搜档网
当前位置:搜档网 › 凸轮设计-习题

凸轮设计-习题

凸轮设计-习题
凸轮设计-习题

第03章 凸轮机构及其设计

一、填空题

1.凸轮机构中的压力角是 和 所夹的锐角。

2.凸轮机构中,使凸轮与从动件保持接触的方法有 和 两种。

3.在回程过程中,对凸轮机构的压力角加以限制的原因是 。

4.在推程过程中,对凸轮机构的压力角加以限制的原因是 。

5.在直动滚子从动件盘形凸轮机构中,凸轮的理论廓线与实际廓线间的关系是 。

6.凸轮机构中,从动件根据其端部结构型式,一般有 、 、 等三种型式。

7.设计滚子从动件盘形凸轮机构时,滚子中心的轨迹称为凸轮的 廓线;与滚子相包络的凸轮廓线称为 廓线。

8.盘形凸轮的基圆半径是 上距凸轮转动中心的最小向径。

9.根据图示的??

-22d d s 运动线图,可判断从动件的推程运动是_____________,从动件的回程运动是______________。

题9图

10.从动件作等速运动的凸轮机构中,其位移线图是 线,速度线图是 线。

11.当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时,可采用 、 、 等办法来解决。

12.在设计滚子从动件盘形凸轮轮廓曲线中,若出现 时,会发生从动件运动失真现象。此时,可采用 方法避免从动件的运动失真。

13.用图解法设计滚子从动件盘形凸轮轮廓时,在由理论轮廓曲线求实际轮廓曲线的过程中,若实际轮廓曲线出现尖点或交叉现象,则与 的选择有关。

14.在设计滚子从动件盘形凸轮机构时,选择滚子半径的条件是 。

15.平底从动件盘形凸轮机构中,凸轮基圆半径应由 来决定。

16.凸轮的基圆半径越小,则凸轮机构的压力角越 ,而凸轮机构的尺寸越 。

17.凸轮基圆半径的选择,需考虑到、,以及凸轮的实际廓线是否出现变尖和失真等因素。

18.在许用压力角相同的条件下,从动件可以得到比从动件更小的凸轮基圆半径。或者说,当基圆半径相同时,从动件正确偏置可以凸轮机构的推程压力角。

19.直动尖顶从动件盘形凸轮机构的压力角是指

;直动滚子从动件盘形凸轮机构的压力角是指

;而直动平底从动件盘形凸轮机构的压力角等于。

20.凸轮机构从动件的基本运动规律有,

,,。其中运动规律在行程始末位置有刚性冲击。

二、判断题

21.偏置直动尖顶从动件盘形凸轮机构中,其推程运动角等于凸轮对应推程廓线所对中心角;其回程运动角等于凸轮对应回程廓线所对中心角。( )

22.在直动从动件盘形凸轮机构中进行合理的偏置,是为了同时减小推程压力角和回程压力角。( )

24.当凸轮机构的压力角的最大值超过许用值时,就必然出现自琐现象。()

25.凸轮机构中,滚子从动件使用最多,因为它是三种从动件中的最基本形式。()26.直动平底从动件盘形凸轮机构工作中,其压力角始终不变。()

27.滚子从动件盘形凸轮机构中,基圆半径和压力角应在凸轮的实际廓线上来度量。()28.滚子从动件盘形凸轮的实际轮廓曲线是理论轮廓曲线的等距曲线。因此,只要将理论廓线上各点的向径减去滚子半径,便可得到实际轮廓曲线上相应点的向径。()29.从动件按等加速等减速运动规律运动时,推程的始点、中点及终点存在柔性冲击。因此,这种运动规律只适用于中速重载的凸轮机构中。()

30.从动件按等加速等减速运动规律运动是指从动件在推程中按等加速运动,而在回程中则按等减速运动,且它们的绝对值相等。()

31.从动件按等速运动规律运动时,推程起始点存在刚性冲击,因此常用于低速的凸轮机构中。()

32.在对心直动尖顶从动件盘形凸轮机构中,当从动件按等速运动规律运动时,对应的凸轮廓线是一条阿米德螺旋线。()

33.凸轮的理论廓线与实际廓线大小不同,但其形状总是相似的。()

34.设计对心直动平底从动件盘形凸轮机构时,若要求平底与导路中心线垂直,则平底左右两侧的宽度必须分别大于导路中心线到左右两侧最远切点的距离,以保证在所有位置平底都能与凸轮廓线相切。( )

三、选择题

35.理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮机构,其从动件的运动规律。(A)相同;(B)不相同。

36.对于转速较高的凸轮机构,为了减小冲击和振动,从动件运动规律最好采用运动规律。(A)等速;(B)等加速等减速;(C)正弦加速度。

37.凸轮机构中从动件作等加速等减速运动时将产生冲击。它适用于场合。

(A)刚性;(B)柔性;(C)无刚性也无柔性;(D)低速;(E)中速;(F)高速。

38.若从动件的运动规律选择为等速运动规律、等加速等减速运动规律、简谐运动规律或正弦加速度运动规律,当把凸轮转速提高一倍时,从动件的速度是原来的倍。

(A)1;(B)2;(C)4。

39.当凸轮基圆半径相同时,采用适当的偏置式从动件可以凸轮机构推程的压力角。(A)减小;(B)增加;(C)保持原来。

40.滚子从动件盘形凸轮机构的滚子半径应凸轮理论廓线外凸部分的最小曲率半径。(A)大于;(B)小于;(C)等于。

41.直动平底从动件盘形凸轮机构的压力角。(A)永远等于0ο;(B)等于常数;

(C)随凸轮转角而变化。

42.直动从动件盘形凸轮机构中,当推程为等速运动规律时,最大压力角发生在行程。(A)起点;(B)中点;(C)终点。

四、问答题

43.在直动从动件盘形凸轮机构中,试问同一

凸轮采用不同端部形状的从动件时,其从动件运动

规律是否相同?为什么?

44.设计哪种类型的凸轮机构时可能出现运动

失真?当出现运动失真时应该考虑用哪些方法消

除?

45.何谓凸轮机构的压力角?它在凸轮机构的

设计中有何重要意义?

46.直动从动件盘形凸轮机构压力角的大小与

该机构的哪些因素有关?

47.图示凸轮机构从动件推程运动线图是由哪

两种常用的基本运动规律组合而成?并指出有无

冲击。如果有冲击,哪些位置上有何种冲击?从动

件运动形式为停-升-停。

五、设计题

题47图

48.画出图示凸轮机构的基圆半径r0及机构在该位置的

压力角α。

49。画出图示凸轮机构从动件升到最高时的位置,标出

从动件行程h,说明推程运动角和回程运动角的大小。

题48图题49图

50.试画出图示凸轮机构中凸轮1的理论廓线,并标出凸轮基圆半径r0、从动件2的行程。

51.已知一对心直动尖顶从动件盘状凸轮机构的凸轮轮廓曲线为一偏心圆,其直径D=50mm,偏心距e=5mm。要求:(1)画出此机构的简图(自取比例尺);(2)画出基圆并计算r0;(3)在从动件与凸轮接触处画出压力角α。

52.已知凸轮机构中凸轮的回转中心、导路的位置及行程h,画出凸轮机构的基圆、偏距圆及凸轮的合理转向。

题50图题52图

53.画出图示凸轮机构中A点和B点位置处从动件的压力角,若此偏心凸轮推程压力角过大,则应使凸轮中心向何方偏置才可使压力角减小?

54.在图示凸轮机构中标出凸轮转过90?时凸轮机构的压力角α。

题53图题54图

55.已知一摆动滚子从动件盘形凸轮机构的运动规律为:凸轮从0?转过90?,从动件等速向上摆动30?;凸轮从90?转到135?,从动件停止不动;凸轮从135?转到315?,从动件

以等加速等减速运动向下摆动30?(等加速运动和等减速运动过程中,所用时间相等);凸轮从315?转到360?时,从动件在最低位停止不动。

(1)画出从动件的角位移线图ψ?£

-; (2)画出从动件的角速度线图ω?£

-; (3)画出从动件的角加速度线图α?£

-; (4)指出该凸轮机构在运动过程中有无冲击发生,并说明冲击的性质。

56.设计一对心直动尖顶从动件盘形凸轮机构的凸轮廓线。已知凸轮顺时针方向转动,基圆半径r0=25mm ,从动件行程h=25mm 。其运动规律如下:

凸轮转角为0ο~120ο

时,从动件等速上升到最高点;凸轮转角

为120ο~180ο时,从动件在最高位停止不动;凸轮转角为

180ο~300ο时,从动件等速下降到最低点;凸轮转角为300ο~360ο时,从动件在最低位停止不动。(可选μμl s ==0.001m/mm )

57.图示对心直动滚子从动件盘形凸轮机构,B 0是从动件

最低位置时滚子中心的位置,B 是推程段从动件上升了s 位移

后滚子中心的位置,过B 点的一段曲线β为凸轮的理论廓线,

B 0、B 处的小圆为滚子圆。试在图上画出:

(1)凸轮的基圆;

(2)从动件在B 点的压力角,并指出凸轮的转动方向;

(3)从动件在B 位置时,滚子与凸轮的实际廓线的接触

点B K 。

题57图

58.试设计一偏置直动滚子从动件盘形凸轮机构。已知凸轮顺时针方向回转,凸轮回转中心偏于从动件导轨右侧,偏距e =10mm ,基圆半径r 0=20mm ;滚子半径r r =5mm ,从动件位移运动规律如图所示。要求:

(1)画出凸轮实际轮廓曲线;

(2)确定所设计的凸轮是否会产生运动失真现象,并提出为了避免运动失真可采取的措施。

题58图

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

自动车床凸轮设计教程

1.自动车床主要靠凸轮来控制加工过程,能否设计出一套好的凸轮,是体现自动车床师傅的技术高低的一个标准。凸轮设计计算的资料不多,在此,我将一些基本的凸轮计算方法送给大家。凸轮是由一组或多组螺旋线组成的,这是一种端面螺旋线,又称阿基米德螺线。其形成的主要原理是:由A点作等速旋转运动,同时又使A点沿半径作等速移动,形成了一条复合运动轨迹的端面螺线。这就是等速凸轮的曲线。 凸轮的计算有几个专用名称: 1、上升曲线——凸轮上升的起点到最高点的弧线称为上升曲线 2、下降曲线——凸轮下降的最高点到最低点的弧线称为下降曲线 3、升角——从凸轮的上升起点到最高点的角度,即上升曲线的角度。我们定个代号为φ。 4、降角——从凸轮的最高点到最低点的角度,即下降曲线的角度。代号为φ1。 5、升距——凸轮上升曲线的最大半径与最小半径之差。我们给定代号为h,单位是毫米。 6、降距——凸轮下降曲线的最大半径与最小半径之差。代号为h1。 7、导程——即凸轮的曲线导程,就是假定凸轮曲线的升角(或降角)为360°时凸轮的升距(或降距)。代号为L,单位是毫米。 8、常数——是凸轮计算的一个常数,它是通过计算得来的。代号为K。 凸轮的升角与降角是给定的数值,根据加工零件尺寸计算得来的。 凸轮的常数等于凸轮的升距除以凸轮的升角,即K=h/φ。由此得h=Kφ。 凸轮的导程等于360°乘以常数,即L=360°K。由此得L=360°h/φ。 举个例子: 一个凸轮曲线的升距为10毫米,升角为180°,求凸轮的曲线导程。(见下图) 解:L=360°h/φ=360°×10÷180°=20毫米

升角(或降角)是360°的凸轮,其升距(或降距)即等于导程。 这只是一般的凸轮基本计算方法,比较简单,而自动车床上的凸轮,有些比较简单,有些则比较复杂。在实际运用中,许多人只是靠经验来设计,用手工制作,不需要计算,而要用机床加工凸轮,特别是用数控机床加工凸轮,却是需要先计算出凸轮的导程,才能进行电脑程序设计。 要设计凸轮有几点在开始前就要了解的. 在我们拿到产品图纸的时候,看好材料,根据材料大小和材质将这款产品 的 主轴转速先计算出来. 计算主轴转速公式是[切削速度乘1000]除以材料直径. 切削速度是根据材质得来的,在购买材料时供应商提供.单位是米/分钟. 材料硬度越大,切削速度就越小,切的太快的话热量太大会导致材料变形, 所以切削速度已知的. 切削速度乘1000就是把米/分钟换算成毫米/分钟,在除以材料直径就是 主 轴每分钟的转速了.材料直径是每转的长度,切削速度是刀尖每分钟可以移动的 距离. 主轴转速求出来了,就要将一个产品需要多少转可以做出来,这个转的圈数求出来.主轴转速除以每个产品需要的圈数就是生产效率.[单位.个/分钟] 每款不同的产品,我们看到图纸的时候就先要将它的加工工艺给确定下来. 加工工艺其实就是加工方法,走芯机5把刀具怎么安排,怎么加工,哪把刀具 先做,按顺序将它安排,这样就是确定加工工艺.

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

机械原理大作业3 凸轮结构设计

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚陈明 设计时间: 哈尔滨工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程 (mm) 升程运动 角(o) 升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

凸轮机构大作业___西工大机械原理要点

大作业(二) 凸轮机构设计 (题号:4-A) (一)题目及原始数据···············(二)推杆运动规律及凸轮廓线方程·········(三)程序框图········· (四)计算程序·················

(五)程序计算结果及分析·············(六)凸轮机构图·················(七)心得体会··················(八)参考书··················· 一题目及原始数据 试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计 (1)推程运动规律为五次多项式运动规律,回程运动规律为余弦加速度运动规律; (2)打印出原始数据; (3)打印出理论轮廓和实际轮廓的坐标值; (4)打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角; (6)打印最后所确定的凸轮的基圆半径。 表一偏置直动滚子推杆盘形凸轮机构的已知参数 题号初选的 基圆半 径 R0/mm 偏距 E/mm 滚子 半径 Rr/m m 推杆行 程 h/mm 许用压力角许用最小曲率半径 [ρamin] [α1] [α2] 4-A 15 5 10 28 30°70?0.3Rr 计算点数:N=90 q1=60; 近休止角δ1 q2=180; 推程运动角δ2 q3=90; 远休止角δ3 q4=90; 回程运动角δ4 二推杆运动规律及凸轮廓线方程推杆运动规律: (1)近休阶段:0o≤δ<60 o s=0;

ds/dδ=0; 2/δd 2 d=0; s (2)推程阶段:60o≤δ<180 o 五次多项式运动规律: Q1=Q-60; s=10*h*Q1*Q1*Q1/(q2*q2*q2)-15*h*Q1*Q1*Q1*Q1/(q2*q2*q2*q2)+6*h*Q1*Q1*Q 1*Q1*Q1/(q2*q2*q2*q2*q2); ds/dδ =30*h*Q1*Q1*QQ/(q2*q2*q2)-60*h*Q1*Q1*Q1*QQ/(q2*q2*q2*q2)+30*h*Q1*Q1*Q 1*Q1*QQ/(q2*q2*q2*q2*q2); 2/δd 2 d=60*h*Q1*QQ*QQ/(q2*q2*q2)-180*h*Q1*Q1*QQ*QQ/((q2*q2*q2*q2))+1 s 20*h*Q1*Q1*Q1*QQ*QQ/((q2*q2*q2*q2*q2)); (3)远休阶段:180o≤δ<270 o s=h=24; ds/dδ=0; 2/δd 2 d=0; s (4)回程阶段:270≤δ<360 Q2=Q-270; s=h*(1+cos(2*Q2/QQ))/2; ds/dδ=-h*sin(2*Q2/QQ); 2/δd 2 d=-2*h*cos(2*Q2/QQ); s 凸轮廓线方程: (1)理论廓线方程: s0=sqrt(r02-e2) x=(s0+s)sinδ+ecosδ y=(s0+s)cosδ-esinδ (2)实际廓线方程 先求x,y的一、二阶导数 dx=(ds/dδ-e)*sin(δ)+(s0+s)*cos(δ);

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

盘形凸轮的四种设计方法

盘形凸轮的四种设计方法 深圳市百特兴科技有限公司 周杰平 摘要:详细介绍运用SolidWorks 绘制盘形凸轮的不同方法,包括插件法、解析法、折弯法及仿真法。 关键词:盘形凸轮,插件法,解析法,折弯法,仿真法,余弦加速度, SolidWorks,EXCEL。 凸轮/连杆机构以其快速、稳定的特点,在很多的场合尤其是传统的制程设备中得以运用。但其缺点也很明显:适应性较差,结构相对比较复杂,开发周期长,凸轮加工精确要求比较高等,非标设备大多由伺服马达/步进马达、丝杆/同步带、气缸/油缸等替代。近年来,由于对设备产能要求越来也高,传统的凸轮/连杆机构又受到用户青睐。以动力电池制造设备中塑封制程为例。进口设备核心机构采用凸轮/连杆机构,产能在140件/分钟以上,国产设备采用伺服/丝杆驱动,产能则在50件/分钟左右。更为重要的是前者用于制程的有效时间更长,确保了品质的可靠性。凸轮的设计将成为机构设计工程是不可缺少的技能。 本文以盘形凸轮为研究对象,分别介绍几种不同的设计方法。 一、基本参数 1.1、凸轮基本参数 项目 代号 参数值 基圆直径 D 150 凸轮厚度 W 15 辊子直径 d 25 升程 h 50 表1 1.2、从动杆运动规律 动作 运动角度数 (Φ) 起始角度位置 终止角度位置 结束半径 运动规律 推程 120 0 120 125 余弦加速度 远休止角 30 120 150 125 回程 90 150 240 75 余弦加速度 近休止角 120 240 360 75 表2 注:余弦加速度(简谐运动)方程: S=h*[1-cos(πφ/Φ)]/2

图1 二、SolidWorks 插件法 2.1、如图2,打开SolidWorks,新建零件,关闭草图。菜单栏Toolbox -> 凸轮 如菜单栏无Toolbox,先加入插件。 图2 图3 2.2、设置。如图3 凸轮类型为圆形,推杆类型为平移,如果是偏心的,可作相应的选择;开始半径为基圆半径,开始角度根据<表2>填写;旋转方向为顺时针 2.3、运动如图4

凸轮机构大作业 (修复的)

凸轮机构设计 摆动滚子推杆盘形凸轮机构 (题号:7-A) 班级:机制 学号:2010012447 姓名: 同组其他人员(2010012444) 完成日期:2011年11月19日

1、题目及原始数据及其要求 凸轮机构大作业题目 利用计算机辅助设计完成下列摆动滚子推杆盘形凸轮机构的设计,设计已知数据如下表所示,机构中凸轮沿着逆时针方向做匀速转动。 表1 凸轮机构的从动件运动规律 表2 凸轮机构的推杆在近休、推程、远休及回程阶段的凸轮转角 表3 摆动滚子推杆盘形凸轮机构的已知参数 要求:每两人一组,每组中至少打印出一份源程序。每人都要打印:原始数据;凸轮理论轮廓曲线和实际轮廓曲线的坐标值;推程和回程的最大压力角,以及出现最大压力角时凸轮相应的转角,凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;凸轮的基圆半径。整个设计过程所选取的计算点数N=72~120。利用计算机绘出凸轮的理论轮廓曲线和实际轮廓曲线。 凸轮大作业的内容和要求 凸轮大作业应计算正确、完整,文字简明通顺,撰写整齐清晰,并按照以下内容及顺序编写: 1、题目及原始数据; 2、推杆的运动规律及凸轮廓线方程; 3、计算程序; 4、计算结果及分析; 5、凸轮机构图(包括推杆及凸轮理论和实际廓线,并标出有关尺寸及计算结果; 6、体会及建议; 7、参考书;

8、计算程序框图。 最后作出封面和封底左侧为装订线装订成册。 注:滚子摆动推杆盘形凸轮机构的压力角α计算公式为: ) sin(])cos([tan 00????δ ? α+-+= OA AB OA AB L l l d d l 且当摆动推杆的角速度ω2与ω1异向时,上式方括号前取减号;当ω2与ω1同向时,取加号。φ0为推杆初位角,可有以下公式计算获得: AB OA AB OA l l r l l 2cos 2 0220++= ? 2、 摆杆的运动规律及凸轮轮廓线方程 理论轮廓: 理论轮廓坐标: 0sin sin() OA AB x l l δδ??=-++ 0cos cos()OA AB y l l δδ??=-++ 222 00arccos 2OA AB OA AB l l r l l ?+-= π? 15 2max = δ应分段计算 近休止阶段:

哈工大机械原理大作业二凸轮机构设计(29)

设计说明书 1 设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见下表,据此设计该凸轮机构。 2、推杆升程、回程运动方程及位移、速度、加速度线图 2.1凸轮运动理论分析 推程运动方程: 01cos 2h s π?????=-?? ?Φ???? 1 00sin 2h v πωπ??? = ?ΦΦ?? 22 12 00cos 2h a πωπ???= ?ΦΦ?? 回程运动方程: ()0' 1s s h ?-Φ+Φ?? =- ??Φ ? ? 1'0 h v ω=- Φ 0a = 2.2求位移、速度、加速度线图MATLAB 程序 pi= 3.1415926; c=pi/180; h=140; f0=120; fs=45; f01=90; fs1=105; %升程 f=0:1:360; for n=0:f0

s(n+1)=h/2*(1-cos(pi/f0*f(n+1))); v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1)); a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end %远休程 for n=f0:f0+fs s(n+1)=140; v(n+1)=0; a(n+1)=0; end %回程 for n=f0+fs:f0+fs+f01 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end %近休程 for n=f0+fs+f01:360; s(n+1)=0; v(n+1)=0; a(n+1)=0; end figure(1);plot(f,s,'k');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图') figure(2);plot(f,v,'k');xlabel('\phi/\circ');ylabel('v/(mm/s)');grid on;title('推杆速度线图') figure(3);plot(f,a,'k');xlabel('\phi/\circ');ylabel('a/(mm/s2');grid on;title('推杆加速度线图') 2.3位移、速度、加速度线图

哈工大机械原理大作业-凸轮机构设计(第3题)

机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 院 系: 机电学院 班 级: 1208103 完 成 者: xxxxxxx 学 号: xx 指导教师: 林琳 设计时间: 2014.5.2 哈尔滨工业大学 凸轮机构设计 一、设计题目 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得:

?? ??????? ??-=512sin 215650?ππ?S ; ?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

走心机凸轮设计步骤

编制调整卡片应注意以下几点: (一) 保证零件质量 没有质量就没有一切,这是第一重要的问题。主要从三个方面来考虑: 1 合理选择机床:一般来说,尽量不用机床的最大的规格来加工零件,特别是加工钢件时。如加工棒料直径是7MM,尽可能采用CM1113而不用CG1107。也尽量不用机床的最高转速来加工零件。如需要主轴转速为6500转/分,则不用CG1107(10000转/分)。原因是在机床的极限规格时不易获得最佳的加工精度。 2 合理安排工序:工序的编制必须满足零件的加工要求,同时也应充分考虑纵切自动车床的加工工艺特点。 3 正确选择切削用量,既要得到高的生产效率,又要保证刀具有足够的耐用度,以求尺寸的稳定。(刀具种类很多,也要分清楚合适刀具,这里我就不打广告了) (二) 提高生产效率:简化辅助动作,安排重合工序。(有经验才可以做的更好) (三) 便于机床的调整:安排必要的工序间隙和停持工序。 (四) 便宜凸轮及刀具的制造:机床上有许多调整机构,如杠杆比,天平刀架及主轴箱的钢性挡块,多凸轮机构双触头机构等,这些机构可以调整零件的加工尺寸,以弥补凸轮的制造误差。充分利用这些机构可以降低凸轮的制造精度要求。用成型刀具可以简化零件的加工过程,但刀具制造困难。如果用复合走刀法来加工成型表面,可简化刀具。 (五) 零件的成组加工:充分利用机床的特性,通过对机床的调整,用一套凸轮加工出几种形状,尺寸相近的零件。用于小批量多品种的零件生产。另外

与此类似的用几块无关的凸轮配出来打制简单的样品,或者多块凸轮重叠制造复杂零件.这些都需要对凸轮非常了解和熟悉才容易做到。这里就不举例了。 二凸轮设计程序 凸轮调整卡片的设计编制可分为四个步骤: (一) 对加工零件进行分析 分析加工零件部分精度和表面粗糙要求.分析轴向尺寸的标注法和要求,并对加工零件的材料.生产性质情况全面了解。 (二) 选择机床 在分析的基础上,选择合适型号的纵切自动车床和附属装置,并了解机床调整的特别,着重考虑机床对此零件的加工可能性。 (三) 确定设计方案 设计方案的正确与否关系到设计工作的全局,方案制订不好或不合理,轻者影响生产效率,严重的会造成调整困难或严重影响加工质量,所以确定设计方案是设计凸轮的重要环节,尤其对复杂零件的凸轮设计方案,更应反复进行推敲,然后定出合理的设计方案。设计方案的内容一般分为下述三个方面: (1) 按零件的形状和要求,结合机床的特点,决定加工顺序和切削步骤。 (2) 在确定切削步骤的同时,分配各刀具的切削任务,并确定各个刀具的几何形状。 (3) 考虑零件尺寸的调整方法,尽可能充分合理地运用机床可调整性,以便顺利调整和提高加工零件的质量和产量。 (4) 编制调整卡片 每个技术员编制的调整卡片都会略有不同,或者角度不尽相同,或者刀具

哈工大机械原理大作业凸轮机构设计第题

哈工大机械原理大作业-凸轮机构设计(第题)

————————————————————————————————作者:————————————————————————————————日期:

机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:机电学院 班级:1208103 完成者:xxxxxxx 学号:11208103xx 指导教师:林琳 设计时间:2014.5.2 哈尔滨工业大学

凸轮机构设计 一、设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。 序号 升程(mm ) 升程运动角(°) 升程运动规律 升程许用压力角(°) 回程运动角(°) 回程运动规律 回程许用压力角 (°) 远休止角(°) 近休止角 (°) 3 50 150 正弦加速度 30 100 余弦加速度 60 30 80 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?????? ??-=512sin 215650?ππ?S ; ??? ?? ???? ??-= 512cos 1601ππωv ; ω

?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5)); hold on plot(t,s); t=14*pi/9:0.001:2*pi;

哈工大机械原理大作业凸轮设计

哈工大机械原理大作业凸轮设计 Harb inIn stituteofTech no logy 大作业设计说明书 课程名称:设计题目:院班学 级:机械原理凸轮机构设计1208103系:机械设计制造及其自动化 设计指导教师:设计时间: 林琳2019425 哈尔滨工业大学 一、运动分析题目 如图所示直动从动件盘形凸轮机构,其原始数据参数见表2-1,。从表2-1中选择一组凸轮机构原始参数,据此设计该凸轮机构。 二、凸轮运动规律 升程运动角(°)90 升程运动规律 生程许回程运用压力动角角(°) 等加等4080减速 回程运动规律 回程许远休用压力止角角(°) 余弦加7040速度 近休止角(°)150 升程(mm)150 1 、升程运动规律(0 /4)位移s=2h(速度v 2 /2 4*150*w ( /2)A24*150*w A2( /2)人2

加速度a 2 、升程运动规律(/4 /2) 位移s 150 2*150 ( /2 )A2 ( /2)A2 速度v 4*60*w ( /2 ) ( /2)A2 4*60*wA2( /2)A2 加速度a 3 、回程运动规律(/2 2 /2 2 ) 93 位移s 75*{1 cos [ (/2 2 )]} 94 9 速度v hw *sin*[ ( /2 2 )] 92*4 4

99 加速度a A2hw A2 cos[ ( /2 2 )] 94 2*(4 )A2 99 根据运动规律做出的曲线以及源代码如图所示 位移线图 速度线图 加速度线图 位移线图源代码 fl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2; x2=pi/2:fl:13*pi/18;x3=13*pi/18:fl:7*pi/6;x4=7*pi/6:fl:2*pi;s0=300*(2*x0/pi)A 2; s1=150-1200*(pi/2-x1).*(pi/2-x1)/(pi.*pi);s2=150+x2*0; s3=75*(1+cos(9/4*(x3-13*pi/18)));s4=x4*0; Plot(x0,s0,x1,s1,'b',x2,s2,'b',x3,s3,'b',x4,s4,'b')axis([070200])title(' 杆位移线图')xlabel(' 0 (rad)')ylabel('V(mm⑸')gridon 速度源代码fl=pi/180;x0=0:fl:pi/4;x1=pi/4:fl:pi/2; x2=pi/2:fl:13*pi/18;x3=13*pi/18: fl:7*pi/6;x4=7*pi/6:fl:2*pi;w=30; v0=600.*w.*x0/(pi/2)A2; v1=600.*w.*(pi/2-x1)/(pi/2)A2;v2=0*x2; v3=-150*30*pi/(2*4*pi/9).*si n(9/4*(x3-13*pi/18));v4=0*x4; Plot(x0,v0,'b',x1,v1,'b',x2,v2,'b',x3,v3,'b',x4,v4,'b')title(' 推杆速度')xlabel(' 0 (rad)')ylabel('v(mm/s')gridon

哈工大机械原理大作业凸轮机构设计题

哈工大机械原理大作业凸轮机构设计题 标准化管理部编码-[99968T-6889628-J68568-1689N]

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single Dim s As Single, q As Single 'i 作为静态变量,控制流程;s 代表位移;q 代表角度 = 0 = 0 i = i +

If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then q = i s = 240 * (230 - q) ^ 2 / 6400 Step(q, -s), vbRed ElseIf i >= 230 And i <= 360 Then q = i s = 0 Step(q, -s), vbBlack Else End If End Sub 2.速度 Private Sub Command2_Click() = True '开启计时器 End Sub Private Sub Timer2_Timer() Static i As Single Dim v As Single, q As Single, w As Single 'i为静态变量,控制流程;q代表角度;w代表角速度,此处被赋予50 = 0 = 0 w = 50 i = i + If i <= 45 Then q = i v = 480 * w * q / 8100 Step(q, -v), vbRed ElseIf i >= 45 And i <= 90 Then q = i

凸轮机构设计大作业

大作业(二)凸轮机构设计(题号:8)班级: 姓名、学号: 成绩: 完成日期: 目录

1.凸轮机构大作业题目 (2) 2.推杆运动规律及凸轮廓线方程 (3) 3.程序流程图 (3) 4.源程序…………………………………………………^5 5.计算结果 (14) 6.凸轮机构图 (16) 7.体会及建议 (19) 8.参考资料 (20) 一、凸轮机构大作业题目 试用计算机辅助设计完成下列摆动滚子推杆盘形凸轮机构的设计,已知数据如下表所示,凸轮沿着逆时针方向做匀速转动。 表1 凸轮机构的推杆运动规律 表2 两种凸轮机构的推杆在近休、推程、远休及回程阶段的凸轮转角 表3 摆动滚子推杆盘形凸轮机构的已知参数

要求:每组(每三人为一组,每人一题)至少打印出一份源程序,每人打印出原始数据;凸轮理论轮廓和实际轮廓的坐标值;推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;和最后说确定的基圆半径。计算点数N=72~120。 绘出凸轮的理论轮廓和实际轮廓(可用计算机绘图)。 二、推杆运动规律及凸轮廓线方程: 推程(正弦加速度):s=h[(δ/δ0)-sin(2πδ/δ0)/(2π)] 回程(等加速段):s=h-2hδ2/δ'02 回程(等减速段):s=2h(δ'0-δ)2/δ'02 凸轮理论廓线方程:x=l OA sinδ-l AB sin(δ+φ+φ0) y=l OA cosδ-l AB cos(δ+φ+φ0) 式中,φ0为推杆的初始位置角,其值为: φ0

四、源程序 clear; r0=22;%初选的基圆半径 dr0=0.05; a=72; %机架长度 L=68;%摆杆长度 rr=18;%滚子半径 fai=28*pi/180;%推杆摆角 PI=3.141592653; alpha1=45;%许用压力角α1 alpha2=65;%许用压力角阿尔法2 lambda=6.3;%许用最小曲率半径 N=120;%取用点的个数 delta1=180*pi/180;%推程凸轮最大转角 delta2=70*pi/180; %远休凸轮最大转角 delta3=80*pi/180;%回程凸轮最大转角 delta4=30*pi/180;%近休凸轮最大转角 alphamax1=0;% 推程最大压力角初值 alphamax2=0; %回程最大压力角初值 roumin=100; %凸轮最小曲率半径初值

凸轮型线设计

序号: 编码: 重庆理工大学 第二十四届“开拓杯”学生课外学术科技作品竞赛 参赛作品 作品名称:配气凸轮型线设计 作品类别: A 类别: A自然科学类学术论文 B 科技发明制作 C哲学社会科学类学术论文与社会调查报告

配气凸轮型线设计 摘要:配气机构是内燃机重要组成部分,它控制着内燃机的换气过程,其设计优劣直接影响着内燃机的动力性,经济性和排放性以及工作可靠性。今年来随着内燃机的高速化,低排放化的趋势,人们对其配气机构的性能要求越来越高。而凸轮型线配气机构的核心部分,其设计的合理性影响着配气机构的各个性能指标。凸轮型线的设计既要保证获得尽可能的大时面值和丰满系数以提高换气效率,又要保证加速度曲线连续,、无突变。本次论文针对以上情况,设计出一款缸径为68的配气凸轮,并对其性能做出相应的评价。 关键词:配气机构凸轮升程凸轮型线 Abstract:Air distribution mechanism is an important part of the internal combustion engine, which controls the gas exchange process of the internal combustion engine, the design of which has a direct impact on the engine power, economy and emissions as well as work reliability. This year, with the high speed of the internal combustion engine, the trend of low emission, the performance requirements of the gas distribution agencies are getting higher and higher. And the core part of the cam type air distribution mechanism, the rationality of its design affects the performance indexes of the air distribution mechanism. The design of the cam profile is not only to ensure that the face value and fullness coefficient are obtained as much as possible to improve the ventilation efficiency, but also to ensure that the acceleration curve is continuous, and there is no mutation. This paper, in view of the above situation, design a bore 68 of the cam, and make the corresponding evaluation on its performance. Key word:Valve train Cam lift Cam profile 1.凸轮设计的基本原则

相关主题