搜档网
当前位置:搜档网 › 白光LED用橙红色荧光体Sr_2_省略__9_Eu_3_的制备和光谱性质_翟永清

白光LED用橙红色荧光体Sr_2_省略__9_Eu_3_的制备和光谱性质_翟永清

白光LED用橙红色荧光体Sr_2_省略__9_Eu_3_的制备和光谱性质_翟永清
白光LED用橙红色荧光体Sr_2_省略__9_Eu_3_的制备和光谱性质_翟永清

第29卷 第6期2009年 11月

河北大学学报(自然科学版)

Journal of Hebei University(Nat ural Science Edition)

Vol.29No.6

Nov.2009

白光L ED用橙红色荧光体Sr2MgSi3O9:Eu3+的

制备和光谱性质

翟永清,冯仕华,张 张,牛 强

(河北大学化学与环境科学学院,河北保定 071002)

摘 要:采用凝胶2燃烧法在活性炭弱还原气氛下成功合成了新型橙红色发光材料Sr2MgSi3O9:Eu3+.用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明:此发光材料与Sr2MgSi2O7具有相似的晶体结构,同属四方晶系.样品的一次颗粒近似球形,粒径在100nm左右.样品Sr2MgSi3O9:Eu3+的激发光谱在220~300nm内出现一宽带吸收,归属于Eu3+2O2-之间的电荷迁移带,300nm以后出现的锐线峰为Eu3+的f→f跃迁吸收峰,其最强锐线峰位于400nm,对应于Eu3+的基态到5L6激发态跃迁吸收,因而,可以被In GaN管芯产生的紫外辐射有效激发.发射光谱由2个强发射峰组成,位于592nm和618nm处,分别属于典型的Eu3+的5D0→7F1和5D0→7F2跃迁.此外,研究还发现共掺杂适量Ti使得发光颜色由橙红色向红色转变,发光强度明显增强.

关键词:Sr2MgSi3O9:Eu3+;发光;凝胶2燃烧法;白光L ED

中图分类号:O614.33 文献标识码:A 文章编号:1000-1565(2009)06-0609-05

Preparation of Orange2red Emitting Phosphors

Sr2MgSi3O9:Eu3+for White LEDs and Its Photoluminescent Properties

ZH AI Y ong2qing,FE NG Shi2hua,ZH ANG Zhang,NI U Qiang

(College of Chemist ry and Environmental Science,Hebei University,Baoding071002,China)

Abstract:Novel p hosp hors Sr2MgSi3O9:Eu3+synt hesized by gel2combustion met hod in weak reductive environment.The as2synt hesized p hosp hors were investigated by XRD,SEM and Fluorescence spect rop ho2 tometer.The result s show t hat Sr2MgSi3O9:Eu3+p ho sp hor po ssesses t he similar tet ragonal crystal st ruc2 t ure as t hat of Sr2MgSi2O7.The initial particles of as2synt hesized p hosp hors are nearly sp herical in shape, and t he particle size is about100nm in diameter.The excitation spect rum of Sr2MgSi3O9:Eu3+sample p resent s wide band absorption between220~300nm,which is ascribed to t he charge t ransfer between Eu3+2O2-.The sharp peaks after300nm belong to f→f t ransition of Eu3+,and t he strongest sharp peak is located at400nm,which is ascribed to t he t ransition f rom t he ground state of Eu3+to5L6excited state. Therefore,samples can be efficiently excited by ult raviolet radiation from In GaN chip.The emission spec2 t rum consist s of two emission peaks at592nm and618nm,which are ascribed to5D0→7F1and5D0→7F2 respectively.Moreover,it is found t hat co2doped Ti4+wit h t he p roper content can make t he emitting col2 our shift f rom orange2red to red,and improve intensity of luminescence effectively.

K ey w ords:Sr2MgSi3O9:Eu3+;luminescence;gel2combustion met hod;WL ED

 收稿日期:2008-12-25

 基金项目:国家自然科学基金资助项目(20675023);河北省教育厅博士基金资助项目(B2004205)

 第一作者:翟永清(1970-),女,内蒙包头人,河北大学教授,博士,主要从事稀土功能材料的制备及性质研究.

河北大学学报(自然科学版)2009年白光L ED 作为一种新型的固体光源,以其节能、绿色环保、寿命长、体积小等诸多优点,在照明和显示领域有着巨大的应用前景[1-2].目前产业化的白光L ED 制作方式,是把蓝光L ED 管芯和YA G:Ce 3+黄色微晶组合,此方式制作的白光L ED 由于在红光波段的辐射太弱,导致显色性偏低.为了解决上述问题,国际上开始尝试采用近紫外2紫(350~410nm )辐射的In GaN 管芯(UVL ED )激发三基色荧光粉以实现白光L ED [3].该方法是将若干种荧光粉涂在UVL ED 管芯上,管芯激发荧光粉形成红光、绿光、蓝光发射,三色光相叠加得到白光.由于肉眼对350~410nm 波段的光不敏感,这类白光L ED 的颜色只由荧光粉决定.但由于现有的光致发光荧光粉一般都不适合350~410nm 波段的激发,因此,研究新的适用于UVL ED 管芯激发的红色荧光材料非常重要.稀土离子激活的硅酸盐材料容易获得近紫外2蓝光范围的高效激发,又具有发光亮度高和化学稳定性好的优点,因而引起了人们的高度关注[4-8].但尚未发现对于Sr 2MgSi 3O 9:Eu 3+荧光材料的报道.

本工作采用凝胶2燃烧法合成了新型橙红色发光材料Sr 2MgSi 3O 9:Eu 3+,并对其物相结构、微观形貌及光谱特性进行了分析表征.此外,探讨了Eu 3+离子含量及共掺杂Ti 4+离子含量对体系发光性能的影响.1 实验部分

1.1 主要原料

Sr (NO 3)2(A.R.),Mg (NO 3)2?6H 2O (A.R.),(C 2H 5O )4Si (A.R.),Eu 2O 3(A.R.),CO (N H 2)2(A.R.),Ti (OC 4H 9)4(A.R.),H 3BO 3(A.R.),HNO 3(A.R.),无水乙醇(A.R.).

1.2 制备过程

1)首先将Eu 2O 3(A.R.)溶于硝酸,制成Eu (NO 3)3溶液,其准确浓度用ED TA 标准溶液滴定.

2)在100mL 坩埚中加入一定体积的共溶溶剂无水乙醇,按目标产物Sr 2-x -y MgS 3O 9:Eu 3+x ,Ti 4+y 的化学计量比,依次加入(C 2H 5O )4Si ,Eu (NO 3)3溶液,Ti (OC 4H 9)4(A.R.)溶液,Sr (NO 3)2,Mg (NO 3)2?6H 2O ,H 3BO 3,CO (N H 2)2及少量二次水,搅拌使各物料完全溶解并混合均匀,用2mol/L 的HNO 3调节p H 值为2~3,在70℃恒温水浴下加热蒸发,使(C 2H 5O )4Si 充分水解,直至形成凝胶.将此凝胶置于烘箱中在70℃下干燥,得干凝胶.然后将盛有干凝胶的坩埚置于马弗炉中,在一定炉温下起火燃烧,燃烧过程中放出大量气体,火焰呈黄红色,整个过程持续2~3min ,之后取出坩埚,加盖冷却至室温,得白色疏松多孔前驱物,将其研细,于1000℃在马弗炉里热处理2h ,自然冷却至室温,即得目标产物,样品呈白色.

1.3 分析测试

用Y 22000型全自动X 射线衍射仪测定样品的物相结构,测试条件为10°≤2θ≤70°,Cu K

α,η=0.154178nm ,电压30kV ,电流20mA ;用KYKY 22800B 型SEM 扫描电镜观察样品的形貌和粒度;用RF 2540荧光分光光度计测定样品的激发和发射光谱,所有样品均在室温下进行检测.

2 结果与讨论

2.1 物相结构分析

采用凝胶2燃烧法制得了Sr 2MgSi 2O 7及系列样品Sr 2-x -y MgSi 3O 9:Eu 3+x ,Ti 4+y

,其X 射线衍射图谱相似,如图1所示.从图1可以看出,样品Sr 2-x -y MgSi 3O 9:Eu 3+x ,Ti 4+y 的衍射峰数据与Sr 2MgSi 2O 7的PDF 卡片(卡号:7521736)衍射峰数据基本一致,说明样品为镁黄长石结构,属四方晶系(tetragonal ).样品Sr 2-x -y MgSi 3O 9:Eu 3+x ,Ti 4+y 的X 射线衍射图谱没有发现Eu 和Ti 化合物的衍射峰,说明Eu 3+和Ti 4+已经均匀进入到基质晶格中,少量掺杂离子Eu 3+和Ti 4+对基质的晶体结构没有太大影响.

2.2 形貌粒度分析

图2为1000℃还原制得的Sr 1.94MgSi 3O 9:Eu 3+0.06扫描电镜照片,放大5000倍.由图2可以看出,样品

一次颗粒外形基本成球形,尺寸约100nm.形貌控制被认为是提高微晶发光效率的一项关键性技术,细颗粒

?016?

第6期翟永清等:白光L ED 用橙红色荧光体Sr 2MgSi 3O 9:Eu 3+的制备和光谱性质的微晶具有光转化率高、散射低等优点[9].用凝胶2燃烧法制备的样品粒径较小,因此,有利于提高样品的发光性能.从图2中还可以看出样品中有少量团聚体存在,这是由于样品晶粒尺寸较小、表面能大的缘故

.

2.3 光谱分析

2.3.1 Sr 2MgSi 3O 9:Eu 3+的激发光谱和发射光谱

凝胶燃烧所得的前驱物经1000℃焙烧120min 处理得到的发光粉Sr 1.94MgSi 3O 9:Eu 3+0.06,在紫外光照

射下发出明亮的橙红色光.监测618nm 测得样品的激发光谱如图3a 所示.从图3a 可以看出,该激发光谱主要由2部分组成:1)在220~300nm 的宽带来自于Eu 3+2O 2-的电荷迁移态,即配位O 2-离子将1个电子转移给处于配位中心的Eu 3+离子,形成Eu 2O 复合体系的1个激发态;2)300~450nm 内的系列锐谱线,归

属于三价Eu 3+离子的f →f 跃迁,其中最强的锐线峰位于400nm 处,对应于Eu 3+的7F 0→5L 6跃迁,因此,该

发光材料可以被In GaN 管芯产生的紫外辐射有效激发.此外,在320,370,387及416nm 处还存在一些较弱的激发峰.

在400nm 激发下,得到样品的发射光谱,如图3b 所示,从图3b 可以看出,样品的发射光谱由位于

592,618nm 的2个强发射峰组成,分别归属为Eu 3+的5D 0→7F 1磁偶极跃迁和5D 0→7F 2电偶极跃迁.根据宇

称选择定则,5D 0→7F 2电偶极跃迁仅发生于Eu 3+占据非反演中心的格位;当Eu 3+占据反演中心的格位,

5D 0→7F 1的磁偶极跃迁发射最强.由图3b 可以看出,592nm 处发射峰强度大于618nm 处,所以Eu 3+在

Sr 2MgSi 3O 9基质中主要处于反演对称中心格位上,以5D 0→7F 1磁偶极跃迁发射为主,因而发橙红光[10].

2.3.2 Eu 3+的摩尔分数对Sr 2MgSi 3O 9:Eu 3+发光强度的影响

荧光粉的发光强度主要取决于发光中心的多少.因此,Eu 3+是影响荧光粉Sr 2MgSi 3O 9:Eu 3+发光强度的主要因素.图4为Sr 2-x MgSi 3O 9:Eu 3+x 的发光强度与Eu 3+的摩尔分数x (Eu 3+)的关系图.

从图4可以看出,当x (Eu 3+)<0.06时,随着x (Eu 3+)的增加,样品的发光亮度显著增强;当x (Eu 3+)=0.06时,样品的发光强度最大;当x (Eu 3+)>0.06时,样品的发光亮度开始降低,但不是十分明显;当x (Eu 3+)>0.08时,才出现明显的猝灭现象.由于形成猝灭的原因在于Eu 3+位置相互靠近,使得处于激发态的激活剂离子间发生相互作用而形成无辐射能量损耗[11].从图4中还可以看出,当x (Eu 3+)为0.02~0.10时,样品592nm 的发射峰强度始终高于618nm 处,说明样品Sr 2-x MgSi 3O 9:Eu 3+x 发光颜色比较稳定,发橙红色光.

?116?

河北大学学报(自然科学版)2009

2.3.3 Ti 4+的摩尔分数对Sr 2MgSi 3O 9:Eu 3+发光强度的影响

在紫外灯下观察Eu 3+和Ti 4+共掺杂样品发现:共掺Ti 4+后,样品发明亮的红光.监测波长618nm ,测得

样品Sr 1.94-y MgSi 3O 9:Eu 3+0.06,Ti 4+y

的激发光谱,如图5a 所示.对比图5a 与图3a ,可以看出,共掺杂Ti 4+的1.y =0.02;2.y =0.04

图5 Sr 1.94-y MgSi 3O 9:Eu 3+0.06,Ti 4+y

样品的激发(a)和发射(b)光谱Fig.5 Excitation (a)and Emission (b)spectra of obtained phosphors Sr 1.94-y MgSi 3O 9:Eu 3+0.06,Ti 4+y

摩尔分数x (Ti 4+)=0.02时(曲线1),位于220~300nm 来自于Eu 3+2O 2-的电荷迁移态的宽带及位于

300~450nm 来自于Eu 3+的f →f 跃迁的锐谱线的强度都明显高于未掺杂Ti 的样品Sr 1.94MgSi 3O 9:Eu 3+0.06

的强度;共掺杂Ti 4+的摩尔分数x (Ti 4+)=0.04时(曲线2),Eu 3+2O 2-电荷迁移带的强度也高于未掺杂Ti 的样品,但Eu 3+的f →f 跃迁的系列锐谱线的强度有所降低.由此可见,适量Ti 4+的共掺杂有利于样品对紫外光及近紫外光的吸收,可以与In GaN 管芯更好地符合来制备白光L ED.

在400nm 激发下,得到样品Sr 1.94-y MgSi 3O 9:Eu 3+0.06,Ti 4+y

的发射光谱,如图5b 所示.对比图5b 与图3b ,可以看出,共掺杂Ti 4+后对发射光谱的峰形、峰

位影响不大;但是,发射峰相对强度有明显的变化,红橙

比I 618nm /I 592nm 增大,因此红光发射增强.这可能是因为

Ti 4+的共掺杂,使得晶体场的不均匀性增加,晶格的对

称性降低,晶体中的宇称选择定则放宽[9],因此,使5D 0

→7F 2电偶极跃迁发射增强.当x (Ti 4+)=0.02时,样品

在592nm 及618nm 处的发射峰强度均比未掺杂时明

显提高;当x (Ti 4+)=0.04时,样品在592nm 处的发射峰

强度比未掺杂时明显降低,因此,确定适宜的x (Ti 4+)=

0.02.

3 结论

1)以凝胶2燃烧法成功合成了高亮度橙红色发光材料Sr 2MgSi 3O 9:Eu 3+.由于Eu 3+均匀分布于基质晶格

中,从而增加了有效发光中心的数量,提高了

Sr 2MgSi 3O 9:Eu 3+发光性能.该法还具有合成温度低、时?216?

第6期翟永清等:白光L ED 用橙红色荧光体Sr 2MgSi 3O 9:Eu 3+的制备和光谱性质间短、操作简单、节省能源等优点.

2)研究发现:Ti 4+的共掺杂对样品的发光性能有显著的影响.当x (Eu 3+)为0.06,x (Ti 4+)为0.02时,与未掺Ti 4+样品相比,其电荷迁移带及Eu 3+的f →f 跃迁吸收峰明显增强,同时发射峰强度增加,红橙比

I 618nm /I 592nm 增大,红光发射显著增强.因此,Sr 2MgSi 3O 9:Eu 3+,Ti 4+是一种很有前途用于白光L ED 的橙红

色荧光粉.

参 考 文 献:

[1]YOSHITA KA T ,MA KO TO K ,TOSHIKIM.An aluminium nitride light 2emitting diodewith awavelength of 210nanome 2

tres [J ].Nature ,2006,441(7091):325-328.

[2]PARD HA SARAD HI M ,VARADARAJ U U V.Photoluminescence studies on Eu 2+2activated Li 2SrSiO 42a potential or 2

ange 2yellow phosphor for solid 2state lighting [J ].Chem Mater ,2006,18:5267-5272.

[3]N ISHIDA TOSHIO ,BAN TOMO YU KI ,KOBA YASHI NAO KI.High 2color 2rendering light sources consisting of a

350nm ultraviolet light 2emitting diode and three 2basal 2color phosphors[J ].Physics Letters ,2003,82(22):3817-3819.

[4]王继磊,王达健,李 岚,等.硅酸盐单基质白光L ED 荧光体的制备和光谱性质[J ].发光学报,2006,27(4):463-468.

[5]EKAMBARAMA S ,MAAZAB https://www.sodocs.net/doc/054445175.html,bustion synthesis and luminescent properties of Eu 3+2activated cheap red phos 2

phors [J ].J Alloys Compd ,2005,395:132-134.

[6]DIN G Weijia ,WAN G Jing ,ZHAN G Mei ,et al.L uminescence properties of new Ca 10(Si 2O 7)3Cl 2:Eu 2+phosphor [J ].

Chemical Physics Letters ,2007,435(426):301-305.

[7]SUN Xiaoyuan ,ZHAN G Jiahua ,ZHAN G Xia ,et al.A white light phosphor suitable for near ultraviolet excitation[J ].

Journal of L uminescence ,2007,1222123:955-957.

[8]L IU Hongli ,H E Dawei ,SH EN Fang ,et al.L uminescence properties of green 2emitting phosphor (Ba 12x ,Sr x )2SiO 4:Eu 2+

for white L EDS [J ].Journal of Rare Earths ,2006,24(1):121-124.

[9]刘 霁,李万万,孙 康.白光L ED 及其涂敷用荧光粉的研究进展[J ].材料导报,2007,8(21):116-120.

[10]张中太,张俊英.无机光致发光材料及应用[M ].北京:化学工业出版社,2005:91-92.

[11]WAN G X X ,ZHAN G Z T ,TAN G Z L ,et al.Characterization and properties of a red and orange Y 2O 2S 2based long af 2

terglow phosphor[J ].Mater Chem Phys ,2003,80:1-5.

(责任编辑:赵藏赏)

?316?

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

白光LED发光原理及其参数介绍

白光LED发光原理及其参数介绍 时间:2009-08-09 12:15:31 来源:未知作者:admin 阅读:432 次 白光是一种组合光,白光LED可以分为单芯片、双芯片和三芯片等,以下将按这一分类来介绍,还将介绍照明用白光LED的一些技术指标。 白光LED发光原理 单芯片 InGaN(蓝)/YAG荧光粉 这是一种目前较为成熟的产品,其中1W的和5W的Lumileds已有批量产品。这些产品采用芯片倒装结构,提高发光效率和散热效果。荧光粉涂覆工艺的改进,可将色均匀性提高10倍。实验证明,电流和温度的增加使LED光谱有些蓝移和红移,但对荧光光谱影响并不大。寿命实验结果也较好,Φ5的白光LED在工作1.2万小时后,光输出下降80%,而这种功率LED在工作1.2万小时后,仅下降10%,估计工作5万小时后下降30%。这种称为Luxeon的功率LED最高效率达到44.3lm/w,最高光通量为187lm,产业化产品可达120lm,Ra为75-80。 InGaN(蓝)/红荧光粉+绿荧光粉 Lumileds公司采用460nmLED配以SrGa2S4:Eu2+(绿色)和SrS:Eu2+(红色)荧光粉,色温可达到3000K-6000K的较好结果,Ra达到82-87,较前述产品有所提高。 InGaN(紫外)/(红+绿+蓝)荧光粉 Cree、日亚、丰田等公司均在大力研制紫外LED。Cree公司已生产出50mW、 385nm—405nm的紫外LED;丰田已生产此类白光LED,其Ra大于等于90,但发光效率还不够理想;日亚于最近制得365nm、1mm2、4.6V、500mA的高功率紫外LED,如制成白色LED,会有较好效果。https://www.sodocs.net/doc/054445175.html, ZnSe和OLED白光器件也有进展,但离产业化生产尚远。 双芯片 可由蓝LED+黄LED、蓝LED+黄绿LED以及蓝绿LED+黄LED制成,此种器件成本比较便宜,但由于是两种颜色LED形成的白光,显色性较差,只能在显色性要求不高的场合使用。

实验一,二 原子荧光光谱法测量条件的选择和水样中总砷的测定

实验一原子荧光光谱法测量条件的选择 一、实验目的 1.了解原子荧光光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系及影响,确定各项条件的最佳值。 二、方法原理 原子荧光光谱仪工作原理: 在一定工作条件下,荧光强度I F与被测元素的浓度c成正比,其关系如下: I F = K c 氢化物发生原理: BH4- + H++ 2As3+ +3H2O →2AsH3↑+H2↑+ BO33-生成的AsH3蒸汽在载气的带动下,经过火焰原子化,As原子接受由低压砷灯发出激发光照射,基态砷原子被激发到高能态,当返回到基态时辐射出共振荧光,此荧光经聚光镜聚焦于光电倍增管,实现光电转换,最后得到信号。 在原子荧光光谱分析中测量条件选择得是否正确,直接影响到分析方法的检出限、精密度和准确度。本实验通过砷的原子荧光光谱分析测量条件的选择,如灯电流、载气流量等,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.PF6型原子荧光光谱仪(北京普析通用),砷高强度空心阴极灯。 2.试剂: (1)砷标准贮备液(1000u g?mL-1):国家标准。 (2)砷实验工作溶液(1u g?mL-1):由砷标准贮备液1000u g?mL-1逐级稀释得到。 (3)硫脲溶液(100g?L-1):称取硫脲10g,加入80mL蒸馏水,水浴加热溶解,蒸馏水稀至100mL,摇匀。 (4)硼氢化钠-氢氧化钠溶液(15g?L-1):称取5g氢氧化钠溶于200mL蒸馏水,加入15g硼氢化钠并使其溶解,用蒸馏水稀至1000mL,摇匀。 (5)2% 盐酸溶液(v/v):移取20ml HCl(GR),用蒸馏水稀释至1000mL,摇匀。 (6)(1+1)盐酸溶液(v/v)。 四、测量条件的选择 1.10ng?mL-1标准溶液的配制

LED灯及其发光原理

LED灯及其发光原理 一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好 LED结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p 型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料

的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制 备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红

实验40 微波消解-原子荧光光谱法分析测定电池中汞

原子荧光分析法测定电池中的汞 实验目的 (1).了解原子荧光光谱法测定汞的基本原理和实验方法 (2).掌握原子荧光光度计的基本构造和操作 实验原理 在酸性介质中,用强还原剂硼氢化纳将试样中的汞离子还原为汞原子,其反应方程式为Hg(NO3)2+3NaBH4+HNO3+6H2O → Hg+3HBO2+3NaNO3+11H2 由于汞的挥发性,用氩气将汞蒸气带入原子化器进行测定. 汞空心阴极灯发射出特征光束,照射在汞蒸气上,使汞原子激发而发射荧光.在合理条件下,荧光强度与汞原子浓度呈线性关系. 仪器试剂 仪器 AF2-2202a行双道原子荧光光度计(北京)25mL比色管 试剂 (1).汞标准储备液(1.0mg/mL) (2).中间液(含Hg2+10μg/mL):吸取0.50mL储备液于50mL容量瓶中,用5%HNO3稀释至刻度,摇匀. (3).使用液(含Hg2+ 0.01 μg/mL):吸取中间液0.25mL 于25容量瓶中,用5%HNO3稀释至刻度,摇匀.然后吸取此溶液2.5 mL于25mL容量瓶中,用5%HNO3稀释至刻度,摇匀.(4).1%NaBH4 (5). 5%HNO3 仪器工作条件 AF2-2202a行双道原子荧光光度计仪器测量参数

仪器条件 元素光电倍增 管负高压 /V 原子化器 温度/℃ 原子化器 高度/mm 灯电流/mA 载气流量 /ml.min-1 屏蔽气流 量ml.min-1 Hg 300 200 8 30 400 1000 测量条件 读数时间/s 10 标准校正点 1 延迟时间/s 0.5 标准频率 0 注入量/mL 0.5 测量方式 Std.Cure 重复次数 1 读数方式 Peak area 空白判别值 10 分析液单位 mg.L-1 (μg.mL-1) 断流程序 步骤时间/s 泵转速/rpm 读数 1 6 0 No 2 10 100 No 3 6 0 No 4 16 130 Yes 实验步骤 (1).分析校准曲线制作:分别吸取1.0mL、 1.5mL、 2.0mL、 2.5mL汞标准使用液于4个25mL的比色管中,用5%HNO3稀释至刻度,摇匀.按前表中的参数进行测量,以荧光强度对浓度作图制作分析校准曲线. (2).样品测定:在与分析校准曲线相同条件下分别测定试剂空白和样品的荧光强度.

白光LED发白光原理

白光LED发白光原理 目前市场上白光LED生产技术主要分为两大主流: 第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(Dichromatic) 或三波长(Trichromatic)白光,此项元件技术称之为荧光粉转换白光LED(Phosphor Converted-LED); 第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。 (红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大。) 下图简要归纳并比较多种白光LED构装原理和优劣点,其中(a)型构装方式、演色性最佳,但成本最高,尚未能普及;构装方式(b)则具有技术最成熟且成本低廉之优势,但色偏、演色性不佳,须以适当红、黄光荧光粉加以改善,此外,最严重者为日亚化学专利限制难以规避;而构装方式(c)与(d)两者所制作的白光LED演色性俱佳、色偏小、成本低且专利局限较不严重,因此未来深具发展潜力。 利用发光二极管产生白光的原理与优劣点 荧光粉如何涂在LED灯上? M.R.Kramas等人发现,如果将荧光粉随意放在LED芯片上,如下图(a)所示发光均匀性不佳,所以改变方式如图(b)所示,将荧光粉均匀地涂在LED表面上,图(c)则比较两者的CCT及Ra值,发现用图(b)方法者其CCT值变动甚少。

什么是CCT? CCT是correlated colour temperature的缩写,意思是相关色温。色温是指当一标准黑体被加热时,随着温度的升高,其颜色由深红至浅红至橙黄至白至蓝白至蓝色的变化,利用黑体的这一特征,当待测光源与黑体在某一温度下的光色相同时,该黑体的温度即为待测光源的色温。色温高光色偏冷,色温低光色偏暖。 色温色相 低于3300 K暖白色 (淡黄白色) 3300 - 5000 K中间白色 超过5000 K冷白色 (淡蓝白色) 白光LED光谱对人眼的影响 人眼最不能接受的是蓝光和UV光,蓝光杀伤人眼活性细胞的能力是绿光的10倍,而UV光杀伤人眼活性细胞的能力又是蓝光的10倍,长期接触大量低波长的蓝光能大量杀伤人眼活性细胞。即使到时多吃有利眼睛的食品也会无作用。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

简述LED发光原理

简述LED发光原理 LED发光原理: 发光二极体是一种将电流顺向通到半导体p-n结处而发光的器件,通常采用双异质结和量子阱结构。1962年GE(General Electric)公司用GaAsP首次将红色LED商品化。最初的红色LED的光通量为0.1lm/W,约是普通灯光的1/150,其发光效率大约每10年提高一个数量级。最近,蓝色、绿色LED已实用化,其发光强度超过AlGaAs类红色LED。 这种LED采用氮化物半导体(InGaN混晶)作活性(发光)层的量子阱结构,其发光强度超过10cd,量子效率超过20%。此外,还开发了外部量子效率超过50%的AIInGaP红色LED(630nm)和琥珀--LED(595nm)。InGaN绿色、蓝色LED的量子效率也接近上述值。 坎德拉(cd)是发光强度的单位,用以表示可见光LED发光强度的指标。发光强度I可用光通量Φ和立体角Ω表示。I=dΦ/dΩ[cd]Φ=Km∫V(λ)Pλdλ[lm]其中,Km为在波长555nm 范围内的最大可见度(683nm),绿色对人眼是最亮的。V(λ)是在波长为λ时的相对可见度[V(555nm)=1],Pλ为光谱辐射通量。 白光LED发光原理: 是一种由InGaN蓝色LED和萤光体组成的新型LED。在蓝色LED芯片上涂敷萤光体,最后用环氧树脂将芯片周围密封。两种方式(单芯片型和多芯片型)可得到色调效果好(Ra 85)的白光。一是同时点亮红色、绿色、蓝色(R.G.B)或蓝绿色和黄橙色2、3种LED;二是用辐射蓝色或紫外LED作激励光源激励萤光体的方式。第一种方式不仅在LED的驱动电压或发光输出上有缺陷,而且在温度特徴或器件寿命上也存在问题,因此距实用化还有一段距离。第二种方式则用一个器件即可,驱动电路,易于设计。 白光LED有三种激励方式: 1.用蓝色LED激励发黄光的萤光体。这种白光构就是将蓝光LED与YAG萤光物质放在一起,用蓝光激发萤光物质,这样它发出的光谱就是白光。在这方面日亚化学公司拥有世界性的专利。 2.用紫外LED激励R.G.B萤光体。激励萤光体的白色LED照明光源因萤光体组拿来不同可发射白光以外的各种顏色的光,因而可广泛应用于照明。用R.G.B三基色LED开发了白色LED,现实验室水准的发光效率已超过50lm/W,近几年内可望超过100lm/W,而红光部份最佳的发光效率已超过100 lm/W。 3.利用红、绿、蓝3种发光二极体调整其个别亮度来达到白光,一般来说,红、绿、蓝的亮度比应为3:6 :1 ,或者只用红、绿或蓝、黄两颗LED调整其个别亮度来发出白光,这样的白光结构最大的缺点就是造价较高,不利于商品化发展。

原子荧光光谱法测定茶叶中的se含量

原子荧光光谱法测定茶叶中的se 含量 1 实验目的 ①握茶叶前处理的方法 ②进一步掌握原子荧光光度计的使用方法 2. 实验原理 3 实验仪器及试剂 AF-610A 原子荧光光度计一台Se 空芯阴极灯一个烘箱 浓HNO3 高氯酸20%HCl 铁氰化钾2%KBH4 (混酸为浓盐酸与高氯酸体积比为4:1) 100ml 容量瓶4 个烧杯若干表面皿一个25ml 比色管9 个(0-6 号标准系列,两个样品,测平行) 4 样品配置过程: 4.1 样品处理 前处理:取一定的茶叶,在60 C烘箱内烘干,用研钵研磨研碎,称取约 0.5 克的粉末,两份,分别放入两个小烧杯中,分别加入8ml 浓硝酸和2ml 高氯酸,另外设置一个空白样,即不加茶叶,只加8ml 浓硝酸和2ml 高氯酸,放置,过夜。 样品的消解:将放置过夜的三个小烧杯放在加热板上加热消解,直到冒出高氯酸的白烟,在加入少量硝酸和双氧水将残渣溶解,在加热沸腾,直到没有气泡。将三个小烧杯的溶液进行过滤,除掉不溶的残渣,将过滤后的溶液分别转移至25ml 容量瓶中标号为样品1 、样品2 和样品空白。 移取10ml 的样品1 放入25ml 的比色管中,定容,移取两份,作为对照。样品2 也是移取两份10ml 于两个25ml 的比色管中,样品空白移取一份。 4.2 标准样系列已经配置好。

4. 3测定标准系列按从小到大的浓度顺序进行测定,然后记录荧光信号值, 在测定样品空白,记录信号值,在分别测定样品,记录荧光信号。 5数据处理及分析. 实验数据如下表 样品信号记录表

结论:实验所用茶叶硒元素含量很低为ng 级,因此可忽略不计,故认为该茶叶中不含硒元素。 总结:此次实验过程我们小组设计的标准系列有点大,应该缩小系列间的浓度梯度,这样可能得出的结果更准确。但是不可否认,这次我们的标准系列做得还是比较好的,这点可以从曲线上看出来。

液相色谱原子荧光光谱联用方法通则

《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿) 编制说明 中国广州分析测试中心 《液相色谱-原子荧光光谱联用方法通则》 广东省地方标准起草小组 2017年10月 《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿)编制说明 一、任务来源和起草单位 本标准根据广东省质监局《关于批准下达2016年省地方标准制修订计划项目(第二批)的通知》(粤质监标函[2017] 106号)立项,要求中国广州分析测试中心承担广东省地方标准《液相色谱-原子荧光光谱联用方法通则》的制定任务。 《液相色谱-原子荧光光谱联用方法通则》标准由广东省分析测试标准化技术委员会(GD/TC22)归口管理,中国广州分析测试中心负责组织制定。 二、标准制订的目的和意义 目前国内重金属污染情况较为严重,受能源及冶金工业影响,进入环境中的砷、汞等重金属已成为全球性的污染物质。其中1956年日本发生甲基汞中毒引起“水俣病”震惊全球,不同形态的砷其毒性也大不同。在各个领域内对重金属污染物以及其形态的分析检

测技术应用迫在眉睫。 同时,液相色谱-原子荧光光谱联用仪(简称:LC-AFS)具备对能形成氢化物或原子蒸气如砷、硒、锑、汞等元素的不同形态进行定性定量分析的能力。 本标准拟研究制订液相色谱-原子荧光光谱联用方法的使用通则,为各应用液相色谱-原子荧光光谱联用仪器进行分析的方法提供依据,以此规范液相色谱-原子荧光光谱联用仪器 三、标准的制定过程 (1)成立《液相色谱-原子荧光光谱联用方法通则》标准制定工作组。 依据项目计划和标准化工作程序,工作组于2017年2月成立,工作组成员中国广州分析测试中心的有关技术人员。 (2)调研和资料收集。 根据粤质监标函[2017] 106号下达的广东省地方标准制修订计划(第二批)任务的通知,中国广州分析测试中心组织标准编制工作小组,查询、收集和认真研究国内外标准及相关资料,并结合实验室的自身条件、仪器特性和方法技术特点,初步设计编制方案。 (3)形成标准草案。 在标准的制定过程中,中国广州分析测试中心结合我国的实际情况,邀请中心和行业内相关专家进行探讨,吸取专业意见建议,并结合液相色谱-原子荧光光谱联用方面相对成熟的检测方法及其相关文献资料,修编形成标准的草案。

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

各类灯的发光原理

高压钠灯 高压钠灯使用时发出金白色光,它具有发光效率高、耗电少、寿命长、透雾能力强和不诱虫等优点。广泛应用于道路、高速公路、机场、码头、船坞、车站、广场、街道交汇处、工矿企业、公园、庭院照明及植物栽培。高显色高压钠灯主要应用于体育馆、展览厅、娱乐场、百货商店和宾馆等场所照明。 工作原理 当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的钠汞齐受热蒸发成为汞蒸气和钠蒸气,阴极发射的电在向阳极运动过程中,撞击放电物质有原子,使其获得能量产生电离激发,然后由激发态回复到稳定态;或由电离态变为激发态,再回到基戊无限循环,多余的能量以光辐射的形式释放,便产生了光。高压钠灯中放电物质蒸气压很高,也即钠原子密度高,电子与钠原子之间碰撞次数频繁,使共振辐射谱线加宽,出现其它可见光谱的辐射,因此高压钠灯的光色优于低压钠灯。 高压钠灯是一种高强度气体放电灯泡。由于气体放电灯泡的负阻特性,如果把灯泡单独接到电网中去,其工作状态是不稳定的,随着放电过程继续,它必将导致电路中电流无限上升,最后直至灯光或电路中的零、部件被过流烧毁。 伏—安特性 高压钠灯同其他气体放电灯泡一样,工作是弧光放电状态,伏—安特性曲线为负斜率,即灯泡电流上升,而灯泡电压却下降。在恒定电源条件下,为了保证灯泡稳定地工作,电路中必须串联一具有正阻特性的电路无件来平衡这种负阻特性,稳定工作电流,该元件称为镇流器或限流器。电阻器、电容器、电感受器等均肯有限流作用。 电阻性镇流器体积小,价格便宜,与高压钠灯配套使用会发生启动困难,工作时电阻产生很高的热量,需有较大的散热空间、消耗功率很大,将会使电路总照明效率下降。它一般在直流电路中使用,百交流电路中使用灯光有明显所闪烁现象。 电容性镇流器虽然不象电阻性镇流器自身消耗功率很大,温升低,在电源频率较低时,电容器充电时,会产生脉冲峰值电流,对电极造成极大损害,灯光闪烁,影响灯泡使用寿命;在高频电路中工作,电压波动能达到理想状态,成为理想的镇流器。 电感性镇流器损耗小,阻抗稳定,阻抗菌素性偏差小,使用寿命长,灯泡的稳定度比电阻性镇流器好,目前与高压钠灯配套使用的镇流器均为电感性镇流器。其缺点较苯重及价格偏高。另外,电子镇流器已经开始出现,目前其价格昂贵,可靠性还不能与高压钠灯相匹配,除特殊场合使用外,一般情况下很少被采用。所以,高压钠灯必须串联与灯泡规格相应的镇流器后方可使用。高压钠灯的点灯电路是一个非线性电路,功率因数较低,因此在网路上考虑接补偿电容,以提高网路的功率因数。结构和材料电弧管电弧管是高压钠灯的关键部件。电弧管工作时,高温高压的钠蒸气腐蚀性极强,一般的抗钠玻璃和石英玻璃均不能胜任;而采用半透明多晶氧化铝和陶瓷管做电弧管管体较为理想。它不仅具有良好的耐高温和抗菌素钠蒸气腐蚀性能,还有良好的可见光穿越能力。另外,单晶氧化铝陶瓷管在耐高温、抗菌素钠蒸气腐蚀和透光率等性能均优于多晶扪化铝陶瓷管;因其价格昂贵,所以目前很少被采用。电弧管是把电极、多晶扪化铝陶瓷这、帽、焊料环装配在一起,加入钠汞齐进入封接炉封接;同时充入少量氙气,以改善灯泡的启动特性。电极是用高纯钨丝绕成螺旋状,在螺旋孔中插入芯杆,浸渍电子粉,然后将电极芯杆一端和铌管封闭端焊接成一体。多晶氧化铝陶瓷管(帽)是选用多晶氧化铝陶瓷粉经混粉、喷泉雾干燥、等静压成形、素烧、高温烧结和切割等工序制成。高压钠灯的光、电参数与电弧管的内径和弧长(两电极之间距离)有着密切联系。 灯芯

总砷的测定——原子荧光光谱法

总砷的测定——氢化物原子荧光光度法 1 范围 本方法规定了乳制品中总砷的测定方法。 2 原理 试样经消解后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾还原成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。 3 试剂 3.1 盐酸(优级纯)。 3.2 硝酸(优级纯)。 3.3 过氧化氢(30%)。 3.4 氢氧化钠(氢氧化钾)溶液(5g/L)。 3.5 还原剂(硼氢化钠(硼氢化钾)溶液)称取硼氢化钠(硼氢化钾)10.0g,溶于氢氧化钠(氢氧化钾)溶液(5g/L)1000ml中,混匀。此液于冰箱冷藏可保存10天。 3.6 载流液5%HCL(V/V):量取50ml浓盐酸(优级纯),用去离子水定容至1000ml(酸的纯度达不到要求时可适当降低其浓度)。 3.7 5%硫脲+5%抗坏血酸混合溶液:称取硫脲、抗坏血酸各5g溶于100ml水中,现配现用。 3.8 砷标准使用液(100μg/L): 吸取1ml浓度为1000μg/ml的标准储备液于100ml容量瓶中,用5%硝酸定容至刻度,浓度为10μg/ml。 吸取1ml浓度为10μg/ml的标准使用液于100ml容量瓶中,用5%盐酸定容至刻度,浓度为100μg/L。现配现用。 4 仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。 4.1 原子荧光光度计(砷阴极空心灯)。 4.2 微波消解仪。 5 分析步骤 5.1 试样消解 称取0.5g奶样于消解罐中,加硝酸(优级纯)3ml,过氧化氢(30%)2ml,按设定程序微波消解。消解结束后取出冷却,将消解好的样品转移至25ml容量瓶,并用超纯水多次润洗,然后再加入5ml硫脲-抗坏血酸(5%),用超纯水定容至刻度。静置30分钟,检测前摇匀。

LED背光的结构及发光原理

赛 维公司培训资 料(保密)LED 背光的结构及发光原理 ?所谓LED 电视,就是使用LED 作为背光源的液晶电视,和传统液晶电视在技术原理上差别不大,只是采用的背光不同,传统液晶电视是CCFL 光源,LED 电视则采用LED 光源。 ? 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED 是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED 的抗震性能好。? 发光二极管的核心部分是由p 型半导体和n 型半导体组成的晶片,在p 型半导体和n 型半导体之间有一个过渡层,称为p-n 结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN 结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED 。当它处于正向工作状态时(即两端加上正向电压),电流从LED 阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

赛 维公司培训资料(保密)LED 光源的特点 ?LED 是点光源,CCFL 是线光源. ?电压:LED 使用低压电源,供电电压在6-50V 之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。?效能:消耗能量较同光效的白炽灯减少80% ,与CCFL 相当.?适用性:体积很小,每个单元LED 小片是3-5mm 的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境。?寿命:10万小时,光衰为初始的50%。?响应时间:其白炽灯的响应时间为毫秒级,LED 灯的响应时间为纳秒级。?对环境无污染:无有害金属汞。 ? 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿蓝橙多色发光。如小电流时为红色的LED ,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。 ? 价格:LED 的价格比较昂贵

原子荧光光谱法

原子荧光光谱法 原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。 一、原子荧光光谱法原理 1.1原子荧光的类型以及荧光猝灭 (1)共振荧光 当原子受到波长为λA的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长λF的荧光。这一类荧光称为共振荧光。 (2)直跃线荧光 荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。 (3)阶跃线荧光 当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。 (4)热助阶跃线荧光 原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。小于光源波长称为反stoke效应。 (5)热助反stokes荧光 (略) 某一元素的荧光光谱可包括具有不同波长的数条谱线。一般来说,共振线是最灵敏的谱线。处于激发态的原子寿命是十分短暂的。当它从高能级阶跃到低能级时原子将发出荧光。 M*→M+hr 除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。荧光猝灭有下列几类型: 1)与自由原子碰撞 M*+X=M+X M*→激发原子X、M→中性原子 2)与分子碰撞 M*+AB=M+AB 这是形成荧光猝灭的主要原因。AB可能是火焰的燃烧产物; 3)与电子碰撞 M*+e-=M+E- 此反应主要发生在离子焰中 4)与自由原子碰撞后,形成不同激发态 M*+A=M×+A M*、M×为原子M的不同激发态 5)与分子碰撞后,形成不同的激发态 M*+AB= M×+AB 6)化学猝灭反应 M*+AB=M+A+B

原子荧光光谱法测定饮用水中锡

原子荧光光谱法测定生活饮用水中锡元素含量 《生活饮用水标准检验》(GB/T5750.1~5750.13-2006)中测定水中锡的方法有:氢化物原子荧光法、苯芴酮分光光度、微分电位溶出法、电感耦合等离子体质谱法。本文应用氢化物原子荧光光谱法测定饮用水中的微量锡,结果令人满意。该方法的灵敏度高、检出限低、线性关系好、重现性好,回收率高,适用于饮用水及其清洁环境水中微量锡的测定。 一、材料与方法 1.1 方法原理 在酸性介质中,以硫脲预还原,抗坏血酸作掩蔽,将样品中的Sn4+预还原为Sn2+,Sn2+与硼氢化钾反应生成挥发性锡的氢化物(SnH2);以氢气为载气,将锡的氢化物导入原子化器中原子化,在特种锡空心阴板灯照射下,基态锡原子被激发至高能态;在去活化回到基态时,发射出特征波长的荧光,其强度与铅含量成正比,根据标准曲线浓度系列定量。 1.2 仪器 AFS-230型双道原子灾光光度计;AS-2锡高性能空心阴极灯,UWP-50SE型超纯水器。 1.3 试剂 实验用水均为超纯水,实验用酸均为优级纯,其他试剂为优级纯或分析纯。 锡标准储备溶液(1000ug/mL)(国家标准物质研究中心); 锡标准使用溶液(0.1ug/mL):以不含量锡的盐酸溶液(0.24mo1/L)逐级稀释而成; 不含量锡的盐酸的制备:用密闭平衡法制取,即在一空干燥器内放入一烧杯盐酸和一杯超纯水,放置一周以上后将超纯水中的盐酸进行标定,便得到不含锡的一定浓度的盐酸。 硫脲(100g/L)-抗坏血酸(100g/L)混合溶液; 硼氰化钾溶液(20g/L):称取2g 硼氢化钾溶解于100mL 氢氧化钾溶液(5g/L)中。 1.4方法 光电倍增管负高压300V,原子化器温度200℃,原子化器高度8mm,灯电流60mA,载气流量500mL/min,屏蔽气流量1000mL/min。 测量条件设置:读数时间10s,延迟时间1s,注入量0.5mL。

图解白光LED发光原理

图解白光LED发光原理 ?导读: 本文主要介绍目前市场上白光LED生产技术主要分为两大主流。同时通过原理分析白光LED的发光原理,以及利用发光二极管产生白光的原理与优劣点。 o关键字 o白光LED发光原理LED芯片 ?目前市场上白光LED生产技术主要分为两大主流: 第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(D ic hromatic) 或三波长(Trichromatic)白光,此项元件技术称之为荧光粉转换白光 LED(Phosphor Converted-LED); 第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。 (红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大。) 下图简要归纳并比较多种白光LED构装原理和优劣点,其中(a)型构装方式、演色性最佳,但成本最高,尚未能普及;构装方式(b)则具有技术最成熟且成本低廉之优势,但色偏、演色性不佳,须以适当红、黄光荧光粉加以改善,此外,最严重者为日亚化学专利限制难以规避;而构装方式(c)与(d)两者所制作的白光LED演色性俱佳、色偏小、成本低且专利局限较不严重,因此未来深具发展潜力。 利用发光二极管产生白光的原理与优劣点

荧光粉如何涂在LED灯上? M.R.Kramas等人发现,如果将荧光粉随意放在LED芯片上,如下图(a)所示发光均匀性不佳,所以改变方式如图(b)所示,将荧光粉均匀地涂在LED表面上,图(c)则比较两者的CCT及Ra值,发现用图(b)方法者其CCT值变动甚少。 12 ?什么是CCT? CCT是correlated colour temperature的缩写,意思是相关色温。色温是指当一标准黑体被加热时,随着温度的升高,其颜色由深红至浅红至橙黄至白至蓝白至蓝色的变化,利用黑体的这一特征,当待测光源与黑体在某一温度下的光色相同时,该黑体的温度即为待测光源的色温。色温高光色偏冷,色温低光色偏暖。 白光LED光谱对人眼的影响

原子荧光光谱法测定化妆品中铅的含量

氰化物发生—原子荧光光谱法测定化妆品中铅的含量一·实验目的: 1.学习原子荧光光谱仪的使用方法。 2.掌握用原子荧光光谱法测定铅的方法原理。 二·主要仪器设备: 仪器:AF—610A原子荧光光谱仪 试剂:铅标准使用液(5ug/ml)、20%的盐酸、10%铁氰化钾—2%草酸溶液、硼氢化钾溶液、佰草集爽肤水、美肌面膜、美丽加芬爽肤水、卡尼尔爽肤水。 三·实验原理: 原子荧光光谱法基本原理 在一定工作条件下,荧光强度I F与激发光源辐射强度I0和被测元素基态原子数N呈正比,即 I F=?AI0εlN 式中除N外皆为常数,N又与试样中被测元素浓度c呈正比,因此原子荧光强度与元素浓度关系如下: I F=kc 四·实验步骤: 1.样品处理: ①称取样品0.1-0.2g,设置平行样,每种样品称取两份,放入坩埚中,编号。 ②向坩埚镍加入15ml浓硝酸,并设置空白样。盖上坩埚盖,静置一晚上。再加入 2.5mlHClO4 ,放在电热板上消解30min取下盖子继续加热,直到有白烟冒出,将 坩埚转移至低温处,待无白烟冒出即可用蒸馏水定容至50ml。 2.铅标准系列的制备: 按照下表配置铅标准溶液

3.仪器参数设置: 负高压:270V 灯电流:80mA 辅助阴极电流:10mA 原子化器高度:7mm 原子化器温度:室温载气流量:700ml/min 测量方式:标准曲线法信号类型:峰面积 读书时间:20s 延时时间:2s 泵速级时间: (1)采样100r/min,8s (2)停,4s (3)注入100 r/min,16s (4)停,5s 载流:1.5%HCl 4.按照仪器要求测定标准溶液系列及样品的荧光信号并记录数据。五·数据处理: 1. 2

白光LED基础知识

白光LED基础知识 1.LED发光原理 1.1用蓝色LED激励黄色荧光粉。即将黄色荧光粉敷涂在蓝色LED表面,蓝色LED本身光通量并不高,但在激励黄色荧光粉后产生的白光光通量是原蓝光光通量的8倍。这种工艺是目前制造白光LED的主要方法。 1.2将红、绿、蓝三种LED集成在一起,通过调整其发光比例产生白光(即三基色远离),一般比例为红:绿:蓝=3:6:1。这种方式造价高,不适合于商品化发展。 2.LED分类 2.1LED按照功率区分,可以分为大功率和小功率。0.5W以下一般称为小功率,0.5W以上称为大功率。 3.LED内部结构 3.1大功率LED除两个电极外,都还自带有专门的散热结构和外部连接,用于提高散热效果。而小功率LED由于体积及成本原因,几乎都没有专门的散热结构,仅靠两个电极和外部连接,散热能力差。因此大功率灯具都应选择大功率LED,而小功率灯具(如LED灯泡、LED灯管)在对灯具散热进行优化设计后,可以采用小功率LED。 以下为最普通的一种大功率LED结构图。 a)大功率LED的一种结构

c)内部结构说明 以下为philips lumileds公司Rebel型大功率LED结构图 4.白光LED基本技术指标 4.1 光通量 光通量是指单位时间内光源发出的光能总和。光通量的单位为“流明”,符号为lm,光通量通常用Φ来表示。光通量越大,说明光源发出的光越多,按照通俗的理解,可以认为该光源亮度越高。光源的光通量可以通过积分球和光度计测量。

色温是表示光源光色的尺度,单位为K。当某一光源所发出的光的光谱分布与不反光、不透光完全吸收光的黑体在某一温度时辐射出的光谱分布相同时,我们就把绝对黑体的温度称之为这一光源的色温。 一些常用光源的色温为:钨丝灯为2760-2900K;荧光灯为3000K;中午阳光为5400K;蓝天为12000-18000K;高压钠灯为2000-2500K。 LED光源可以通过改变荧光粉的配比来控制色温输出,一般范围为2000K-10000K。 人对不同色温的光源感官反应也不同,一般按色温可将光源分为三种: 比如,家庭多使用暖白光,而办公环境多使用正白光或冷白光。色温可以通过光谱分析仪测量。 4.3 显色指数和显色性 光源照射到物体后反应物体本身颜色的能力称为显色性,显色性高低用显色指数来表示。显色指数的符号为Ra,最大为100(自然光),显色指数越高,说明光源的显色性越好。常见光源的显色指数如下: 白炽灯97 日光色荧光灯80-94 白色荧光灯75-85 暖白色荧光灯80-90 卤钨灯95-99 高压汞灯22-51 高压钠灯20-30 金属卤化物灯60-65 LED灯65-90 显色指数可以通过光谱分析仪测量。 4.4 正向电压 LED的本质就是二极管,它的电压即指二极管的管压降,用Vf表示,单位为V。为了得到更高的光效,在同样光通量(亮度)前提下,LED的电压越低越好。一般白色、纯绿色、蓝色LED的电压为3V左右,红色、黄色LED的电压为2V左右。

相关主题