搜档网
当前位置:搜档网 › 减速运动,钟摆运动及运用

减速运动,钟摆运动及运用

减速运动,钟摆运动及运用
减速运动,钟摆运动及运用

减速运动(缓动)与钟摆运动的关系

原理:钟摆运动是在减速运动的基础上乘以一个小于1的数(弹性系数)一:减速运动:

在场景中放一个小球mc,在主时间轴的第一帧写下代码:

vx = 0;

vy = 0;

mcxs=0.3//设摩擦系数为0.3

px=250//设有一个定点,x轴坐标为250

py=200//设有一个定点,y轴坐标为200

onEnterFrame = function ()

{

dx = px - mc._x;//点p到mc的横向距离为dx

dy = py - mc._y; //点p到mc的横向距离为dy

mc._x = mc._x +dx*mcxs

mc._y = mc._y + dy*mcxs

} // end if,测试OK!

二:钟摆运动:

在场景中放一个小球mc,在主时间轴的第一帧写下代码:

vx = 0;

vy = 0;

mcxs=0.8//设摩擦系数为0.3

px=250//设有一个定点,x轴坐标为250

py=200//设有一个定点,y轴坐标为200

onEnterFrame = function (){

dx =px - mc._x;

dy = py - mc._y;

vx =( vx + dx) * mcxs ;

vy =( vy + dy )* mcxs

mc._x = mc._x +vx

mc._y = mc._y + vy

} // end if,测试OK!

三:钟摆运动的动用:

在场景中放一个小球mc,在主时间轴的第一帧写下代码:

vx=0

vy=0

mcxs=0.8//设摩擦系数为0.8

px=250//设有一个定点,x轴坐标为250

py=200//设有一个定点,y轴坐标为200

onEnterFrame = function (){

if (!drag){

dx = 250 - mc._x;

dy = 200 - mc._y;

vx =( vx + dx) * mcxs ;

vy =( vy + dy )* mcxs

mc._x = mc._x +vx

mc._y = mc._y + vy

} // end if

};

mc.onPress = function (){

this.startDrag();

drag = true;

};

mc.onRelease = function (){

this.stopDrag();

drag = false;

};//the end 测试OK

四:弹力的运用(气球,溜溜球等)

在场景中放一个小球mc,在主时间轴的第一帧写下代码:vx = 0;

vy = 0;

mcxs=0.8//设摩擦系数为0.8

px=250//设有一个定点,x轴坐标为250

py=200//设有一个定点,y轴坐标为200

onEnterFrame = function (){

dx =_xmouse - mc._x;

dy = _ymouse - mc._y;

vx =( vx + dx) * mcxs ;

vy =( vy + dy )* mcxs

mc._x = mc._x +vx

mc._y = mc._y + vy

clear()

lineStyle(1, 0, 100);

moveTo(_xmouse, _ymouse);

lineTo(mc._x, mc._y);

} // end if,测试OK!

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

第2章 流体运动的基本方程

第2章 流体运动的基本方程 流体运动极其复杂,但也有其内在规律。这些规律就是自然科学中通过大量实践和实验归纳出来的质量守恒定律、动量定理、能量守恒定律、热力学定律以及物体的物性。它们在流体力学中有其独特的表达形式,组成了制约流体运动的基本方程。本章将根据上述基本定律及流体的性质推导流体运动的基本方程,并给出不同的表达形式。 2.1 连续方程 2.1.1 微分形式的连续方程 质量守恒定律表明,同一流体的质量在运动过程中保持不变。下面从质量守恒定律出发推导连续性方程。 在流体中任取由一定流体质点组成的物质体,其体积为V ,质量为M ,则 ? = V dV M ρ 根据质量守恒定律,下式在任一时刻都成立 0== ? V dV dt d dt dM ρ (2-1) 应用物质体积分的随体导数公式(1-15b ),则 0dV )]v (div t [dV )v div Dt D ( dV dt d V V V ?? ? =+??=+= ρρρρ ρ 因假定流体为连续介质,流体密度和速度均为空间和时间的连续函数,被积函数连续,且体积V 是任意选取的,故被积函数必须恒等于零,于是有 0v div Dt D =+ ρρ (2-2a ) 或 0)v (div t =+?? ρρ (2-3a ) 上式亦可以写成如下形式 0x u Dt D i i =??+ρ ρ (2-2b ) 或 0x )u (t i i =??+ ??ρρ (2-3b )

式(2-2)和式(2-3)称为微分形式的连续性方程。 在直角坐标系中,微分形式的连续性方程为 0z )u (y )u (x )u (t z y x =??+ ??+ ??+ ??ρρρρ (2-4) 微分形式的连续性方程适用于可压缩流体非恒定流,它表达了任何可实现的流体运动所必须满足的连续性条件。其物理意义是,流体在单位时间流经单位体积空间时,流出与流入的质量差与其内部质量变化的代数和为零。 由式(2-2)可对不可压缩流体给出确切定义。不可压缩流体的条件应为 0=Dt D ρ (2-5) 即密度应随质点运动保持不变。 0=??t ρ只是指密度是恒定不变的,但流体质点密度还可以 在流动中随位置发生变化。只有满足式(2-5),质点密度才能保持不变。但不能排除各个质点可以具有各自不同的密度。如海水在河口淡水下面的入侵(图2-1),含细颗粒泥沙的浑水在水库的清水下面沿库底的的运动(图2-2),都是具有不同密度的不可压缩流动。在这种流动中,因密度不同形成不同的流层,常称为分层流动。 图2-1 河口的海水入侵[1] 图2-2 水库中的浑水异重流[1] 对不可压缩均质流体,则不但0=Dt D ρ,而是在全流场和全部时间内ρ=常数,因此, 连续性方程简化为

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程 如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即 ()H h k q ?= (2-2-1) 式中:H ?——为水势梯度; k (h )——为导水率,是土壤负压h 的函数; q ——为水流通量或流速。 Richards 方程垂向一维方程为 ) 1)(( ) (±??-=??-=z h k z H k q z θθ 注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。 由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。 一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。因此,总水头常以负压水头和位置水头之和来表示。 一维Richards 方程的几种形式: 根据() ()θθ θD h k =??(K=C ×D )得: x h k q x ??-=)(θ x D q x ??-=θ θ)( y h k q y ??-=) (θ y D q y ??-=θθ)( )1)( (±??-=z h k q z θ )]()([θθθk z D q z ±??-=

运动学四个基本公式

匀变速直线运动速度与时间关系练习题 1、物体做匀加速直线运动,已知加速度为2m/s2,那么() A.在任意时间内,物体的末速度一定等于初速度的2倍 B.在任意时间内,物体的末速度一定比初速度大2m/s C.在任意一秒内,物体的末速度一定比初速度大2m/s D.第ns的初速度一定比第(n-1)s的末速度大2m/s 2、物体做匀加速直线运动,初速度v0=2m/s,加速度a=0.1m/s2,求(1)第3s末的速度? (2)5s末的速度? 3、质点作匀减速直线运动,加速度大小为3m/s2,若初速度大小为20m/s,求经4s质点的速度? 4、质点从静止开始作匀变速直线运动,若在3s内速度变为9m/s,求物体的加速度大小? 5、飞机以30m/s的速度降落在跑道上,经20s停止下来,若加速度保持不变,则加速度大小是? 6、质点作初速度为零的匀变速直线运动,加速度为3m/s2,则(1)质点第3s的初速度和末速度分别为多少? 7、汽车在平直的公路上以10m/s作匀速直线运动,发现前面有情况而刹车,获得的加速度大小为2m/s2,则: (1)汽车经3s的速度大小是多少? (2)经5s汽车的速度是多少? (3)经10s汽车的速度是多少? 8、质点从静止开始作匀加速直线运动,经5s速度达到10m/s,然后匀速度运动了20s,接着经2s匀减速运动到静止,则质点在加速阶段的加速度大小是多少?在第26s末的速度大小是多少?

9、质点在直线上作匀变速直线运动,若在A点时的速度是5m/s,经3s到达B点速度是14m/s,若再经4s到达C点,则在C点的速度是多少? 10、一物体做直线运动的速度方程为v t=2t+4. (1)说明方程中各字母或数字的物理意义. (2)请画出物体运动的v-t图象. 11、一质点从静止开始以1m/s2的加速度匀加速运动,经5s后作匀速运动,最后2s的时间使质点匀减速到零,则质点匀速运动的速度是多大?减速运动时的加速度是多大?从开始运动到静止的平均速度是多少?

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

动量定理 质心运动定理

动量定理质心运动定理 动量定理质心运动定理 质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。用公式 d(mv),Fdt表达为 (17-7) d(mv),Fdt (17-8) tptp2211设时刻质点系的动量为,时刻质点系的动量为,将(17-8)式积分,积分区 tt21间为从到,得 t2p,p,Fdt21,t 1 (17-9) t2Fdt,I,tttF211记,称为力在到时间间隔内的冲量。式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。 (e)(i)MFFiii对于质点系而言,设为质点所受到的外力,为该质点所受到的质点系内力,根据牛顿第二定律得 dv(e)(i)im,F,F(e)(i)iiima,F,Fdtiiii 即 mi除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。如果质点的质量不 dmv()(e)(i)ii,F,Fiidt变,则有 上式对质点系中任一点都成立,n个质点有n个这样的方程,把这n个方程两端相加,得 n dm(v),iinn()()ei,1i,,FF,,iidt,1,1ii

nn(e)(i)FF,,iii,1i,1 质点系的内力总是成对地出现,内力的矢量和等于 零。上式中是质点 dp(e),F(e)RFdtR系上外力的矢量和,即外力系的主矢,记作,则上式可写为(17-10) 1 这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于 作用在质点系上外力的矢量和。 (e)dp,Fdt 将式(17-10)写成微分形式 R tptptt222111 设时刻质点系的动量为,时刻质点系的动量为,上式从到积 分,得 t2(e)p,p,Fdt21R,t,I1 (17-11) p,p0 当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即 这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。 由式(17-10)可知,动量定理在直角坐标轴的投影为 ndp,(e)x,F,ix,dti,1,ndp,y(e)F,,,iydti,1,ndp,(e)zF,,iz,dti,1, (17-12) 如果外力的矢量和不为零,但在某个坐标轴上的投影为零,则质点系的动量并不守恒, n(e)F,0,ixpi,1x但在该轴上的投影守恒。例如外力在x轴的投影为零,即, 则为常量,这是质点系动量守恒的一种特殊情况。 h,1.5m例17-1 如图17-2所示,锤从高度处自由下落到受锻

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

运动学基本公式

运动学基本公式 一、运动学一般公式 1、 平均速度公式: t x v ??= 2、 加速度定义式:t v a ??= 二、匀变速直线运动公式: 1、 速度和时间关系:at v v +=0 2、 位移和时间关系:202 1at t v x += 3、 速度-位移公式:ax v v t 2202=- 4、 平均速度公式:2 0t v v v += 5、 平均速度位移公式:t v v t v x t 20+= = 6、 中间时刻速度:2 02t t v v v v += = 7、 中间位置速度:2 2202t x v v v += 三、初速度为零的匀变速直线运动公式: (一)一般公式 8、 速度和时间关系:at v = 9、 位移和时间关系:22 1at x = 10、速度-位移公式: ax v t 22= 11、平均速度公式:2 t v v =

12、平均速度位移公式:t v t v x t 2 == 13、中间时刻速度:2 2t t v v v = = 14、中间位置速度:2 2t x v v = (二)自由落体公式: 15、速度和时间关系:gt v = 16、位移和时间关系:22 1gt h = 17、速度-位移公式:gh v t 22= 18、中间时刻速度:2 2t t v v v = = 19、中间位置速度: 2 2t h v v = 四、初速度为零的匀变速直线运动的四个重要比例式: 20、速度比:n v v v v n :.......:3:2:1:......:::321= 21、位移比:2321:.......:9:4:1:......:::n x x x x n = 22、在相同时间内通过的位移比: )12(:.......:5:3:1......::: III II I -=n x x x 23、经过相同位移所用的时间比: ) ()()(1:.......:2-3: 1-2:1:......:::321--=n n t t t t n

第三章 流体运动的基本方程

3.1写出下列各量的数学表达式: (1)单位时间内以n 为法向的面积元dA 上的流体体积流量; [解] 设流速为V ,单位时间令为“1”,则解为dA n ν? (2)t ?时间内经固定不动空间τ的表面S 净流入τ的质量; [解] 设流体密度为ρ,n 为其单位法向量,流速为ν,则解为t dA n ??- ?νρ (3)流体体积τ内的动量、动能的随体导数。 [解] 动量的随体导数:() ?τνρτd Dt D 动能的随体导数:??? ? ???τνρτd Dt D 22 3.2 求各种坐标系下的连续性方程(用微六面体): (1)柱坐标; [解] (2)球坐标; (3)一般曲线坐标。 [解] 将连续性方程推广到一般曲线坐标系下,建立微元体如下图: 在1u 轴向:单位时间内 3.3 下列各种流体运动中,哪个方向速度分量为零,然后写出连续性方程: (1)流体质点在每一平行平面上作径向运动; (2)流体质点在空间作径向运动; (3)流体质点在每一个都交于z 轴的平面上运动; (4)流体质点在同心的球面上运动; (5)流体质点在共轴的圆柱面上运动。若再加上无轴向运动,又如何? (6)流体质点在共轴且有共同顶点的锥面上运动。 3.5 在流体中取一任意形状的控制体,由此求连续性方程。 [解] 取一任意形状控制体(流场中),其体积为τ,表面积为S,密度为()t z y x ,,,ρ,左方流入流体质量dA n s νρ??-1,右方流出流体质量dA n s νρ? ?2, 净流量为dA n s νρ??-1-dA n s νρ? ?2=dA n s νρ??- 据质量守恒有:dA n d t p s νρττ???-=??,即0=?+????dA n d t p s νρττ 3.6 流体作有自由面的三维波动,底面为平面且流体等深,波动幅度小,求连续性方程。 [解] 取一控制体(如上图): x方向:左端流入 ()t dy h u ?+ξρ,右端流出()()()x t dy h u t dy h u ??+?+?+ξρξρ, 净流量()()t dxdy h u x ?+?? ξρ

第三讲 质心运动定理与刚体转动定律(教师版)

第三讲 质心运动定理与刚体转动定律 2018.10.16 多个质点构成的系统,假设系统的质量可以集中于一点,这个点即为质量中心,简称质心。质心是质点系质量分布的平均位置,与重心不同的是,质心不一定要在有重力场的系统中。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。 一、质心运动定理 设系统由n 个质点组成,各质点的质量分别为n m m m ???21、,位矢分别是n r r r ???21、,则此质点系质心的位置矢量C r 为 n n n C m m m r m r m r m r +???+++???++=212211 因此,质心的加速度 n n n C m m m a m a m a m a +???+++???++=212211 设第i 个质点所受的外力为i F ,第j 个质点对第i 个质点所受的作用力为)(i j f ji ≠,则对每个质点应用牛顿第二定律有 11131211a m f f f F n =+???+++ 22232122a m f f f F n =+???+++ ?????? 将n 个式子相加,并注意到质点间的相互作用力有ij ji f f -=,得 n n n a m a m a m F F F +???++=+???++221121 令F 21=+???++n F F F ,称为质点系所受到的合外力,m m m m n =+???++21,称为质点系的总质量,则 C ma =F 这表明,质点系所受的合外力等于质点系的总质量与其质心加速度的乘积,这就是质心运动定理。 二、质心运动守恒定理 如果作用于质点系的合外力恒等于零,则质心将处于静止或匀速直线运动状态。如果作用于质点系的所有外力在某轴上投影的代数和恒等于零,则质心在该轴的方向上将处于静止或匀速直线运动状态。 三、刚体的转动定律 刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体,是一种理想模型。图为一绕固定轴转动的刚体,P 为刚体上某一质点,其质量为i m ,到转轴的距离为i r ,受到刚体外的外力为i F ,内力为i f ,则对P 点有 i i i i a m f F =+ i a 为质点P 运动的加速度,由于质点P 绕固定轴做圆周运动,其切线加速度it a 满足 βθ? i i it i i i i i r m a m f F ==+sin sin β为刚体转动的角加速度,上式每一项都乘以i r 得 βθ?2sin sin i i i i i i i i r m r f r F =+ i i i r F ?sin 是外力i F 对转轴的力矩,i i i r f θsin 是内力i f 对转轴的力矩。 对组成刚体的每个质点都可以写出以上形式的方程,将这些方程累加可得 βθ?∑∑∑=+2 sin sin i i i i i i i i r m r f r F 由于内力是成对出现的,且每对内力都是等值、反向、共线的,故有 0sin =∑i i i r f θ 而∑i i i r F ?sin 是刚体所受各外力对转轴的力矩的矢量和,即合外力矩, 用M 表示,2 i i r m ∑是由刚体本身的质量分布情况所决定,称为刚体对此转轴的转动惯量,用I 表示,则上式可简写为 βI M =

《理论力学》第十章 质心运动定理 动量定理 习题

x y O x y O 第十章 质心运动定理 动量定理 习题解 [习题10-1] 船A 、B 的重量分别为kN 4.2及kN 3.1,两船原处于静止间距m 6。设船B 上有一人,重N 500,用力拉动船A ,使两船靠拢。若不计水的阻力,求当两船靠拢在一起时,船B 移动的距离。 解:以船A 、B 及人组成的物体系统为质点 系。因为质点系在水平方向不受力。即: 0=∑ix F , 设B 船向左移动了S 米, 则A 船向右移动了6-S 米。 由质点系的动量定理得: t v m m v m B B A A x F 0])([=--人+ 0])([=-人B B A A v m m v m + B B A A v m m v m )(人+= B B A A v m m v m )(人+= t s m m t s m B A ) (6人+=- s m m s m B A )()6(人+=- s s )5.03.1()6(4.2+=- s s )5.03.1()6(4.2+=- s s 3)6(4=- )(43.37 24m s == [习题10-2] 电动机重1P ,放置在光滑的水平面上,另有一匀质杆,长L 2,重2P ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重3P 的物体,设机轴的角速度为ω(ω为常量),开始时杆处于铅垂位置并且系统静止。试求电动机的水平运动。

r C v 3C v → x y 解:以电动机、匀质杆和球构成的质点系为研究对象。其受力与运动分析如图所示。匀质杆作平面运动。 → → → +=1212C C C C v v v ωl v r C =2 12cos C x C v t l v -=ωω → → → +=1313C C C C v v v ωl v r C 23= 13cos 2C x C v t l v -=ωω 因为质点系在水平方向上不受力,所以 0== ∑ix x F F 由动量定理得: t F v t l m v t l m v m x C C C =--+-+-0)]cos 2()cos ([111321ωωωω 00)]cos 2()cos ([111321=--+-+-C C C v t l m v t l m v m ωωωω 111132)cos 2()cos (C C C v m v t l m v t l m =-+-ωωωω 11113322cos 2cos C C C v m v m t l m v m t l m =-+-ωωωω 1)(cos 2cos 32132C v m m m t l m t l m ++=+ωωωω t m m m m m l v C ωωcos )(3 21321+++=

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m 的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a )所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m 物体将作往复运动,试求位移x 与时间t 的函数关系式。 图(a ) 分析:m 物体在弹力F 的作用下运动,显然位移X 与弹力F 有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F 替换成关于X 与t 的量,再求解该微分方程。 推导:取物体平衡位置O 为坐标原点,物体运动轨迹为X 轴,向右为正。设弹力为F, 由胡克定律 F =?kX ,K 为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m 物体加速度a=dv dt =d2X dt 2=F m =-k m x (1) 可令k m =ω2 (2) 代入(a ),得 d2X dt 2=?ω2X 或d2X dt 2+ω2X=0 (3) 显然,想求出位移X 与时间t 的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’=dX"dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 ∫udu =?ω2∫Xdx 得 12u 2=? 12 ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’=√C1? ω2 x 2 =dx dt (6) 再次分离变量,dx √C1? ω=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X=√C1ω cos z (7)式左边化为d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω =t+C2 由此可得, X=√C1ω cos (ωt+ωC2),

简谐运动周期公式证明

为了使示意图更加简洁,全部假设k=1,这样的话以为F =-kx(并且在此强调 回 此处负号只表示方向,不表示数值,所以在证明中使用数值关系时全部忽略负号),所以回复力F数值上和在图中的线段长度等于位移X,所以在2个示意图中都是用一条线表示的。[6] 一般简谐运动周期公式证明 因为简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。见右图。 圆周运动的 ;很明显v无法测量到,所以根据 得到 。 其中向心力F便可以用三角函数转换回复力得到即 (F=-kx中负号只表示方向,所以在这省略)。所以得到 ; 因为x与r之间的关系是:x=rcosα,所以上式继续化简得到: 。 然后再将V带入之前的圆周运动T中,即可得到 。[4] 单摆周期公式证明 首先必须明确只有在偏角不太大的情况(一般认为小于5°)下,单摆的运动可以近似地视为简谐运动。

单摆周期公式证明 见示意图,在偏角很小时,我们可以近似的看做图中红色箭头即位移x(回复力)垂直于平衡位置。于是我们便可以得到sinα≈ 。同时因为回复力为重力与速度平行方向上的分力即图中重力分力2,重力分力1即L的延长线。于是我们可以得到△AOB与重力和它的分力所构成的三角形相似(注意相似时的三角形方向)即可得到: (注意:此处比例关系中的位移x虽然在k=1的假设下数值上等于回复力F,但 才是真正的回复力F,因为回复力F为重力与速度平行方是必须清楚在意义上G 2 )[7] 向上的分力即G 2 于是根据相似我们可以得到 ,于是化简得到 ,于是得到 ,然后将这个转换带入一般简谐运动周期公式便得到了单摆的周期公式 。[1] 5运动方程推导编辑 定义:一个做匀速圆周运动的物体在一条直径上的投影所做的运动即为简谐运动: R是匀速圆周运动的半径,也是简谐运动的振幅; ω是匀速圆周运动的角速度,也叫做简谐运动的圆频率,

相关主题