搜档网
当前位置:搜档网 › 北邮微波实验报告 (2500字)

北邮微波实验报告 (2500字)

北邮微波实验报告 (2500字)
北邮微波实验报告 (2500字)

微波实验报告

姓名:王绪东学号: 08210234日期: 2011/6/04

目录

实验二微带分支线匹配器 ............................................................................. (3)

实验目的 ............................................................................. ...................................................... 3 实验原理 ............................................................................. ...................................................... 3 实验内容 ............................................................................. ...................................................... 3 实验步骤与结果 ............................................................................. (3)

单支节 ............................................................................. .................................................. 4 双支节 ............................................................................. .. (7)

实验三微带多节阻抗变阻器 ............................................................................. (11)

实验目的 ............................................................................. .................................................... 11 实验原理 ............................................................................. .................................................... 11 实验内容 ............................................................................. .................................................... 11 实验步骤与结果 ............................................................................. ........................................ 12 实验四微带功分器 ............................................................................. . (13)

实验目的 ............................................................................. .................................................... 13 实验原理 ............................................................................. .................................................... 13 实验内容 ............................................................................. .................................................... 13 实验步骤与结果 ............................................................................. ........................................ 15 心得体会..............................................................................

(16)

实验二微带分支线匹配器

实验目的

1.熟悉支节匹配器的匹配原理

2.了解微带线的工作原理和实际应用 3.掌握smith图解法设计微带线匹配网络实验原理

支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳y是y0+jb形式。然后,此短截线的电纳选择为-jb,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

实验内容

已知:输入阻抗 zin=75ω

负载阻抗 zl=(64+j35)ω特性阻抗 z0=75ω

介质基片εr=2.55,h=1mm

假定负载在2ghz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8ghz至2.2ghz的变化。

实验步骤

1.根据已知计算出各参量,确定项目频率。

2.将归一化阻抗和负载阻抗所在位置分别标在smith圆上。

3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用txline计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。

4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带分支线处的不均匀性所引起的影响,选择适当的模型。

5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2ghz。

6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

仿真调测单支节

1.根据已知计算出各参量。写入output equations。

zl为归一化负载阻抗;zin为归一化输入阻抗;tl为负载处反射系数;tin 为输入端反射系数;b为以0.01为步长扫描0~2*pi; r为阻抗处等反射系数圆;rp为匹配圆;rj为大圆。

2.将归一化阻抗和负载阻抗所在位置分别标在smith圆上

图表1以实部虚部方式显示

图表2以幅度角度方式显示绘制步骤:

? 将归一化输入阻抗和负载阻抗所在位置标在导纳圆图上 ? 从负载阻抗处沿等反射系数圆向源旋转,交匹配圆一点,

由此确定单支节传输线阻抗为-0.531245*j,取此经历的电长度为分支线与负载的距离d=198.81°*半波长

? 在导纳圆图上标出该点位置,从开路点出发向源方向旋转到标识位置,取此经历的电长度为分支线的长度l=303.93°*半波长

3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的

介质基片、特性阻抗和频率用txline计算微带线物理长度和宽度。

4.画出原理图。注意微带分支线处的不均匀性所引起的影响,选择适当的模型。

调谐后的电路图为:

5.添加矩形图,添加测量,测量输入端的反射系数幅值。

双支节

1.根据已知计算出各参量。写入output equations。

2.画出smith原图。

绘图步骤:

? 根据两枝节间隔长度为1/8波长,绘出辅助圆位置

? 在图中标出负载处位置,沿等反射系数圆向源方向旋转180度,该点为y1’点

? 从y1’点沿等电导圆旋转,交辅助圆于y1点,通过y1点导纳值减去y1’点导纳值得到第

一个枝节的阻抗值。

? 在图中标出该阻抗值点,从开路点向源方向旋转到标出的阻抗值点,经过的电长度为第一枝节的长度。

? 从y1点沿等反射系数圆向源方向旋转,交匹配圆于y2’点,1-y2’的阻抗值为第二枝节的

阻抗值,在图中标出该阻抗点,从开路点向源方向旋转到该点,经过的电长度为第二枝节的长度

3.画出原理图。

调谐后的原理图为:

得到调谐后矩形图:

实验三微带多节阻抗变阻器

实验目的

1. 掌握微带多节阻抗变阻器的工作原理

2. 掌握微带多节阻抗变阻器的设计和仿真

实验原理

变阻器是一种阻抗变换元件,它可以接于不同数值的电源内阻和负载电阻之间,将两者起一相互变换作用获得匹配,以保证最大功率的功率:此外,在微带电路中,将两不同特性阻抗的微带线连接在一起时为了避免线间反射,也应在两者之间加变阻器。

单节λ/4变阻器是一种简单而有用的电路,其缺点是频带太窄。为了获得较宽的频带,常采用多节阻抗变换器。如下图所示,

多节变阻器的每节电长度均为θ;z0,z1,z2??,zn为各节的特性阻抗,zn?1为负载阻抗,并假设zn+1>zn,……z2>z1,z1>z0。

其中ρi=z i/z i-1 γi=(ρi-1)/(ρi-1+1)

在上图中,变阻器的阻抗由z0变到zn+1,对z0归一化,即由z0=0变到zn+1=r,r即为阻抗变换比。其中ρ1,ρ2……ρn+1为相邻两传输线段连接处的驻波比。根据微波技术的基本原理,其值等于大的特性阻抗对小的特性阻抗之比。γ1,γ2,……γn+1则为连接处的反射系数,为了使设计简单,往往取多节变阻器具有对称结构,即使变阻器前后对称位置跳变点的反射系数相等,γ1=γn+1,γ2=γn……。

定义下列公式为变阻器的相对带宽和中心波长:

f0?(f1?f2)/2

d?(f2?f1)/2

f其中f1 和f2 分别为频带边界的传输线波长,0 为传输线中心波长,d为相对带宽。

实验内容

设计仿真等波纹型微带多节变阻器。

给定指标:在2ghz-6ghz的频率范围内,阻抗从50欧变为10欧,驻波比不应超过1.15,介质基片h=1mm,在此频率范围内色散效应可忽略。

实验步骤

1.根据给定的指标,查表确定微带变阻器的节数。

(由于阻抗从50ω变为10ω,所以其r=5,中心频率为4ghz,相对带宽为d=1,通过查表,查得满足r值和d值,而且驻波比不超过1.15时,可以确定变阻器的节数n=4。)

2.查表计算各段线的归一化特性阻抗。

查表可以得到z1=1.21721,z2=1.77292,又可以通过r,计算可得z3=2.82021,z4=4.10775。各段的实际阻值为上述的归一化值与10的乘积。)

3.利用txline计算各段实际的物理长度。通过计算可以得知:

zport1=10ω,w=10.61mm,l=6.269mm

z1=12.1721ω,w=8.434mm,l=6.342mm

z2=17.7292ω,w=5.301mm,l=6.518mm

z3=28.2021ω,w=2.796mm,l=6.793mm

z4=41.0775ω,w=1.518mm,l=7.051mm

zport2=50ω,w=1.044mm,l=7.193mm

4.根据以上计算的结果即可以得到原理图,原理图一共由六段微带线构成,其中的四段是实现阻抗变化器的微带线,而其余的两段是实现与端口匹配的微带线的。

5.绘制原理图完毕之后,通过添加一个矩形的测量图,来仿真观察设计的阻抗匹配器是否符合实验的要求。调谐电路。在调谐各阶微带线的长度时,要保证其变化趋势不变。仿真调测

电路原理图:

调谐后:

在2g到6g,反射系数<1.16;

实验四微带功分器

实验目的

1.掌握微波网络的s参数

2.熟悉微带功分器的工作原理及其特点

3.掌握微带功分器的设计和仿真

实验原理

功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。在电路中常用到微带功分器,其基本原理和设计公式如下:

图表 1 二路功分器

图1是二路功分器的原理图。图中输入线的特性组抗为z0 ,

两路分支线的特性阻抗分别为z02和z03,线长为?0/4,?0/4为中心频率时的带内波长。图中r2,r3为负载阻抗,r为隔离阻抗。

对功分器的要求是:两输出口2和3的功率按一定比例分配,并且两口之间相互隔离,当两口接匹配负载时,1口无反射。下面根据上述要求,确定z02,z03 r2,r3及r的计算公式。

设2口、3口的输出功率分别为,对应的电压为 .根据对功分器的要求,则有:

p3=k2p2

|v3|2/r3=k2|v2|2/r2

式中k为比例系数。为了使在正常工作时,隔离电阻r上不流过电流,则应

v3=v2 于是得 r2=kr3

若取 r2=kz0

则r3=z0/k

因为分支线长为λe0/4,故在1口处的输入阻抗为:

zin2=z02/r2 22

zin3=z03/r3

为使1口无反射,则两分支线在1处的总输入阻抗应等于引出线的z0,即

y0=1/z0=r2/z02+r3/z03

若电路无损耗,则

|v1|/zin3=k|v1|/zin2

式中v1为1口处的电压

所以 zin=kz03 222222 2

z02=z0[(1+k2)/k3]0.5

z03=z0[(1+k2)k]0.5

下面确定隔离电阻r的计算式。

跨接在端口2、3间的电阻r,是为了得到2、3口之间互相隔离得作用。当信号1口输入,2、3口接负载电阻时,2、3两口等电位,故电阻r没有电流流过,相当于r不起作用;而当2口或3口得外接负载不等于r2或r3时,负载有反射,这时为使2、3两端口彼此隔离, 2r必有确定的值,经计算r=z0(1+k)/k

图1中两路线带之间的距离不宜过大,一般取2~3带条宽度。这样可使跨接在两带线之

间的寄生效应尽量减小。

实验内容

用volterra设计仿真一个微带功分器,指标为

中心频率 f0=2ghz

耦合度 k=2

引出线 z0=50ω

介质基片εr=2.55,h=1mm实验步骤

1.按照指标要求用公式计算各阻抗值。

计算结果:z02=158.1 z03=39.53 z04=70.71 z05=35.36 r=125 r2=100 r3=25

2.根据txline得出对应的w和l

z0=50ω,w=2.834mm,l=25.58mm

z02=158.1ω,w=0.2117mm,l=27.144mm,l1=y,l2=x1mm

z03=39.53ω,w=3.989mm,l=25.265mm,l3=ymm,l4=x2mm

r=125ω,w=0.4484mm,l=8.5023mm

r2=100ω,r3=25ω

z04=70.71ω,w=1.6012mm,l=26.073mm

z05=35.36ω,w=4.6492mm,l=25.125mm

由于图中变量很多,且相互约束,为了减少调谐时的麻烦,采用全局变量的方法,全局变量申明为:

因为要求两路线带之间的距离不宜过大,一般取2~3带条宽度,且宽度相等,设电阻的长度为3mm,则得等式:x1+x2=a+b+3;即b=x1+x2-3-a;

3.画原理图

4.添加矩形图,添加测量,观察各端口数据是否满足要求。调谐电路。

调谐后:

可以看出:在2ghz时,s[2,1], s[3,1]的差小于6.1db,隔离度s[3,2]小于-17.5db,符合要求。

心得体会

通过几次课上的微波实验和自己课后的练习,很顺利地完成了实验内容,收获很大。本次实验完成了第2~4这三个实验,分别对单双直接支节匹配、微带多节阻抗匹配和微带公分器进行了复习和上机操作,加深了理解。

在操作过程中,也出现了很多问题。在刚开始的时候,对软件使用不熟,第一个实验反复改了很多遍,还是不能达到预期效果。课后重新温习了有关的微波知识,尤其书本第五章的几个例题,把原理搞清楚再做就快很多了。接着,对于一些不太明白的软件使用,请教了老师。还有一些细节问题,如端口要加引出线,

微带线和其他电阻等的连接需要专门的连接器,仿真过程中要考虑微带线的不均匀性并选择合适的模型。

在实际的操作中,由于刚开始的时候感觉第一个实验较为复杂,就转而先做后面的实验三四。相对而言,实验三四较为容易,实验原理也是最近新学,能很快地画出原理图,给了自己很大的信心。实验三主要是查表计算阻抗值,然后画出原理图并调谐。需要注意的是,调

谐各段微带线的长度时,调谐范围不超过10%,同时要保证其变化趋势不变,或递增或递减。实验四需要注意的是,在画z02和z03 时,微带线分为两段,刚开始没明白为什么,请教老师后知道,竖着的那段微带线之和约为较大带条宽度的2~3倍,同时在r附近增设两段微带线,以防止上下两段带线之间距离过大造成太大误差。

实验三四完成地较为顺利。然后,在自己的电脑上完成了实验二的剩余部分。由于有之前的实验经验积累,剩余部分也很快调谐完成。做了很多课程实验,其实主要目的不仅仅是做实验,还要更好地掌握课程内容加深理解,同时强化自己的学习能力和动手能力。提高自身的学术水平和实际能力将比实验本身更为重要。

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

北邮数字电路综合实验报告

数字电路综合实验报告 简易智能密码锁 一、实验课题及任务要求 设计并实现一个数字密码锁,密码锁有四位数字密码和一个确认开锁按键,密码输入正确,密码锁打开,密码输入错误进行警示。 基本要求: 1、密码设置:通过键盘进行4 位数字密码设定输入,在数码管上显示所输入数字。通过密码设置确定键(BTN 键)进行锁定。 2、开锁:在闭锁状态下,可以输入密码开锁,且每输入一位密码,在数码管上显示“-”,提示已输入密码的位数。输入四位核对密码后,按“开锁”键,若密码正确则系统开锁,若密码错误系统仍然处于闭锁状态,并用蜂鸣器或led 闪烁报警。 3、在开锁状态下,可以通过密码复位键(BTN 键)来清除密码,恢复初始密码“0000”。闭锁状态下不能清除密码。 4、用点阵显示开锁和闭锁状态。 提高要求: 1、输入密码数字由右向左依次显示,即:每输入一数字显示在最右边的数码管上,同时将先前输入的所有数字向左移动一位。 2、密码锁的密码位数(4~6 位)可调。

3、自拟其它功能。 二、系统设计 2.1系统总体框图 2.2逻辑流程图

2.3MDS图 2.4分块说明 程序主要分为6个模块:键盘模块,数码管模块,点阵模块,报警模块,防抖模块,控制模块。以下进行详细介绍。 1.键盘模块 本模块主要完成是4×4键盘扫描,然后获取其键值,并对其进行编码,从而进行按键的识别,并将相应的按键值进行显示。 键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出高电平,在读入输出的行值时,通常高电平会被低电平拉低,当当前位置为高电平“1”时,没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。由此可确定按键位置。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告 班级学号班序号亚东2011211116 2011210466 22

实验二微带分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 实验原理 1.支节匹配器 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+YY形式,即Y=Y0+YY,其中Y0=1/Y0 。并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为Y0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为?YY,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。 双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 2.微带线 微带线是有介质Y Y(Y Y>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质Y Y,可以近似等效为均匀介质填充的传输线,等效介质电常数为Y Y,介于1和Y Y之间,依赖于基片厚度H和导体宽度W。而微带线的特性阻抗与其等效介质电常数为Y Y、基片厚度H和导体宽度W有关。 实验容 已知:输入阻抗Zin=75Ω 负载阻抗Zl=(64+j35)Ω 特性阻抗Z0=75Ω 介质基片εr=2.55,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北京邮电大学数字电路实验报告

北京邮电大学 数字电路与逻辑设计实验 实验报告 实验名称:QuartusII原理图输入 法设计与实现 学院:北京邮电大学 班级: 姓名: 学号:

一.实验名称和实验任务要求 实验名称:QuartusII原理图输入法设计与实现 实验目的:⑴熟悉用QuartusII原理图输入法进行电路设计和仿真。 ⑵掌握QuartusII图形模块单元的生成与调用; ⑶熟悉实验板的使用。 实验任务要求:⑴掌握QuartusII的基础上,利用QuartusII用逻辑 门设计实现一个半加器,生成新的半加器图像模 块。 ⑵用实验内容(1)中生成的半加器模块以及逻辑门 实现一个全加器,仿真验证其功能,并能下载到实 验板上进行测试,要求用拨码开关设定输入信号, 发光二级管显示输出信号。 ⑶用3线—8线译码器(74L138)和逻辑门实现要求 的函数:CBA F+ C + =,仿真验证其 + B C B A A A B C 功能,,并能下载到实验板上进行测试,要求用拨 码开关设定输入信号,发光二级管显示输出信号。二.设计思路和过程 半加器的设计实现过程:⑴半加器的应有两个输入值,两个输出值。 a表示加数,b表示被加数,s表示半加和, co表示向高位的进位。

⑵由数字电路与逻辑设计理论知识可知 b a s ⊕=;b a co ?= 选择两个逻辑门:异或门和与门。a,b 为异 或门和与门的输入,S 为异或门的输出,C 为与门的输出。 (3)利用QuartusII 仿真实现其逻辑功能, 并生成新的半加器图形模块单元。 (4)下载到电路板,并检验是否正确。 全加器的设计实现过程:⑴全加器可以由两个半加器和一个或门构 成。全加器有三个输入值a,b,ci ,两个输 出值s,co :a 为被加数,b 为加数,ci 为低 位向高位的进位。 ⑵全加器的逻辑表达式为: c b a s ⊕⊕= b a ci b a co ?+?⊕=)( ⑶利用全加器的逻辑表达式和半加器的逻 辑功能,实现全加器。 用3线—8线译码器(74L138)和逻辑门设计实现函数 CBA A B C A B C A B C F +++= 设计实现过程:⑴利用QuartusII 选择译码器(74L138)的图形模块

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

极化波实验报告

内蒙古工业大学信息工程学院 实验报告 课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生 与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实 验室班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波 反射定律的方法 实验设备与仪器 dh926ad型数据采集仪 dh926b型微波分光仪 dh1121b型三厘米固态信号源金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍 物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和 通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折 射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启dh1121b型三厘米固态信号源。dh926b型微波分光仪的两喇 叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作 平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉 起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应 使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。 将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯 亮(蓝色),表示已连接好。然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红 色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅 通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看dh1121b 型三厘米固态信号源的“等幅”和“方波”档的设置,将dh926ad型数据采集仪的“等幅/ 方波”设置按钮等同于dh1121b型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数, 然后转动活动臂在dh926ad型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动 臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪 微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取 30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应 注意系统的调整和周围环境的影响。 采集过程中,dh926ad型数据采集仪的usb指示灯连续闪动(蓝色),表示采集过程正在 继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现 姓名:班级:学号: 一、摘要: 运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。 关键字: 模拟电路,高低电平,运算放大器,振荡,比较 二、设计任务要求: 利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光

三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟

滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为: 式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。 由上述各式可知,该电路输出方波的幅度由稳压管的稳压值和正向导通电压决定,三角波的输 出幅度决定于稳压管的稳压值和正向导通电压以及反馈比R1/R f,而振荡频率与稳压管的稳压值和正向导通电压无关,因此,通过调换具有不同稳压值和正向 导通电压的稳压管可以成比例地改变方波和三角波的幅度而不改变振荡频率。 电位器的滑动比R P2/R P1和积分器的积分时间常数R2C的改变只影响振荡频率而 不影响振荡幅度,而反馈比R1/R f的改变会使振荡频率和振荡幅度同时发生变化。因此,一般用改变积分时间常数的方法进行频段的转换,用调节电位器滑动头 的位置来进行频段内的频率调节。

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮-电子电路综合设计实验(函数信号发生器)报告

电子电路综合设计实验报告 实验1 函数信号发生器的设计与实现 姓名:------ 学号:---------- 班内序号:--

一. 实验名称: 函数信号发生器的设计与调试 二.实验摘要: 采用运放组成的积分电路产生方波-三角波,可得到比较理想的方波和三角波。根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词: 方波三角波正弦波频率可调 三、设计任务要求 1.基本要求: (1)输出频率能在1-10KHz范围内连续可调,无明显失真; (2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%; (3)三角波Uopp=8V; (4)正弦波Uopp错误!未找到引用源。1V. (5)设计该电路的电源电路(不要求实际搭建) 2.提高要求: (1)正弦波、三角波和方波输出波形的峰峰值Uopp均可在1V-10V内连续可调。 (2)三种输出波形的输出端口的输出阻抗小于100Ω。 (3)三种波形从同一端口输出,并能够显示当前输出信号的种类、大小和频率 (4)用CPLD设计DDS信号源 (5)其他函数信号发生器的设计方案 四、设计思路以及总体结构框图 本课题中函数发生器结构组成如下所示:由比较器和积分器组成方波—三角波产生电

路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 图4-1 函数信号发生器的总体框图 五.分块电路和总体电路的设计 (1)方波——三角波产生电路 图5-1 方波-三角波产生电路

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

2016年北邮数电实验报告

数字电路与逻辑设计 实验报告 学院:电子工程学院 班级: 姓名: 学号: 班内序号:

目录 (一)实验名称及实验任务要求 (1) (二)模块端口说明及连接图 (2) 1.1实验三(3)模块端口说明 (2) 1.2实验三(3)连接图 (2) 2.1实验四模块端口说明 (2) 2.2实验四连接图 (2) (三)原理图或VHDL代码 (3) 1.实验一(2)原理图 (3) 2.实验三(3)VHDL代码 (4) 3.实验四VHDL代码 (7) (四)仿真波形 (10) 1.实验一(2)仿真波形 (10) 2.实验三(3)仿真波形 (11) 3.实验四仿真波形 (11) (五)仿真波形分析 (11) 1.实验一(2)仿真波形分析 (11) 2.实验三(3)仿真波形分析 (11) 3.实验四仿真波形分析 (11) (六)故障及问题分析 (12) (七)总结和结论 (13)

(一)实验名称及实验任务要求 实验一 名称:QuartusII原理图输入法设计与实现 实验任务要求:EDA基础实验1(1)、(2)、(3)必做,选做VHDL 实现加法器。 实验二 名称:用VHDL设计与实现组合逻辑电路 实验任务要求:四人表决器、8421码转格雷码、数码管译码器(下载测试)。 实验三 名称:用VHDL设计与实现时序逻辑电路 实验任务要求:分频器、8421十进制计数器、将分频器/8421十进制计数器/数码管译码器3个电路进行连接并下载。 实验四 名称:用VHDL设计与实现相关电路 实验任务要求:数码管动态扫描控制器、点阵扫描控制器。

(二)模块端口说明及连接图 1.1实验三(3)模块端口说明 cp:时钟信号输入; rst:8421十进制计数器异步置位; c[6...0]:七段二极管数码管显示; cat[7...0]:数码管显示。 1.2实验三(3)连接图 2.1实验四模块端口说明 cp:时钟信号输入; rst:8421计数器异步复位; lgt[6...0]:七段二极管数码管显示; cat[7...0]:数码管显示。 2.2实验四连接图

北邮天线实验报告

北邮天线实验报告 篇一:北京邮电大学电磁场与电磁波实验报告《天线部分》《电磁场与微波实验》 ——天线部分实验报告 姓名:班级:序号:学号: 实验一网络分析仪测量振子天线输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随振子电径变化的情况。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h ?2。由于天 线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称

振子天线的一半,为 ?2h??60?ln()?1?。 a?? 三、实验步骤 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同电径(φ1,φ3,φ9)的天线,分析两个谐振点的阻抗变化情况; 设置参数:BF=600,?F=25,EF=2600,n=81。 校正图: 测量图 1mm天线的smith圆图: 3mm天线的smith圆图: 9mm天线的smith圆图: 篇二:北邮电磁场与微波实验天线部分实验报告一信息与通信工程学院 电磁场与微波实验报告 实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的:

微波测量实验报告四

近代微波测量实验报告四 :学号: 学院:时间:年月 一实验名称 微波放大器测量 二实验目的 熟悉微波测试仪器;掌握微波放大器测试方法。 三实验容 1、用矢网测试放大器的增益和输入回波损耗; 2、用信号源和频谱分析仪测试放大器某频点上的输出1dB压缩点及压缩点的二 次和三次谐波抑制比。 四实验器材 矢量网络分析仪、放大器、频谱分析仪、信号源、微波同轴电缆、微波转接头。 五实验原理及实验步骤 1、放大器的增益和输入回波损耗测量 1)校准; 2)连接矢量网络分析仪和放大器,设置矢量网络分析仪的起始频率为100MHz,终止频率为6GHz,信号功率为-15dBm; 3)分别测试1G~6GHz频率点的增益S21,和回波损耗S11。 2、放大器输出1dB压缩点及谐波测量 1dB压缩点:当放大器的输入功率增加到使放大器的增益降低且引起输出功率呈非线性增大时,便发生增益压缩。这定义为导致放大器增益有 1dB 减小(相对于放大器的小信号增益)的输入功率(或有时为输出功率)。 1)信号源产生频率为1GHz的信号; 2)连接信号源、频谱分析仪,将频谱仪所读参数与原信号比较即可得电缆和接头损耗; 3)接入放大器,改变信号源的信号功率,记录频谱仪上放大器输出功率数值,

计算放大器增益,直至放大器增益有1 dB衰减,便可得1 dB衰减点。 4)在输出1dB压缩点处,测量二次和三次谐波抑制。 六实验结果 1、增益及回波损耗测试结果 测试曲线S21、S11 增益: 回波损耗:

2、P-1及谐波测试结果 测试频率1000 MHz,测试电缆和接头的损耗大约为0.6dB。(Pin和Pou分别是为信号 源输出功率和谱仪测试功率) Pin(dBm)-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 Pout(dBm)-3.33 -2.32 -1.33 -0.35 0.61 1.67 2.67 3.63 4.60 5.64 G(dB)18.37 18.38 18.37 18.35 18.31 18.37 18.37 18.33 18.30 18.34 Pin(dBm)-10 -9 -8 -7 -6 -5 -4 Pout(dBm)6.61 7.55 8.48 9.32 10.12 10.75 11.23 G(dB)18.31 18.25 18.18 18.02 17.82 17.45 16.93 由上表可得在1000MHz时该放大器输出1dB压缩点为 10.75 dBm, 在输出1dB压缩点处,二次和三次谐波抑制分别为 29.54 dB和 26.49 dB。 测试图片: 电缆和接头损耗: -20dBm -19dBm

北邮-数字电路与逻辑设计实验-实验报告(上)

北京邮电大学电路实验中心<数字电路与逻辑设计实验(上)> 实 验 报 告 班级: xxxx 学院: xxx 实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx 实验时间: xxx 评定成绩:

目录 实验1 Quartus II 原理图输入法设计与实现 (3) 一、实验目的 (3) 二、实验所用器材 (3) 三、实验任务要求 (3) 四、实验原理图 (3) 五、实验仿真波形图及分析 (4) 实验2 用VHDL 设计与实现组合逻辑电路 (5) 一、实验目的 (5) 二、实验所用器材 (5) 三、实验任务要求 (5) 四、VHDL代码 (5) 五、实验仿真波形图及分析 (7) 实验3 用VHDL 设计与实现时序逻辑电路 (8) 一、实验目的 (8) 二、实验所用器材 (8) 三、实验任务要求 (8) 四、模块端口说明及连接图 (8) 五、VHDL代码 (9) 六、实验仿真波形图及分析 (10) 实验4 用VHDL 设计与实现数码管动态扫描控制器 (10) 一、实验目的 (10) 二、实验所用器材 (11) 三、实验任务要求 (11) 四、模块端口说明及连接图 (11) 五、VHDL代码 (11) 六、实验仿真波形图及分析 (15) 故障及问题分析 (16) 总结和结论 (17)

实验1 Quartus II 原理图输入法设计与实现 一、实验目的 (1)熟悉用Quartus II原理图输入法进行电路设计和仿真; (2)掌握Quartus II 图形模块单元的生成与调用; (3)熟悉实验板的使用。 二、实验所用器材 (1)计算机; (2)直流稳压电源; (3)数字系统与逻辑设计实验开发板。 三、实验任务要求 (1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模块单元。 (2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能,并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。 (3)用3线-8线译码器(74LS138)和逻辑门设计实现函数+CBA,仿真验证其功能,并下载到实验板测试。要求用拨码开关设定输入信号,发光二极管显示输出信号。 四、实验原理图 (1)半加器原理图 (2)全加器原理图

相关主题