78%以上,是薯渣粉含量的2.76倍,淀粉含量3.09%。林文庭H1以番茄渣为原料,研究酶法提取膳食纤维的工艺技术,酶法提取的水溶性膳食纤维(SDF)及水不溶性膳食纤维 +项目资助:湖南省重大科技专项(№.2007FJl唧 作者简介:符琼(1984一),男,湖南怀化人,在读硕士研究生,研究方向为食品生物技术。万方数据

膳食纤维的提取和研究

目录 摘要 (2) Abstract (3) 1前言 (4) 1.1膳食纤维的概况 (4) 1.2膳食纤维的功能 (4) 1.3豆皮资源 (5) 1.4国内外豆皮膳食纤维研究状况 (5) 1.5实验的目的和意义 (6) 2材料与仪器 (6) 2.1 试验材料 (6) 2.2 试验仪器设备 (7) 3 实验方法 (7) 3.1 色素色值测量方法 (7) 3.1.1 测定波长的选择 (7) 3.1.2 色值测定方法 (7) 3.2 豆皮脱色实验方法 (7) 3.2.1 脱色剂选择实验方法 (7) 2.2.2 脱色单因素--最佳料液比的选择 (8) 3.2.3 脱色单因素--温度的选择 (8) 3.2.4 脱色单因素不同浸提时间对浸提的影响 (8) 3.2.5 脱色单因素不同pH值对浸提的影响 (8) 3.2.6 多条件下的正交实验 (8) 3.3 碱解淀粉实验方法 (8) 3.3.1 单因素浸泡温度的选择 (8) 3.3.2 单因素浸泡时间的选择 (8) 3.3.3 单因素浸泡料液比的选择 (8) 3.3.4 单因素浸泡碱液浓度的选择 (8) 3.3.5 正交实验 (9) 3.4 淀粉的简便方法测定——碘显色法 (9) 3.5 食品中蛋白质的测定 (10) 3.6 食品中水分的测定 (10) 3.7 食品中不溶性膳食纤维的测定 (10)

4实验结果与分析 (10) 4.1表豆皮脱色实验数据 (10) 4.2 碱解淀粉的实验数据 (12) 4.3 豆皮脱色实验结果分析 (13) 4.3.1 豆皮脱色实验单因素结果分析 (13) 3.3.2 豆皮脱色正交实验结果分析 (14) 4.4 碱解淀粉实验结果分析 (15) 3.4.1 碱解淀粉实验单因素结果分析 (15) 4.4.2 碱解淀粉正交实验结果分析 (16) 5 结论 (17) 致谢 (18) 参考文献 (19)

大豆膳食纤维提取工艺研究

大豆膳食纤维提取工艺研究 大豆膳食纤维是指大豆中不溶性碳水化合物,主要成分 是非淀粉多糖类,包括纤维素、混合键的3-葡萄糖 素、果胶质、树胶、木聚糖、甘露糖等,是不能为人体消化酶所消化的高分子糖类的总称。膳食纤维具有非常广泛的药理作用,能预防高脂高糖的发生,刺激肠道蠕动,保护胃肠道,增加粪便容积和排便次数,还能治疗婴幼儿腹泻,预防术后感染等。随着人们对饮食健康的重视,有关膳食纤维类保健食品的研发越来越多,膳食纤维将具有很好的开发与应用前景。 、大豆膳食纤维的功用 1保健功效尽管膳食纤维不能为人体提供任何营养成分,但对人体具有重要的生理作用。 1)降低体内血液中胆固醇含量,预防动脉硬化、冠心病; 2)改善血糖生成反应,促进血糖和胰岛素保持正常水平,防治糖尿病效果显著;国外学者研究发现,膳食纤维可有效地控制餐后血糖上升幅度,改善葡萄糖耐量,其中可溶性膳食纤维效果优于不溶性膳食纤维,如可溶性膳食纤维具有持水力强、降低葡萄糖的吸收速率等特性,使其在预防和辅助治疗糖尿病方面引起广泛关注。

3)改善大肠功能,促进胃肠正常蠕动,从而预防便秘与 结肠癌; 4)此外,膳食纤维还能增加胃部饱满感,减少食物摄入 量,具有减肥瘦身的功效。 2 食物原料大豆膳食纤维可用作一种食品配料,作为稳定剂具有增稠、延长食品货架期作用,以及被作为冷冻稳定剂使用;经过处理的大豆膳食纤维能增强面团结构特性,是高档面包烘焙中 比较理想的天然添加剂。此外大豆膳食纤维可用于糕点、饼 干、膨化食品等低热谷物食品,也可用于各类保健饮料。 大豆膳食纤维提取工艺研究进展目前,国内外积极采用挤压成型技术、膜分离技术、发酵工程技术、酶促反应工程技术、生物加工技术、现代食品分离技术、高压处理技术、微胶囊造粒技术以及先进灭菌技术等现代高新技术,提高大豆制品的使用价值。不仅大大拓宽了大豆精深加工利用的范围,提高了综合开发能力,而且在加工过程中能够保持大豆的营养成分。在大豆膳食纤维提取方面,方法很多,有化学法、酶解法、微生物发酵法、微波辅助提取法以及多方法配合等方法。 1 化学法化学法提取大豆膳食纤维主要指的是酸解法和碱解法的相互配合。因提取膳食纤维的原料不同,所用的酸解和碱解的 浓度、作用时间不同,大豆膳食纤维的得率也不同。这就需要应用 正交实验法估算最佳提取工艺。 2 酶解法酶解法提取大豆膳食纤维的关键技术在于酶解反应。相较化学法而言,酶解法提取大豆膳食纤维产率最高。原因如下: 1)酶的催化率高、专一性强和不发生副反应,因此在生 产上应用时产率高、质量好,便于产品提纯和简化工艺步骤; 2)酶作用条件温和,一般不需要高温、高压条件,因此 对设备要求简单,并可节约煤和电等能源; 3)酶及其反应物大多没毒,适于在工业生产上应用。然

香蕉皮中膳食纤维的提取与性质研究

香蕉皮中膳食纤维的提取与性质研究 摘要:文章介绍了膳食纤维对人体的作用。通过化学法和酶法对香蕉皮中的膳食纤维进行提取,具体讲述了香蕉皮中的膳食纤维的实验室提取过程及结果。并且测定其膨胀力、持水力和提取率,对香蕉皮中的膳食纤维的性质进行了进一步的研究和探索。 关键字:香蕉皮;膳食纤维;提取;化学法;酶法;性质研究 前言:我国香蕉资源丰富, 香蕉产量大增,深加工产业迅速发展。与此同时产生了大量的香蕉皮。如果其得不到及时处理, 将对环境造成污染。如何利用香蕉皮,实现变废为宝具有重要的意义。香蕉皮中多酚具有抗氧化、抗衰老、抗癌防癌、抗菌、润肤美容、降血压和预防心脑血管疾病等多种生理和药理活性。对香蕉皮中膳食纤维的提取可以提高对香蕉皮的深加工和综合利用具有一定的理论意义和应用价值。开展香蕉皮中膳食纤维的生产技术研究、开发高纯度系列产品迫在眉睫。至此,对香蕉皮中的营养成分中膳食纤维的研究以及发展趋势作了综述。 1. 香蕉皮中的膳食纤维 1.1香蕉皮中含有一种重要的功能因子,具有多种生物活性和广阔的应用前景;香蕉皮中膳食纤维对人类健康有积极的作用,在预防人体胃肠道疾病和维护胃肠道健康方面功能突出。2.膳食纤维 2.1膳食纤维的概念 膳食纤维是一般不易被消化的食物营养素,主要来自于植物的细胞壁,包含纤维素、半纤维素、树脂、果胶及木质素等。可分为两个基本类型:水溶性纤维与非水溶性纤维。纤维素、半纤维素和木质素是3种常见的非水溶性纤维,存在于植物细胞壁中;而果胶和树胶等属于水溶性纤维,则存在于自然界的非纤维性物质中。 2.2 膳食纤维主要作用 2.2.1促进肠道蠕动,软化宿便,预防便秘、结肠癌及直肠癌。 2.2.2降低血液中的胆固醇、甘油三酯,预防肥胖。 2.2.3清除体内毒素,预防色斑形成、青春痘等皮肤问题。 2.2.4减少糖类在肠道内的吸收,降低餐后血糖。 2.2.5促进肠道有益菌增殖,提高人体吸收能力。 3.香蕉皮中膳食纤维的制取与测定 3.1 材料

酶法测定膳食纤维的推荐方法1

酶-重量法(百度文库方法) 1.原理:样品分别用α-淀粉酶、蛋白酶、葡萄糖苷酶进行酶解消化以去除蛋白质和可消化的淀粉。总膳食纤维(TDF)是先酶解,然后用乙醇沉淀,再将沉淀物过滤,将TDF残渣用乙醇和丙酮冲洗,干燥称重。不溶性和可溶性膳食纤维(IDF和SDF)是酶解后将IDF过滤,过滤后的残渣用热水冲洗,经干燥后称重。SDF是将上述滤出液用4倍量的95%乙醇沉淀,然后再过滤,干燥,称重。TDF、IDF和SDF量通过蛋白质、灰分含量进行校正。 2.适用范围AOAC991.43 本方法适用于各类植物性食物和保健食品。 3.仪器 3.1烧杯:400或600ml高脚型。 3.2 过滤用坩埚:玻料滤板,美国试验和材料学会(ASTM)40-60μm,Pyrex 60ml(Corning No.36060 buchner,或同等的)。如下处理:(1)在灰化炉525℃灰化过夜。炉温降至130℃以下取出坩埚。(2)用真空装置移出硅藻土和灰质。(3)室温下用2%清洗溶液浸泡1小时。(4)用水和去离子水冲洗坩埚;然后用15ml丙酮冲洗然后风干。(5)在干燥的坩埚中加0.5g硅藻土,在130℃烘干恒重。(6)在干燥器中冷却1小时,记录坩埚加硅藻土重量,精确至0.1mg。 3.3 真空装置:(1)真空泵或抽气机作为控制装置。(2)1L的厚壁抽滤瓶。(3)与抽滤瓶相配套的橡皮圈。 3.4振荡水浴箱:(1)自动控温使温度能保持在98±2℃。(2)恒温控制在60℃。 3.5 天平:分析级,精确至±0.1mg。 3.6马福炉:温度控制在525±5℃。 3.7干燥箱:温度控制在105和130±3℃。 3.8干燥器:用二氧化硅或同等的干燥剂。干燥剂两周一次在130℃烘干过夜。3.9 PH计:注意温控,用pH4.0、7.0和10.0缓冲液标化。 3.10 移液管及套头:容量100μl和5ml。 3.11 分配器或量筒:(1)15±0.5ml,供分配78%的乙醇,95%的乙醇以及丙酮。(2)40±0.5ml,供分配缓冲液。 3.12. 磁力搅拌器和搅拌棒。 4. 试剂全过程使用去离子水,试剂不加说明均为分析纯试剂 4.1 乙醇溶液:(1)85%:加895ml95%乙醇在1L量筒中,用水稀释至刻度。(2)78%:加821ml95%乙醇在1L量筒中,用水稀释至刻度。 4.2 丙酮: 4.3 供分析用酶:在0-5℃下储存。(1)热稳定α-淀粉酶溶液:Cat. No. A3306,Sigma Chemical Co.,St. Louis,MO63178,或Termamyl 300L,Cat. No. 361-6282,Novo-Nordisk,Bagsvaerd,Denmark,或等效的酶。(2)蛋白酶:Cat. No. P3910,Sigma Chemical Co.,或等效的。当天用MES/TRIS缓冲液中现配50mg/ml酶溶液。(3)淀粉葡糖苷酶溶液:Cat. No. AMG A9913,Sigma Chemical Co.,或等效的。 4.4 硅藻土:酸洗(Celite 545 AW,No.C8656,Sigma Chemical Co.,或等效的)。 4.5 洗涤液:两者挑一。(1)铬酸:120g重铬酸钠Na2Cr2O7·2H2O,1000ml蒸馏水和1600ml浓硫酸。(2)实验室用液体清洁剂,预备急需清洗的(Micro,International Products Corp.,Trenton,NJ08016,或等效的)。用水配制2%溶液。 4.6 MES-TRIS缓冲液:0.05mol/L,温度在24℃时pH值为8.2。(1)MES:2-(N-吗啉代)磺酸基乙烷(No.M-8250,Sigma Chemical Co.或等效的)。(2)TRIS:三羟(羟甲基)氨基甲烷(No.T-1503,Sigma Chemical Co.或等效的)。在1.7L的蒸馏水中溶解19.52gMES和12.2gTRIS,用6mol/L NaOH调pH到8.2,用水定容至2L。(注意:24℃时的pH为8.2,但是,如果缓冲液温度在20℃,pH就为8.3,如果温度在28℃,pH为8.1。为了使温度在20-28℃之间,需根据温度调整pH值。) 4.7 盐酸溶液:0.561mol//L,加93.5ml6mol/L盐酸到700ml水中,用水定容至1L。 5. 操作方法 5.1. 样品制备:(1)固体样品:如果样品粒度>0.5mm,研磨后过0.3-0.5mm(40-60目)筛。(2)高脂肪样品:如果脂肪含量>10%,用石油醚去脂。每克样品用25ml,每次提取完静置一会儿再小心将烧杯倾斜,慢慢将石油醚倒出,共洗三次。(3)高碳水化合物样品:如果样品干重含糖>50%,用85%乙醇去除糖份,每克样品每次10ml,共洗三次轻轻倒出,然后在40℃烘箱中不时翻搅干燥过夜,并研磨过0.5mm筛。 5.2. 样品消化(1)准确称取双份1.000±0.005g样品(M1和M2),置于高脚烧杯中。(2)在每个烧杯中加入40ml MES-TRIS缓冲液,在磁力搅拌器上搅拌直到样品完全分散。(防止团块形成,使受试物与酶能充分接触)。(3)用热稳定的淀粉酶进行酶解处理:加100μl热稳定的淀粉酶溶液,低速搅拌。用铝箔片将烧杯盖住,在95-100℃水浴中反应30分钟。(起始的水浴温度应达到95℃)。(4)冷却:所有烧杯从水浴中移出,凉至60℃。打开铝箔盖,用刮勺将烧杯边缘的网状物以及烧杯底部的胶状物刮离,以使样品能够完全的酶解。用10ml蒸馏水冲洗烧杯壁和刮勺。(5)用蛋白酶进行酶解处理:在每个烧杯中各加入100μl蛋白酶溶液。用铝箔盖住,在60℃持续摇动反应30分钟(开始时的水浴温度应达60℃),使之充分反应。(6)pH值测定:30分钟后,打开铝箔盖,搅拌中加入5ml0.561mol/L HCL至烧杯中。60℃时用1mol/L NaOH溶液或1mol/L HCL溶液调最终pH为4.0-4.7。(注意:当溶液为60℃时检测和调整pH,因为在较低温度时pH会偏高。)(7)用淀粉葡糖苷酶溶液酶解处理:搅拌同时加100μl淀粉葡糖苷酶溶液。用铝箔盖住,在60℃持续振摇反应30分钟,温度应恒定在60℃。 5.3 测定 5.3.1.总的膳食纤维测定(1)用乙醇沉淀膳食纤维:在每份样品中,加入预热至60℃的95%乙醇225ml,乙醇与样品的体积比为4∶1。室温下沉淀1小时。(2)过滤装置:用15ml78%乙醇将硅藻土湿润和重新分布在已称重的坩埚中。用适度的抽力把坩埚中的硅藻土吸到玻板上。(3)酶解过滤,用78%乙醇和刮勺转移所有内容物微粒到坩埚中。(注意:如果一些样品形成胶质,用刮勺破坏表面,以加速过滤。)

酶分解小麦麸皮的实验方案

多种酶分解小麦麸皮的协同作用 1、实验目的 我国是小麦生产大国,年产量已超过1亿吨,每年加工出的小麦麸皮可达2000万吨以上,而其中85%以上都用于酿造和饲料行业。麸皮中含有较丰富的酶系、蛋白质、碳水化合物、维生素和矿物质等。针对酱油生产中对小麦麸皮的处理,本实验的目的在于研究纤维素酶、戊聚糖酶以及阿魏酸酯酶对其酶解的协同作用,并观察酶解效果。 2、实验原理 纤维素酶属于高度专一的纤维素水解生物催化剂,是降解纤维素原料的生成葡萄糖的一种酶的总称,它不是单种酶,而是起协同作用的多组酶系。纤维素酶主要包括三种组分:内切型葡聚糖酶,外切型葡聚糖酶、纤维素二糖酶,每一组分又有若干亚组分组成。纤维素水解生成葡萄糖的过程必须依赖这三种组分的协同作用才能完成。 木聚糖酶,又名内1,4-β-木聚糖酶,是采用液体深层发酵、超滤及喷雾干燥等工艺制得,用于啤酒酿造,可以有效分解麦芽汁中的木聚糖和戊聚糖,降低麦芽汁中的粘度,改善其过滤性能,防止非碳水化合物混浊的产生。木聚糖酶能够降解木聚糖生成聚合度2-10的低聚木糖混合物,其产物的经济价值很高。 阿魏酸酯酶能水解阿魏酸甲酯、低聚阿魏酸酯和多糖阿魏酸酯中的酯键,将阿魏酸游离出来的一种酶,属于水解类的羧酸酯水解酶亚类。利用阿魏酸处理植物性的原材料,其细胞壁的骨架结构会被破坏,结构变得比处理前疏松。 这三种酶对小麦麸皮的酶解具有很大的协同作用,三种酶同时存在是小麦麸皮达到最大的酶解效率。 3、实验材料与设备 实验材料与试剂 小麦麸皮,纤维素酶、木聚糖酶、阿魏酸酯酶、淀粉酶、蛋白酶等,3-5二硝基水杨酸(DNS),间苯三酚,冰醋酸 实验仪器 水浴锅,台式电子天平,离心机,分光光度计,精密PH计等 4、试验方法及步骤 ㈠小麦麸皮的预处理 将小麦麸皮粉碎,加水预热。中性蛋白酶作用于小麦麸皮的酶解条件为料液比1:10(W:V)、酶用量1.75%、酶解温度55℃、酶解时间3h、pH 7.50,水解度值为25.32%;中温淀粉酶作用于小麦麸的酶解条件为料液比1:10(W:V)、酶用量1.75%、酶解温度65℃、酶解时间3.5h、pH 6.00,水解度为38.85%。根据条件调节小麦麸皮的pH,温度以及酶解时间,对小麦麸皮进行初步酶解。 ㈡纤维素酶酶解小麦麸皮 查资料得:纤维素酶酶解小麦麸皮的最适条件为:酵解时间15min,温度37℃,pH值6,最适酶浓度0.04IU/ml。在最适条件下将纤维素酶加入小麦麸皮中,进行反应,检测反应后还原糖的含量。 ①葡糖糖标准曲线的绘制 准确称取1.000g葡萄糖,用蒸馏水定容至100ml,用移液管吸取0、0.1、0.2、0.3、0.4、0.5mL分别移入具塞比色管中,用蒸馏水定容至1mL,各加入3,5-二硝基水杨酸(DNS)试剂2mL,将各管摇匀,在沸水浴中准确加热2min,

膳食纤维提取方法的研究进展

万方数据

万方数据

万方数据

膳食纤维提取方法的研究进展 作者:付全意, 刘冬, 李坚斌, 邓立高, 王彦玲, FU Quan-yi, LIU Dong, LI Jian-bin , DENG Li-gao, WANG Yan-ling 作者单位:付全意,FU Quan-yi(深圳职业技术学院,深圳,518055;广西大学轻工与食品工程学院,南宁,530004), 刘冬,LIU Dong(深圳职业技术学院,深圳,518055), 李坚斌,邓立高,王彦玲,LI Jian-bin,DENG Li-gao,WANG Yan-ling(广西大学轻工与食品工程学院,南宁,530004) 刊名: 食品科技 英文刊名:FOOD SCIENCE AND TECHNOLOGY 年,卷(期):2008,33(2) 被引用次数:7次 参考文献(19条) 1.D Kritchevsky Dietary fibre and cancer 1997(06) 2.Baljit Singh Psyllium as therapeutic and drug delivery agent[外文期刊] 2007(1-2) 3.Bijkerk The role of different types of fibre in the treatment of irritable bowel syndrome 2004(03) 4.Schatzkin A.Mouw T Dietary fiber and whole-grain con-sumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study 2007(85) 5.陕方.田志芳.马晓凤燕麦高纤食品基料加工技术及生理活性研究[期刊论文]-食品科技 2004(05) 6.T Prakongpan Extraction and Application of Dietary Fiber and Cellulose from Pineapple Cores[外文期刊] 2002(04) 7.姜竹茂.陈新美从豆渣中制取可溶性膳食纤维的研究[期刊论文]-中国粮油学报 2001(03) 8.周秀琴多功能性食品材料豆渣 2004 9.Aurora Napolitano Treatment of Cereal Products with a Tailored Preparation of Triehoderma Enzymes Increases the Amount of Soluble Dietary Fiber 2006(04) 10.冯志强.李梦琴.刘燕燕生物酶法提取麦麸膳食纤维的研究[期刊论文]-现代食品科技 2006(01) 11.周德红.郑为完.祝团结酶法水解豆渣制备水溶性膳食纤维及其作为微胶囊壁材的研究[期刊论文]-食品与发酵工业 2005(05) 12.Guizard C.Rambault D.Urhing D Deasphahing of a long residue using ultraflltration inorganic membranes 1994 13.孙兰萍膜分离技术-食品工业领域的新型分离手段[期刊论文]-食品研究与开发 2001(04) 14.McMurray SH.Griffin G J Extraction of aoonitic acid from mixtures of organic acids and cane molasses solutions using supported liquid membrane 2002 15.Gyeongho-Han Separation of fatty acids from fish oils by liquid membranes 1993(10) 16.Hossain M M Extraction of amino sugars,amino acids and dipeptides by liquid membrane technology 2002(10) 17.侯东军.张健超超滤法制取大豆浓缩蛋白[期刊论文]-粮油加工与食品机械 2002(08) 18.郑建仙功能性膳食纤维 2005 19.涂宗财.李金林.汪菁琴微生物发酵法研制高活性大豆膳食纤维的研究[期刊论文]-食品工业科技 2005(05) 引证文献(7条) 1.许丽丽.黄桂娟甘薯茎尖中不溶性膳食纤维的提取工艺研究[期刊论文]-中国酿造 2010(6)

食物中膳食纤维的测定

膳食纤维的测定方法 酶-重量法 1.原理: 样品分别用α-淀粉酶、蛋白酶、葡萄糖苷酶进行酶解消化以去除蛋白质和可消化的淀粉。总膳食纤维(TDF)是先酶解,然后用乙醇沉淀,再将沉淀物过滤,将TDF残渣用乙醇和丙酮冲洗,干燥称重。不溶性和可溶性膳食纤维(IDF 和SDF)是酶解后将IDF过滤,过滤后的残渣用热水冲洗,经干燥后称重。SDF是将上述滤出液用4倍量的95%乙醇沉淀,然后再过滤,干燥,称重。 TDF、IDF和SDF量通过蛋白质、灰分含量进行校正。 2.适用范围 AOAC991.43 本方法适用于各类植物性食物和保健食品。 3.仪器 3.1烧杯:400或600ml高脚型。 3.2 过滤用坩埚:玻料滤板,美国试验和材料学会(ASTM)40-60μm,Pyrex 60ml(Corning No.36060 buchner,或同等的)。如下处理: (1)在灰化炉525℃灰化过夜。炉温降至130℃以下取出坩埚。 (2)用真空装置移出硅藻土和灰质。 (3)室温下用2%清洗溶液浸泡1小时。 (4)用水和去离子水冲洗坩埚;然后用15ml丙酮冲洗然后风干。 (5)在干燥的坩埚中加0.5g硅藻土,在130℃烘干恒重。 (6)在干燥器中冷却1小时,记录坩埚加硅藻土重量,精确至0.1mg。 3.3 真空装置: (1)真空泵或抽气机作为控制装置。 (2) 1L的厚壁抽滤瓶。 (3)与抽滤瓶相配套的橡皮圈。 3.4振荡水浴箱: (1)自动控温使温度能保持在98±2℃。 (2)恒温控制在60℃。 3.5 天平:分析级,精确至±0.1mg。 3.6马福炉:温度控制在525±5℃。 3.7干燥箱:温度控制在105和130±3℃。 3.8干燥器:用二氧化硅或同等的干燥剂。干燥剂两周一次在130℃烘干过夜。 3.9 PH计:注意温控,用pH 4.0、7.0和10.0缓冲液标化。 3.10 移液管及套头:容量100μl和5ml。 3.11 分配器或量筒: (1)15±0.5ml,供分配78%的乙醇,95%的乙醇以及丙酮。

小麦麸皮的功能以及在食品中的开发和应用

小麦麸皮的功能组分以及在食品中的开发应用 小麦麸皮是小麦面粉厂加工的主要副产品,富含纤维素和半纤维素,同时还含有部分蛋白质、脂肪、低聚糖,以及性淀粉酶、植酸酶等成分。早期小麦面粉加工中,小麦麸皮包括小麦胚和小麦胚乳残留物, 现代制粉工艺中往往采用脱麦胚处理,能获得比较纯净的小麦麸皮。 1小麦麸皮膳食纤维的开发利用 小麦麸皮具有抗衰老、抗癌、减肥等重要生理功能,并且已被制成多种流行保健食品,小麦麸皮中起生理功能的最主要的成分是膳食纤维,约含40% 。许多资料表明,由非淀粉多糖组成的膳食纤维到达小肠后,通过减少在小肠的通过时间减少葡萄糖的吸收,减缓淀粉水解,对降低血胆固醇、糖尿病、高血脂、冠心病、高血压均有良好的促进作用。小麦麸皮还有减少憩室病、胆结石和结肠癌发生的重要作用。膳食纤维还可显著增加大鼠粪便正常细菌的含量。肠道中的有益细菌能利用小麦麸膳食纤维产生挥发性脂肪酸,如乙酸、丁酸等。这些脂肪酸能降低pH,抑制腐生菌的生长,减少致癌物质的产生。在制备小麦麸膳食纤维的过程中,通常采用酶解法除去淀粉、蛋白质,这些酶解液中含有大量的糊精、低聚糖等水溶性物质,可再加以利用。王卫东等人将这些酶解液制成风味独特的麦香茶饮料。小麦麸皮膳食纤维直接食用时味道不佳,需经过各种加工处理,如热处理 (烘烤、挤压等),除去麸皮中的不良气味,制成清香可口的系列产 品应用于食品。目前主要用于面包、饼干、面类、糕点、谷物等食品中作为品质改良剂和膳食纤维强化剂。利用膳食纤维具有的吸水、吸油、保水、保香等性质,添加到豆酱、豆腐等食品及肉制品中,可以保鲜和防止水的渗透;用于粉状品时,可作为载体,制成冲剂;加入沙司、蛋黄酱中时可作为粘度调节剂;加入饼干食品中可使面团易于成型;加入冰棍、糖果等食品,可用作防固结剂。 2小麦麸皮低聚糖的开发利用 小麦麸皮中富含纤维素和半纤维素,是制备低聚糖的良好资源。小麦麸皮中的低聚糖具有系列生物活性。首先,低聚糖具有良好的双岐杆菌增殖效果,可作为双歧杆菌生长因子应用于食品。其次,低聚糖具有低热值性能,属难消化糖,不被口腔中的产酸类和其他微生物利用,显示出抗龋齿功能。另外,由于它的低热值性能,可以作为糖尿病、肥胖病、高血脂等病人理想的糖源。低聚糖还具有表面活性,可吸附肠道中有毒物质及病原菌,提高机体抗病能力,激活免疫系统,用于医药工业和饲料工业。低聚糖制备的工艺流程,一般是先用a淀粉酶、蛋白酶水解除去淀粉和蛋白质,然后用低聚糖酶水解提高低聚糖的产率和质量,再经过活性炭脱色、离子交换柱等方法精制,浓缩,干燥,即可得到低聚糖产品,含量可高达70% 以上。 3小麦麸皮中酶的开发利用 植酸酶是一种能促进植酸(肌醇六磷酸)或植酸盐水解生成肌醇与磷的一类酶的总称。小麦麸皮也是提 取植酸酶的价廉易得的好原料。性淀粉酶广泛存在于粮食谷物中,尤其以小麦、大麦、山芋、大豆等粮食 中含量较高。不少饴糖厂就以小麦麸皮作糖化剂,直接加到淀粉液化液中糖化。但是&淀粉酶的催化效能 未能有效地发挥。因而,将小麦麸皮中的性淀粉酶预先提取,对于改善淀粉糖工艺,提高淀粉糖质量和企 业效益具有重要意义。在实际生产利用中,可考虑同时提取制备植酸酶和性淀粉酶。提取工艺为小麦麸皮 原料直接用蒸馏水浸泡,然后用不同浓度的盐析过程分别制备植酸酶和性淀粉酶,各自纯化,制备成液态 产品或冷冻干燥制备粉末状固态产品。 麸皮中含有人体中所必须的八种氨基酸和儿童所需要的十中必

纤维素酶提取水溶性膳食纤维工艺的研究

纤维素酶提取水溶性膳食纤维工艺的研究 刘绍鹏,陈 文*,慕春海 (新疆特种植物药资源省部共建教育部重点实验室,新疆 石河子832002) 摘 要:目的 以番茄不溶性膳食纤维为原料,用酶解法提取可溶性膳食纤维(SDF)。方法 经正交试验优化提 取工艺,并在优化条件下循环提取。结果制备SDF的最佳工艺条件为:酶用量10 %,酶解时间6 h,酶解温度 60 ℃,pH 4.0;以最佳条件连续反应,产率可达31.1 %。结论 确定了酶提取SDF的最佳工艺;证实循环工艺 可以提高提取效率。 关键词:纤维素酶;膳食纤维;番茄;改性中图分类号:TS201.1 文献标识码:A 文章编号:1672-979X(2008)07-0032-03 Technology Study on Water-soluble Dietary Fiber Extracted by Cellulase LIU Shao-peng, CHEN Wen, MU Chun-hai (Key Laboratory of Xinjiang Phytomedicine Resources, Shihezi 832002, China) Abstract:ObjectiveTo extract the water-soluble dietary fiber (SDF) from tomato insoluble dietary fiber (IDF) by cellulase.  MethodsThe optimal technology was obtained by orthogonal test, then, the circulating extraction wasarranged under the optimal condition. ResultsThe optimum condition of SDF extraction was as follows: 10 %cellulose for 6 h at 55℃ with pH 4.0. Under the optimal condition, the circulating extraction was performed witha higher yield of 31.1%. ConclusionThe optimal extraction technology can be obtained and the circulatingextraction can be used to increase the extraction rate of SDF.Key words:cellulase; dietary fiber; tomato; modification 收稿日期:2008-03-27 基金项目:教育部春晖计划“番茄纤维的开发研究”(Z2004-2-65053)作者简介:刘绍鹏(1981-),男,硕士研究生,从事药物新制剂的研究与开发 E-mail: 39960681@qq.com * 通讯作者:陈文(1967-),男,教授,硕士生导师,从事新药研究与开发E-mail: chen-wen2000@126.com 近年膳食纤维(dietary fiber,DF)在人体健康中的作用引起了广泛关注,被誉为“第七营养素”,其生理功能已经研究证实[1-3]。膳食纤维分为可溶性膳食纤维(SDF)和水不溶性膳食纤维(IDF)。SDF能降低血脂含量、延缓小肠对葡萄糖的吸收速度,刺激胰岛产生胰岛素,从而预防糖尿病的发生[4]。但天然来源的膳食纤维中SDF含量很低。通过改性手段可 以使一部分IDF溶解成为SDF,从而提高SDF产量。在诸多膳食纤维改性方法中,以化学法、纤维素酶催化法和物理挤压膨化增溶法常见。(1)物理挤压膨化法改性 在水中将膳食纤维升温,膨化后强行使其通过某一固定孔径,造成键断裂,达到增加溶解度的目的。其产品颜色与提取所得的SDF接近,适合进一步加工;(2)化学法改性 加入强 酸或强碱,在超过50 ℃的温度下反应,使部分纤维素糖苷键断裂,增大溶解度。此法对环境影响很 大,且制备的SDF颜色较深,不适合食品、药品工业进一步加工;(3)纤维素酶改性 其原理与化学法相近,但产品颜色较浅,杂质较少,造价低廉。本文主要讨论纤维素酶法制取SDF的工艺,并进一步优化。 1 材料和仪器1.1 试验材料 番茄纤维(新疆中基公司);纤维素酶(北京奥博星公司);95 %乙醇(上海振兴化工一厂)。 1.2 实验仪器 8002型水浴锅;JB90-D型强力电动搅拌机;LXJ-II离心沉淀机;ZFA型旋转蒸发仪;ZK-82A型食品与药品Food and Drug 2008年第10卷第07 期 32

膳食纤维基本知识

一.膳食纤维的基本知识 1.1膳食纤维的分类及相关概念 1.1.1 膳食纤维的概念 膳食纤维是指能抗人体小肠消化吸收,而在人体大肠能部分或全部发酵的可食用的植物性成分、碳水化合物及其相类似物质的总和(美国化学家协会),一般是指不易被消化酶消化的多 糖类食物成分,聚合度≥3的碳水化合物和木质素,主要来自于植物的细胞壁(中国营养学会)。基于以上定义,膳食纤维包括很多不被人体小肠消化的物质,如纤维素、半纤维素、树胶、β- 葡聚糖、胶质、木质素、葡聚糖、果聚糖、抗性淀粉和糊精等。 1.1.2 膳食纤维的分类 1,根据膳食纤维在水中溶解性不同,将其分为2个基本类型,即:水溶性膳食纤维(SDF)与不溶性膳食纤维(NDF)。 水溶性膳食纤维(SDF)是可溶于温水或热水,且其水溶液能被4倍95%的乙醇再沉淀的那部 分纤维,主要是细胞壁内的储存物质及分泌物,另外还包括微生物多糖和合成多糖,其组成主要是一些胶类物质,如果胶、树胶和粘液等,还有半乳甘露糖、葡聚糖、海藻酸钠、羧甲基纤维素和真菌多糖等,部分半纤维素。 不溶性膳食纤维(IDF)是不溶于温水或热水的那部分纤维,主要是细胞壁的组成部分,包括 纤维素、部分半纤维素、木质素、原果胶、角质、壳聚糖、植物蜡和二氧化硅及不溶性灰分等。此外,功能性低聚糖和抗性淀粉也普遍认为属于膳食纤维。此部分纤维在中性洗涤剂的消化作用下,样品中的糖、淀粉、蛋白质、果胶等物质被溶解除去后不能消化的残渣。

虽然低聚果糖和其它类型的复杂碳水化合物传统意义上并不被认为是纤维,但它们确实符合必要的标准,现在被接受为一些膳食纤维的形式。 2,根据在大肠内的发酵程度不同,膳食纤维可分为部分发酵类纤维和完全发酵类纤维。 部分发酵类纤维包括:纤维素、半纤维素、木质素、植物蜡和角质等;完全发酵类纤维包括: β-葡聚糖、果胶、瓜尔豆胶、阿拉伯胶、海藻胶和菊粉等。 一般说来,完全发酵类纤维多属于可溶性纤维,而部分发酵类纤维多属于不溶性纤维,但也有 些例外,例如羧甲基纤维(CMC)易溶于水,但几乎不被大肠内的菌群所发酵。 1.2 粗纤维 粗纤维是植物细胞壁的主要组成成分,包括纤维素、半纤维素、木质素及角质等成分。通常蔬菜、水果、粮谷类所含的食物纤维都叫粗纤维(目前我们国家还没有粗纤维的定义,只是一个习惯称呼而已)。粗纤维是膳食纤维的一部分,在测定中,是植物组织用一定浓度的酸、碱、醇和醚等试剂,在一定温度下,经过一定时间的处理后所剩下的残留物,其主要成分是纤维素和木质素。 酸性洗涤纤维(ADF):用酸性洗涤剂去除饲料中的脂肪、淀粉、蛋白质和糖类等成分后,残 留的不溶解物质的总和,包括纤维素、木质素及少量的硅酸盐等。 中性洗涤纤维(NDF):用中性洗涤剂去除饲料中的脂肪、淀粉、蛋白质和糖类等成分后,残 留的不溶解物质的总和,包括构成细胞壁的半纤维素、纤维素、木质素及少量的硅酸盐等。 1.3 膳食纤维的主要成分 1.3.1 不溶性膳食纤维 纤维素(Cellulose),是不溶性膳食纤维的基本结构,一种由β葡萄糖分子以β-糖苷键连接起来的直链聚合物,由300-500个葡萄糖缩合而成,最多能达到1000个葡萄糖单体。自然界分布最广、含量最多的一种多糖,占自然界碳含量50%以上,一般木材中,纤维素占40-50%,还有10-30%的半纤维素和20-30%的木质素。不溶于冷水、热水、烯酸和稀碱溶液。人体内的淀粉酶只能水解α-1,4-糖苷键,而不能水解β-1,4-糖苷键,因此纤维素不能被人体胃肠道的酶消化; 半纤维素(Hemicellulose),是由一些单糖如阿拉伯糖、半乳糖、葡萄糖和木糖混合组成的一 种聚合物,是一种具有支链的异质多糖,也不溶于冷水、热水和烯酸,但能溶于稀碱溶液(半纤维素中的某些成分是可溶的,在谷类中可溶的半纤维素被称之为戊聚糖,它们可形成黏稠的水溶液并具有降低血清胆固醇的作用),与烯酸加热时比纤维素更易水解,具有亲水性。原来 是从总纤维素中以17.5%NaOH至24%KOH提取出来的多糖成分的总称,而没有相应的特定的化学结构。半纤维木聚糖在木质组织中占总量的50%,它结合在纤维素微纤维的表面,并且相互连接,这些纤维构成了坚硬的细胞相互连接的网络。

相关主题