搜档网
当前位置:搜档网 › 水污染控制工程复习打印版

水污染控制工程复习打印版

水污染控制工程复习打印版
水污染控制工程复习打印版

水污染控制工程复习

绪论

一.水质指标

(一)物理性指标

1.温度

工业废水常引起水体热污染;造成水中溶解氧减少;加速耗氧反应,最终导致水体缺氧或水质恶化。

2.色度

感官性指标,水的色度来源于金属化合物或有机化合物。

3.嗅和味

感官性指标,水的异臭来源于还原性硫和氮的化合物、挥发性有机物和氯气等污染物质。

4.固体物质

分为溶解物质与悬浮固体物质,其中悬浮固体物质有可分为挥发性物质和固定性物质。

(二)化学性指标

1.无机性指标

1)植物营养元素

过多的氮、磷进入天然水体,易导致富营养化,使水生植物尤其是藻类大量繁殖,造成水中溶解氧急剧变化,影响鱼类生存,并可能使某些湖泊由贫营养湖发展为沼泽和干地。

2)pH和碱度

一般要求处理后污水的pH在6~9之间。当天然水体遭受酸碱污染时,pH 发生变化,消灭或抑制水体中生物的生长,妨碍水体自净,还可腐蚀船舶。

碱度指水中能与强酸定量作用的物质总量,按离子状态可分为三类:氢氧化物碱度;碳酸盐碱度;重碳酸盐碱度。

3)重金属

作为微量金属元素。危害:生物毒性,抑制微生物生长,使蛋白质凝固;逐级富集至人体,影响人体健康。

5)含氮化合物

氮是有机物中除碳以外的一种主要元素,也是微生物生长的重要元素。污水中的氮有四种,即有机氮、氨氮、亚硝酸盐氮和硝酸盐氮。

危害:消耗水体中溶解氧;促进藻类等浮游生物的繁殖,形成水华、赤潮;引起鱼类死亡,导致水质迅速恶化。

关于氮的几个指标:有机氮:主要指蛋白质和尿素。TN:一切含氮化合物以N计量的总称。TKN:TN中的有机氮和氨氮,不包括亚硝酸盐氮、硝酸盐氮。氨氮:有机氮化合物的分解,或直接来自含氮工业废水。NO x-N:亚硝酸盐氮和硝酸盐氮。

6)含磷化合物:磷也是有机物中的一种主要元素,是仅次于氮的微生物生长的重要元素。

磷主要来自:人体排泄物以及合成洗涤剂、牲畜饲养场及含磷工业废水。

危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧平衡;使水质迅速恶化,危害水产资源。

关于磷的几个指标:有机磷:有机磷包括磷酸甘油酸、磷肌酸等。无机磷:

磷酸盐:正磷酸盐(PO3-

4)、磷酸氢盐(HPO2-

4

)、磷酸二氢盐(H2PO4-)、偏磷酸盐(PO3

-)。聚合磷酸盐:焦磷酸盐(P

2O4-

7

)、三磷酸盐(P3O5-

10

)、三磷酸氢盐(HP3O2-

9

)

2.有机物指标

1)总有机碳(TOC:total organism carbon):在950℃高温下,以铂作为催化剂,使水样气化燃烧,然后测定气体中的CO2含量,从而确定水样中碳元素总量。测定中应该去除无机碳的含量。

2)总需氧量(TOD:total oxygen demand):在900~950℃高温下,将污水中能被氧化的物质(主要是有机物,包括难分解的有机物及部分无机还原物质),燃烧氧化成稳定的氧化物后,测量载气中氧的减少量,称为总需氧量。测定方便而快速。

3)化学需氧量(COD:chemical oxygen demand):用化学方法氧化分解废水水样中有机物过程中所消耗的氧化剂量折合成氧量(O2)(mg/L)。常用的氧化剂主要是重铬酸钾K2Cr2O7(称COD Cr)和高锰酸钾KMnO4(原称COD Mn或OC,现称高锰酸盐指数)。酸性条件下,硫酸银作为催化剂,氧化性最强。废水中无机的还原性物质同样被氧化。如果废水中有机物的组成相对稳定,则化学需氧量和生化需氧量之间应有一定的比例关系:生活污水通常在0.4~0.5。

4)生化需氧量(BOD:biological oxygen demand):在规定条件下微生物氧化分解污水或受污染的天然水样中有机物所需要的氧量(20℃,5d)。反映了在有氧的条件下,水中可生物降解的有机物的量主要污染特性(以mg/L为单位)。有机污染物被好氧微生物氧化分解的过程,一般可分为两个阶段:第一个阶段主要是有机物被转化成二氧化碳、水和氨;第二阶段主要是氨被转化为亚硝酸盐和硝酸盐。污水的生化需氧量通常只指第一阶段有机物生物氧化所需的氧量,全部生物氧化需要20~100d完成。实际中,常以5d作为测定生化需氧量的标准时间,称5日生化需氧量(BOD5);通常以20℃为测定的标准温度。

总结:各种水质之间TOC或TOD与BOD不存在固定的相关关系。在水质条件基本不变的条件下,BOD与TOC或TOD之间存在一定的相关关系。

5)油类污染物:石油类:来源于工业含油污水。动植物油脂:产生于人的生活过程和食品工业。危害:油类污染物进入水体后影响水生生物的生长、降低水体的资源价值。油膜覆盖水面阻碍水的蒸发,影响大气和水体的热交换。油类污染物进入海洋,改变海水的反射率和减少进入海洋表层的日光辐射,对局部地区的水文气象条件可能产生一定影响。大面积油膜将阻碍大气中的氧进入水体,从而降低水体的自净能力。石油污染对幼鱼和鱼卵的危害很大,堵塞鱼的鳃部,能使鱼虾类产生石油臭味,降低水产品的食用价值。破坏风景区,危害鸟类生活。

6)酚类污染物

来源:煤气、焦化、石油化工、木材加工、合成树脂等工业废水。

危害:原生质毒物,可使蛋白质凝固,引起神经系统中毒。酚浓度低时,能影响鱼类的洄游繁殖。酚浓度达0.1~0.2mg/L时,鱼肉有酚味。酚浓度高会引起鱼类大量死亡,甚至绝迹。酚的毒性可抑制水中微生物的自然生长速度,有时甚至使其停止生长。酚能与饮用水消毒氯产生氯酚,具有强烈异臭(0.001mg/L即有异味,排放标准0.5mg/L)。灌溉用水酚浓度超过5mg/L时,农作物减产甚至枯死。

(三)生物性指标

1.来源及危害

1)生活污水:肠道传染病、肝炎病毒、SARS、寄生虫卵等制革屠宰等

2)工业废水:炭疽杆菌、钩端螺旋体等

3)医院污水:各种病原体。危害:传播疾病,影响卫生,导致水体缺氧。

2.细菌总数

水中细菌总数反映了水体有机污染程度和受细菌污染的程度。常以细菌个数/mL计。饮用水:<100个/mL;医院排水:<500个/mL。

3.大肠菌群

大肠菌群的值可表明水样被粪便污染的程度,间接表明有肠道病菌存在的可能性。常以大肠菌群数/L计。饮用水:<3个/L;城市排水:<10000个/L;游泳池:<1000个/L。

二.污水处理分类

(一)根据污水处理程度

1.一级处理:只去除漂浮物和易沉物,使城市污水排入水体时不致立即出现不洁现象。

2.二级处理:去除漂浮物和易沉物外,进而稳定污水中的有机物,基本上消除污水的耗氧性能。使水体接纳污水后不至于出现严重缺氧情况,水体生态系统将基本上维持原有的平衡状态。

3.深度处理:降低出水中的氮、磷化合物浓度。

(二)根据污水处理原理

1.物理方法:格栅、筛网、过滤、沉淀、气浮、离心分离、膜分离等。

2.化学方法:混凝、中和、化学沉淀、氧化还原、消毒、电解。

3.物理化学:吸附、萃取、离子交换。

4.生物方法:生物处理过程是天然污水自净的人工化过程,人工浓缩的过程。对象是污水中可被生物降解的溶解性有机污染物、部分胶体状有机污染物和少量无机污染物。

第一章废水生物处理的基本概念和生化反应动力学基础

一.

废水的生物处理法:利用自然存在的微生物的代谢作用,把水中的有机污染物转化为简单的无机物的过程(生物化学处理法),即利用微生物的生命活动过程来转化污染物,使之无害化的方法。

废水的生物处理的对象:是污水中可被生物降解的溶解性有机污染物、部分胶体状有机污染物和少量无机污染物。

二.微生物的新陈代谢

新陈代谢:微生物不断从外界环境中摄取营养物质,通过生物酶催化的复杂生化反应,在体内不断进行物质转化和交换的过程。

分解代谢:分解复杂营养物质,降解高能化合物,获得能量。

合成代谢:通过一系列的生化反应,将营养物质转化为复杂的细胞成分,机体制造自身。

三.废水的可生化性判断

1.根据BOD5与COD Cr的比值大小判断:B/C>0.45:生化性好;B/C>0.30:可生化;B/C<0.25:较难生化;B/C<0.2:不易生化。

2.根据测定相对耗氧速率判断:耗氧速率就是单位生物量在单位时间内的耗氧量。以有废水污染物(底物)浓度为横坐标,以相对耗氧速率为纵坐标,通过实验获得相对耗氧曲线。

四.微生物的呼吸类型

(一)好氧呼吸

好氧呼吸是营养物质进入好氧微生物细胞后,通过一系列氧化还原反应获得能量的过程。有分子氧参与的生物氧化,反应的最终受氢体是分子氧。底物中的氢被脱氢酶活化,并从底物中脱出交给辅酶(递氢体),同时放出电子,氧化酶利用底物放出的电子激活游离氧,活化氧和从底物中脱出的氢结合成水。好氧呼吸过程实质上是脱氢和氧活化相结合的过程。在这个过程中,同时放出能量。依好氧微生物的类型不同,被其氧化的底物不同,氧化产物也不同。好氧呼吸有异养型微生物呼吸和自养型微生物呼吸两种。

1.异养型微生物:异养型微生物以有机物为底物(电子供体),其终点产物为二氧化碳、氨和水等无机物,同时放出能量。有机废水的好氧生物处理,如活性污泥法、生物膜法、污泥的好氧消化等属于这种类型的呼吸。

2.自养型微生物:自养型微生物以无机物为底物(电子供体),其终点产物也是无机物,同时放出能量。

(二)厌氧呼吸

厌氧呼吸是在无分子氧(O2)的情况下进行的生物氧化。厌氧微生物只有脱氢

酶系统,没有氧化酶系统。在呼吸过程中,底物中的氢被脱氢酶活化,从底物中脱下来的氢经辅酶传递给除氧以外的有机物或无机物,使其还原。厌氧呼吸的受氢体不是分子氧。在厌氧呼吸过程中,底物氧化不彻底,最终产物不是二氧化碳和水,而是一些较原来底物简单的化合物。这种化合物还含有相当的能量,故释放能量较少。如有机污泥的厌氧消化过程中产生的甲烷,是含有相当能量的可燃气体。厌氧呼吸按反应过程中的最终受氢体的不同,可分为发酵和无氧呼吸。

1.发酵:指供氢体和受氢体都参与有机化合物的生物氧化作用,最终受氢体无需外加,就是供氢体的分解产物(有机物)。这种生物氧化作用不彻底,最终形成的还原性产物,是比原来底物简单的有机物,在反应过程中,释放的自由能较少,故厌氧微生物在进行生命活动过程中,为了满足能量的需要,消耗的底物要比好氧微生物的多。

2.无氧呼吸:是指以无机氧化物,如NO3-,NO2-,SO2-4,S2O2-3,CO2等代替分子氧,作为最终受氢体的生物氧化作用。在反硝化作用中,受氢体为NO3-,在无氧呼吸过程中,供氢体和受氢体之间也需要细胞色素等中间电子传递体,并伴随有磷酸化作用,底物可被彻底氧化,能量得以分级释放,故无氧呼吸也产生较多的能量用于生命活动。但由于有些能量随着电子转移至最终受氢体中,故释放的能量不如好氧呼吸的多。

五.废水的好氧生物处理与厌氧生物处理及其特点

(一)好氧生物处理

好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来,达到无害化的要求,以便返回自然环境或进一步处置。

特点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD5浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。

(二)厌氧生物处理

废水的厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为CO2、H2O、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。

特点:由于废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少、可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大,出水水质差等。为维持较高的反应速度,需维持较高的温度,就要消耗能源。对于有机污泥和高浓度有机废水(一般BOD5≥

2000mg/L)可采用厌氧生物处理法。

六.微生物的生长曲线及其在废水生物处理中的意义

微生物的生长规律:微生物的生长规律一般是以生长曲线来反映。按微生物生长速率,其生长可分为四个生长期

1.停滞期

如果活性污泥被接种到与原来生长条件不同的废水中(营养类型发生变化,污泥培养驯化阶段),或污水处理厂因故中断运行后再运行,则可能出现停滞期。这种情况下,污泥需经过若干时间的停滞后才能适应新的废水,或从衰老状态恢复到正常状态。停滞期是否存在或停滞期的长短,与接种活性污泥的数量、废水性质、生长条件等因素有关。

2.对数期

当废水中有机物浓度高,且培养条件适宜,则活性污泥可能处在对数生长期。处于对数生长期的污泥絮凝性较差,呈分散状态,镜检能看到较多的游离细菌,混合液沉淀后其上层液混浊,含有机物浓度较高,活性强沉淀不易,用滤纸过滤时,滤速很慢。

3.静止期

当污水中有机物浓度较低,污泥浓度较高时,污泥则有可能处于静止期,处于静止期的活性污泥絮凝性好,混合液沉淀后上层液清澈,以滤纸过滤时滤速快。处理效果好的活性污泥法构筑物中,污泥处于静止期。

4.衰老期

当污水中有机物浓度较低,营养物明显不足时,则可能出现衰老期。处于衰老期的污泥松散,沉降性能好,混合液沉淀后上清液清澈,但有细小泥花,以滤纸过滤时,滤速快。注意合成产率系数和观测产率系数。

5.在废水生物处理中的意义:在废水生物处理中,微生物是一个混合群体,它们也有一定的生长规律。有机物多时,以有机物为食料的细菌占优势,数量最多;当细菌很多时,出现以细菌为食料的原生动物;而后出现以细菌及原生动物为食料的后生动物。在污水生物处理过程中,如果条件适宜,活性污泥的增长过程与纯种单细胞微生物的增殖过程大体相仿。但由于活性污泥是多种微生物的混合群体,其生长受废水性质、浓度、水温、pH、溶解氧等多种环境因素的影响,因此,在处理构筑物中通常仅出现生长曲线中的某一两个阶段。处于不同阶段时的污泥,其特性又很大的区别。

七.影响微生物生长的环境因素

(一)微生物的营养

微生物要求的营养物质必须包括组成细胞的各种原料和产生能量的物质,主要有:水、碳素营养源、氮素营养源、无机盐及生长因素。

细胞的分子式:C5H7O2N(或C60H87O23N12P)。对营养的需求:好氧微生物:BOD5:N:P=100:5:1;厌氧微生物:BOD5:N:P=400:5:1。

1.水:组成部分,代谢过程的溶剂。细菌约80%的成分为水分。

2.碳源:碳素含量占细胞干物质的50%左右,碳源主要构成微生物细胞的含碳物质和供给微生物生长、繁殖和运动所需要的能量,一般污水中含有足够碳源。

3.氮源:提供微生物合成细胞蛋白质的物质。

4.无机元素:主要有磷、硫、钾、钙、镁等及微量元素。作用:构成细胞成分,酶的组成成分,维持酶的活性,调节渗透压,提供自养型微生物的能源。磷:核酸、磷脂、ATP转化。硫:蛋白质组成部分,好氧硫细菌能源。钾:激活酶。钙:稳定细胞壁,激活酶。镁:激活酶,叶绿素的重要组成部分

5.生长因素:氨基酸、蛋白质、维生素等。

(二)温度

各类微生物所生长的温度范围不同,约为5℃~80℃。此温度范围,可分为最低生长温度、最高生长温度和最适生长温度(是指微生物生长速度最快时温度)。依微生物适应的温度范围,微生物可以分为中温性(20~45℃)、好热性(高温性)(45℃以上)和好冷性(低温性)(20℃以下)三类。当温度超过最高生长温度时,会使微生物的蛋白质迅速变性及酶系统遭到破坏而失活,严重者可使微生物死亡。低温会使微生物代谢活力降低,进而处于生长繁殖停止状态,但仍保存其生命力。

(三)pH

不同的微生物有不同的pH适应范围。细菌、放线菌、藻类和原生动物的p H适应范围是在4~10之间。大多数细菌适宜中性和偏碱性(pH=6.5~7.5)的环境。废水生物处理过程中应保持最适pH范围。当废水的pH变化较大时,应设置调节池,使进入反应器(如曝气池)的废水,保持在合适的pH范围。

(四)溶解氧

影响生物处理效果的重要因素。好氧微生物处理的溶解氧一般以2~4mg/L 为宜。

(五)有毒物质

在工业废水中,有时存在着对微生物具有抑制和杀害作用的化学物质,这类物质我们称之为有毒物质。其毒害作用主要表现在细胞的正常结构遭到破坏以及菌体内的酶变质,并失去活性。在废水生物处理时,对这些有毒物质应严加控制,但毒物浓度的允许范围,需要具体分析。

第十二章活性污泥法

一.

1.活性污泥:由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。

2.活性污泥法:利用悬浮活性污泥的生物降解性能处理废水中有机污染物的好氧生物处理法。

3.构成活性污泥法的三要素:

1)引起吸附和氧化分解作用的微生物,也就是活性污泥;

2)废水中的有机物,它是处理对象,也是微生物的食料;

3)溶解氧,没有充足的溶解氧,好氧微生物既不能生存,也不能发挥氧化分解作用。

二.评价活性污泥的重要指标

1.混合液悬浮固体浓度MLSS

曝气池中污水和活性污泥混合后混合液悬浮固体的数量,单位:mg/l 。取混合液100mL ,以快速滤纸过滤,105℃烘箱内2小时烘干至恒重,称取其中固体物质的含量。

MLSS=Ma+Me+Mi+Mii

式中:Ma —具备活性细胞成分;

Me —内源代谢残留的微生物有机体;

Mi —未代谢的不可生化的有机悬浮固体;

Mii —吸附的无机悬浮固体。

2.混合液挥发性悬浮固体浓度MLVSS

指混合液悬浮固体中有机物的数量,单位:mg/l 。取测定MLSS 后的滤纸与固体物质一同放入焚烧炉内,经600℃~800℃灼烧至残留物无黑色,称取残留物的含量,扣除滤纸的灰分后,即为NVSS ,MLSS 与NVSS 的差即为MLVSS 。

由于MLVSS 中不包括Mii(吸附的无机悬浮固体),因此比MLSS 更能够精确地代表活性污泥中活性生物的数量。

3.污泥沉降比SV 30

取混合液至1000mL 或100mL 量筒,静止沉淀30min 后,度量沉淀活性污泥的体积,以占混合液体积的比例(%)表示污泥沉降比。

4.污泥体积指数SVI(简称污泥指数)

曝气池出口处混合液经30分钟静止沉淀以后,1克干污泥所占的容积,单位为mL/g 。

)/()/()(1)(in 30130L g MLSS L mL SV g L mL m L SVI ==混合液中悬浮固体干重的活性污泥体积混合液沉淀 SV 30与SVI 可以表示活性污泥的沉降浓缩性能,而SVI 能够更确切地反应

处活性污泥的松散程度和凝絮沉降性能。

5.污泥龄SRT

曝气池中工作着的活性污泥总量与每日排放的剩余污泥数量之比,单位:d 。 由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

三.氧转移系数K La 的测定

C t K c c c c K t c La S S La +?-=-?-=)ln()(d d

式中: —液相中溶解氧浓度变化率(或氧转移效率),kgO 2/(m 3?h); K La —氧分子的总传质系数,h -1;

c S —与界面氧分压所对应的溶液饱和溶解氧值,kgO 2/m 3;

c —溶液中溶解氧浓度,kgO 2/m 3。

1.提高K La 值:加强液相主体的紊流程度,降低液膜厚度,加速气液界面的更新,采用微孔曝气方式,增大气液接触面积等。

2.提高c S 值:提高气相中的氧分压。

四.活性污泥法的运行方式及其特点

t c d d

1.传统活性污泥法

污水与回流污泥从池首端流入,呈推流式至池的末端流出。进口处有机物浓度高,沿池长逐渐降低,可能造成前半段氧远远不够,后半段供氧量超过需要。

特点:适用于大中型污水处理厂。处理效率高,进水浓度不能过高,抗冲击负荷能力较差,体积负荷率低,曝气池庞大,占用土地较多,基建费用较高。

2.完全混合法

在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。

特点:1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同;

2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点;

3)池液里各个部分的需氧量比较均匀;4)操作灵活,可以通过改变F:M值,使其工作点处于污泥增长曲线上所期望的某一点,从而可以得到所期望的出水水质。

3.延时曝气法

与传统污泥法类似。

特点:1)曝气时间很长,达24h甚至更长,MLSS较高,达到3000~6000mg /L;

2)活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;

3)适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。

4)由于负荷率低,所需要的池容积大,占地面积大,微生物长期处于内源呼吸期,污泥龄长。因此基建费用和动力消耗较大。

4.氧化沟法

氧化沟是延时曝气法的一种特殊形式。

特点:池体狭长,池深较浅,沟槽中设有表面曝气装置,装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用。

5.接触稳定法(吸附再生法)

混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有。混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。

特点:直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。

6.吸附-生物降解工艺AB法

A 级以高负荷或超高负荷运行,

B 级以低负荷运行,A 级曝气池停留时间30~60min ,B 级停留时间2~4h 。不设初沉池,A 级曝气池是一个开放性的生物系统。A 、B 两级各有独立的污泥回流系统,两级污泥互不相混。

特点:处理效果稳定,具有抗冲击负荷和pH 变化的能力。该工艺还可以根据经济实力进行分期建设。

7.序批式活性污泥法SBR 法

由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。

特点:优点

1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池功能,无污

泥回流设备;

2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;

3)反应推动力大,易于得到优于连续流系统的出水水质;

4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷

的效果;

5)污泥沉淀性能好,SVI 值较低,能有效地防止丝状菌膨胀;

6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于

自控运行,易于维护管理。

缺点:1)容积利用率低;

2)水头损失大;

3)出水不连续;

4)峰值需氧量高;

5)设备利用率低;

6)运行控制复杂;

7)不适用大水量。

8.A/O 法:由厌氧池和好氧池组成的同时去除污水中有机污染物及磷的处理系统。

五.污泥负荷与容积负荷:主要参数范围0.2~0.4

1.污泥负荷

单位质量活性污泥在单位时间内所能承受的BOD 5量,单位:kgBOD 5/(kgM LSS?d)或kgBOD 5/(kgMLVSS?d)。

V

X )S ()()(0?-?==e S S Q M F L 微生物的总量基质的总投加量 式中:F/M —营养与微生物比,gBOD 5/(gMLSS ?d)或gBOD 5/(gMLVSS?d);

Q —与曝气时间相当的平均进水量,m 3/d ;

S 0—曝气池进水的平均BOD 5值,mg/L 或kg/m 3;

S e —曝气池出水的平均BOD 5值,mg/L 或kg/m 3;X —曝气池混合液污泥浓度,MLSS 或MLVSS ,mg/L 或kg/m 3;V —曝气池体积,m 3。

2.污泥容积负荷

单位容积曝气区在单位时间内所能承受的BOD 5量,kgBOD 5/(m 3?d)。

V

S 0?=Q L V

六.活性污泥法的设计(包括沉淀池设计0.7~1.5)

[例12-1]某城市污水处理厂,设计处理流量为30000m 3/d ,经沉淀后的BOD 5为200mg/L ,希望处理后的出水BOD 5为20mg/L 。经计算,设计曝气池容积V =10000m 3/d ,MLVSS =2000mg/l ,要求确定:1)若采用鼓风曝气,以微孔曝气盘作为曝气装置,EA =10%,若曝气池溶解氧c 0=2mg/l ,温度为25℃,曝气盘装在水下4m ,求鼓风曝气量及鼓风机选型;2)若采用表面机械曝气时,求充氧量及表面曝气设备选型。

有关参数:a’=0.5,b’=0.1,α=0.8,β=0.9

[例12-2]某城市污水处理厂,设计处理流量为30000m 3/d ,时变化系数为1.5,经沉淀后的BOD 5为200mg/L ,总氮为30mg/l ,总磷为3mg/l ,拟采用活性污泥法进行处理,希望处理后的出水BOD 5为20mg/L 。计算与设计该活性污泥法处理系统。

七.水体氮、磷污染的危害

氮、磷为植物营养物质,能助长藻类和水生生物,引起水体富营养化,影响饮用水水源。

1.氮污染的危害:消耗水体中溶解氧;促进藻类等浮游生物的繁殖,形成水华、赤潮;引起鱼类死亡,导致水质迅速恶化。

2.磷污染的危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧平衡;使水质迅速恶化,危害水产资源。

八.生物脱氮的机理

在微生物的作用下,将有机氮和氨态氮转化为N 2和N x O 气体的过程,其中包括硝化和反硝化两个反应过程。硝化是在好氧条件下由亚硝酸菌和硝酸菌共同完成。将废水中的氨态氮转化为亚硝酸盐和硝酸盐,硝化细菌为化能自养菌,生长率低,对环境影响较为敏感,温度、溶解氧、污泥龄、PH 、有机负荷等对他有较大影响。反硝化是指在无氧条件下,反硝化菌将硝酸盐氮(NO -

3)和亚硝酸盐

氮(NO -

2)还原为N 2的过程,反硝化细菌属于异养型兼性厌氧菌,在无氧而有硝酸

盐或亚硝酸盐存在时,以NO - 3和NO - 3为电子受体,

以有机炭为电子供体和营养源进行反硝化反应。

同化作用去除的氮依运行条件和水质而定,如果微生物细胞中氮含量以12.5%计算,同化氮去除占原污水BOD 的2%~5%,氮去除率在8%~20%。

九.生物除磷的机理

利用好氧微生物中聚磷菌在好氧条件下对污水中溶解性磷酸盐过量吸收作用,然后沉淀分离而除磷。

1.厌氧环境中

污水中的有机物在厌氧发酵产酸菌的作用下转化为乙酸苷;而活性污泥中的聚磷菌在厌氧的不利状态下,将体内积聚的聚磷分解,分解产生的能量一部分供聚磷菌生存,另一部分能量供聚磷菌主动吸收乙酸苷转化为PHB(聚β-羟基丁酸)

的形态储藏于体内。聚磷分解形成的无机磷释放回污水中,这就是厌氧释磷。

2.好氧环境中

进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解并释出大量能量供聚磷菌增殖等生理活动,部分供其主动吸收污水中的磷酸盐,以聚磷的形式积聚于体内,这就是好氧吸磷。剩余污泥中包含过量吸收磷的聚磷菌,也就是从污水中去除的含磷物质。普通活性污泥法通过同化作用除磷率可以达到12%~2 0%。而具生物除磷功能的处理系统排放的剩余污泥中含磷量可以占到干重5%~ 6%,去除率基本可满足排放要求。

十.生物脱氮与生物脱氮除磷的主要工艺

1.生物脱氮的主要工艺:三段生物脱氮工艺、Bardenpho生物脱氮工艺、缺氧—好氧生物脱氮工艺

缺氧—好氧生物脱氮工艺(A/O)该工艺将反硝化段设置在系统的前面,又称前置式反硝化生物脱氮系统。反硝化反应以水中的有机物为碳源,曝气池中含有大量的硝酸盐的回流混合液,在缺氧池中进行反硝化脱氮。

2.生物脱氮除磷的主要工艺:A2/O工艺、改进的Bardenpho工艺、UCT工艺、S BR工艺、MSBR脱氮除磷工艺、三沟式氧化沟、UNITANK工艺、YAAO工艺。十一.生物脱氮除磷法的设计

[例12-3]江南某城镇建污水处理厂一座,已知近期规划人口50000人,生活污水量综合排放定额为180L/人?d,污水水质为:COD:450mg/L,BOD5:185mg/L,SS:250mg/L,TKN:30mg/L,TP:5.0mg/L。要求对该镇污水进行除磷脱氮,采用A2/O工艺且出水水质指标要求达到下列标准:COD<70mg/L,BOD5<20mg /L,SS<20mg/L,NH3-N<10mg/L,TP<1.0mg/L。

第十三章生物膜法

一.生物膜法

生物膜法:对污水土地的模拟和强化,是一大类生物处理法的统称,包括生物滤池,生物转盘、生物接触氧化池、曝气生物滤池及生物流化床等工艺。

共同特点是微生物附着在介质”滤料”表面上,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO2、NH3和微生物细胞物质,污水得到净化,所需氧气一般来自大气。

主要优点是操作方便;剩余污泥量少;抗冲击负荷能力强,对水质、水量变化的适应性较强。主要用于从污水中去除溶解性有机污染物,是一种被广泛采用的生物处理方法,适合于中低污染和中小型污水处理厂。

二.生物膜法处理系统的净水机理

挂膜:污水通过布水设备连续地、均匀地喷洒到滤床表面上,在重力作用下,污水以水滴的形式向下渗沥,或以波状薄膜的形式向下渗流。最后,污水到达排水系统,流出滤池。污水流过滤床时,有一部分污水、污染物和细菌附着在滤料表面上,微生物便在滤料表面大量繁殖,不久,形成一层充满微生物的黏膜,称为生物膜。这个起始阶段称为挂膜,是生物滤池的成熟期。

污水流过成熟滤床时,污水中的有机污染物被生物膜中的微生物吸附、降解,从而净化。

生物膜表层生长的是好氧和兼性微生物,其厚度约2mm。在这里,有机污染物经微生物好氧代谢而降解,终点产物是H2O、CO2、NH3等。

由于氧在生物膜表层已耗尽,生物膜内层的微生物处于厌氧状态。在这里,进行的是有机物的厌氧代谢,终点产物是有机酸,乙醇、醛和H2S等。

由于微生物的不断繁殖,生物膜不断加厚,超过一定厚度后,吸附有机物在传递到生物膜内层的微生物以前,已被代谢掉。

此时,内层微生物因得不到充分的营养而进入内源代谢,失去其黏附在滤料上的性质,脱落下来随水流出滤池,滤料表面再重新长出新的生物膜。

三.生物膜处理系统的主要类型

生物滤池:构造:滤床、池体、布水设备(为了使污水能均匀地分布在整个滤床表面上)及排水系统(收集滤床流出的污水与生物膜,保证通风,支撑滤料)。

特性:1)能为微生物附着提供大量的面积;

2)使污水以液膜状态流过生物膜;

3)有足够的空隙率,保证通风(即保证氧的供给)和使脱落的生物

膜能随水流出滤池;

4)不被微生物分解, 也不抑制微生物的生长,有较好的化学性能;

5)有一定的机械强度;

6)价格低廉。主要优点是运行简单,因此,适用于小城镇和边远地区。

流程:由初沉池、生物滤池、二沉池组成。

生物转盘:构造:有一系列平行的旋转圆盘、转动中心轴、动力及减速装置、氧化曹等组成。

机理:工作时,废水流过水槽,电动机转动转盘,生物膜和大气与废水轮替接触,浸没时吸附废水中的有机物,敞露时吸收大气中的氧气。转盘的转动,,带进空气,,并引起水槽内废水紊动,使溶解氧均匀分布。随着膜的增厚,内层的微生物呈厌氧状态,失去活性时使生物膜脱落,并随同出水流至二次沉淀池。

特性:1)不需曝气和回流,运行时动力消耗和费用低;

2)运行管理简单,技术要求不高;

3)工作稳定,适应能力强;

4)适应不同浓度、不同水质的污水;

5)剩余污泥量少,易于沉淀脱水;

6)没有滤池蝇、恶臭、堵塞、泡沫、噪音等问题;

7)可多层立体布置;

8)一般需加开孔防护罩保护、保温。

布置方式:单轴单级式、单轴多级式和多轴多级式

生物接触氧化:构造:主要由池体、填料和进水布气装置等组成

特性:1)具有较高的微生物浓度,一般可达10~20g/L;

2)生物膜具有丰富的生物相,含有大量丝状菌,形成了稳定

的生态系统,污泥产量低;3)具有较高的氧利用率;

4)具有较强的耐冲击负荷能力;5)生物膜活性高;

6)没有污泥膨胀的问题。

7)缺点:滤床易堵塞和更换,运行费用较高。

生物流化床:机理:1)固定床阶段:当液体以很小的速度流经床层时,固体颗粒

处于静止不动的状态,床层高度也基本维持不变,这时的

床层称固定床。

2)流化床阶段:当液体流速大于b点流速,床层不再维持于固

定状态,颗粒被液体托起而呈悬浮状态,且在床层各个方向

流动,在床层上部有一个水平界面,此时由颗粒所形成的床

层完全处于流化态状态,这类床层称流化床。

3)液体输送阶段:当液体流速提高至超过c点后,床层不再保

持流化,床层上部的界面消失,载体随液体从流化床带出,

这阶段称液体输送阶段。在水处理工艺中,这种床称“移动

床”或“流动床”。

类型:两相生物流化床和三相生物流化床

特性:优点:滤床具有巨大的表面积容积负荷高,抗冲击负荷能力

强;微生物活性强;传质效果好。

缺点:设备的磨损较固定床严重,载体颗粒在湍动过程种会被

磨损变小;设计时存在着生产放大方面的问题:防堵塞、

曝气方法、进水配水系统的选用、生物颗粒流失。

四.生物膜处理系统与活性污泥法比较的优缺点

1.优点:食物链长,剩余污泥少;参与净化反应微生物的多样性;每段都形成自己的优势种属;运行管理方便,动力消耗较少;生物量多,容积负荷高;生物载体的多样性;微生物可存活世代时间较长;耐冲击能力强。

2.缺点:易发生堵塞,负荷率相对较低;处理后的出水较浊,有机物去除率较低;需要填料及支承物,基建设投资相对增加。

五.生物接触氧化池的构造及各部分尺寸的计算

1.有效容积(即填料体积)

v e

o L S

S

Q V )

(-

=

式中,Q—设计污水处理量,m3/d;

S0,S e—进水、出水BOD5,mg/L;

L v—填料容积负荷,kgBOD5/[m3(填料)?d] 2.总面积

A=V/h0

式中,h0—填料高度,一般采用3.0m;

座数

N=A/A1

式中,A1—每座池子的面积,m2。

3.池深

h=h0+h1+h2+h3

式中,h1—超高,0.5~0.6m;

h2—填料层上水深,0.4~0.5m;

h3—填料至池底的高度,一般采用0.5m。

4.有效停留时间

t=V/Q

5.空气量

D=D0Q

式中,D0—1m3污水需空量,m3/m3,根据水质特性、试验资料或参考类似工程运行经验数据确定,宜大于10,一般去15~20。

[例13-1]某小区生活污水处理厂设计处理流量为2500m3/d,废水平均BOD5为1 50mg/L,COD为300mg/l,采用生物接触氧化进行处理,希望处理后的出水BO D5为20mg/L。计算与设计该生物接触氧化法处理系统。

[例13-2]某印染厂废水量为150m3/d,废水平均BOD5为170mg/L,COD为600 mg/l,采用生物接触氧化进行处理,要求出水BOD5≤20mg/L,COD≤250mg/L。计算与设计该生物接触氧化法的尺寸。

第十四章稳定塘和土地处理

按塘内的微生物类型、供氧方式和功能等划分

(一)常见

1.好氧塘:好氧塘的深度较浅,阳光能透至塘底,全部塘水内都含有溶解氧,塘内菌藻共生,溶解氧主要是由藻类供给,好氧微生物起净化污水作用。

2.兼性塘:兼性塘的深度较大,上层是好氧区,藻类的光合作用和大气复氧作用使其有较高的溶解氧,由好氧微生物起净化污水作用;中层的溶解氧逐渐减少,称兼性区(过渡区),由兼性微生物起净化作用;下层塘水无溶解氧,称厌氧区,沉淀污泥在塘底进行厌氧分解。

3.厌氧塘:厌氧塘的塘深在2m以上,有机负荷高,全部塘水均无溶解氧,呈厌氧状态,由厌氧微生物起净化作用,净化速度慢,污水在塘内停留时间长。

4.曝气塘:曝气塘采用人工曝气供氧,塘深在2m以上,全部塘水有溶解氧,由好氧微生物起净化作用,污水停留时间较短。

5.深度处理塘:深度处理塘又称三级处理塘或熟化塘,属于好氧塘。其进水有机污染物浓度很低,一般BOD5≤30mg/L。常用于处理传统二级处理厂的出水,提高出水水质,以满足受纳水体或回用水的水质要求。

(二)其他

水生植物塘、生态塘、完全储存塘。

二.兼氧塘的净水机理

厌氧塘对有机污染物的降解,与所有的厌氧生物处理设备相同,是由两类厌氧菌通过产酸发酵和甲烷发酵两阶段来完成的。即先由兼性厌氧产酸菌将复杂的有机物水解、转化为简单的有机物(如有机酸、醇、醛等),再由绝对厌氧菌(甲烷菌)将有机酸转化为甲烷和二氧化碳等。

由于甲烷菌的世代时间长,增殖速度慢,且对溶解氧和pH敏感,因此厌氧塘的设计和运行,必须以甲烷发酵阶段的要求作为控制条件,控制有机污染物的投配率,以保持产酸菌和甲烷菌之间的动态平衡。

应控制塘内的有机酸浓度在3000mg/L以下,pH为6.5~7.5,进水的

BOD5:N:P=100:2.5:1,硫酸盐浓度应小于500mg/L,以使厌氧塘能正常运行。

第十五章厌氧生物处理

厌氧生物处理是有机污染物在无氧的条件下,借助专性厌氧细菌和兼性厌氧细菌的作用下,将大部分有机污染物转化为甲烷、二氧化碳、水以及简单小分子有机物等的一种生物处理方法。早期的厌氧生物处理主要面对的是固态有机物(包括有机污泥或粪便等),所以称为消化。

两阶段:

污泥的

消化过程液化(酸化)

pH迅速下降,大分子有机物

产物和CO

2

、H

2

、NH

3

、H

2

S等

气化(甲烷化)产生消化气,主体是CH

4

,以及部分CO

2

四阶段:

大分子有机物(碳水化合物,蛋白质,脂肪等)水解

细菌的胞外酶水解的和溶解

的有机物

酸化

产酸细菌

有机酸

醇类

醛类等

H

2

,CO

2

乙酸化

乙酸细菌

乙酸

甲烷化

甲烷细菌

CH

4

甲烷细菌

CH

4

二.厌氧生物处理的特点

1.优点:1)需要的能量少,产生甲烷是一种潜在的能源;

2)产生的剩余生物污泥较少;

3)容积负荷较高,可处理高浓度、难降解的有机废水;4)需要的营养物较少。

2.缺点:1)处理过程的反应复杂,反应速度较慢,起动时间较长;

2)对温度、pH等环境因素更为敏感;

3)出水水质较差,需要进一步处理。

随着对厌氧生物处理工艺的进一步了解,厌氧处理作为好氧处理的预处理手段已经成为目前较为广泛采用的一种方法。

三.影响厌氧生物处理的主要因素

1.pH:最佳为7.0~7.3

2.温度:中温:33~35oC,高温:50~55oC。(中温更好)

3.负荷及营养:COD:N:P=500:5:1

4.搅拌:在有机物的厌氧发酵过程中,让反应器中的微生物和营养物质(有机物)搅拌混合,充分接触,将使得整个反应器中的物质传递、转化过程加快。作用:使池内污泥浓度分布均匀,利于微生物生长繁殖;释放有害气体;使环境因素在反应器内保持均匀。

5.有毒有害物(生物抑制性物质):1)重金属、氢;2)氨氮:50~200mg/l 有益,200~1000mg/l 不利,1000~3000mg/l 抑制,>3000有毒;3)硫酸盐、硝酸盐;4)一定浓度的有毒有机物:酚、氰、甲醛、氯仿等。

四.厌氧与好氧的联用(A/O 法)

1.用于预处理,调节废水的可生化性的A/O 联用:多用于难以生物处理的工业废水的处理。一般来说工业废水的成分比较复杂,且含有较多的有毒物质,其可生化性较差,这是常常利用厌氧生物处理作为预处理或前处理,对废水的可生化性进行调节和改善,在经过一定时间的厌氧处理之后,在进入好氧生物处理系统,进行好氧生物的处理。

2.脱氮的A/O 联用:多用于废水含有较多的氮元素和对出水的含氮量有较高的要求。在好氧的条件下,进行硝化反应将水中的氮元素转化成为硝态或亚硝态的氮,然后在缺氧的条件下,进行反硝化反应,将硝态和亚硝态的氮转化成氮气从水体中脱离出来,从而达到对废水脱氮的目的。在好氧硝化的同时对废水的有机污染物进行去除。

3.除磷的A/O 联用:用于废水中对磷元素的去除。利用的是聚磷菌在厌氧条件下放磷和好氧条件下过量吸磷的特点为工作原理,以去除含有大量的过量吸磷的聚磷菌的剩余污泥来达到目的。在处理的工艺流程中,都有含磷污泥的回流环节,同时在好氧过程中,对废水中的有机物进行去除。 第十八章 污泥处理

1.来源:栅渣、沉砂池沉渣、初沉池污泥、二沉池生物污泥

2.性质:富含有机物,易腐化、破坏环境,城市污水厂所产生的污泥量约为处理水体积的1%左右(0.5%~1.5%),含水率达到99.2%左右。

3.指标:1)含水率与含固率:含水率是污泥中水含量的百分数,含固率则是污泥中固体或干泥含量的百分数。含水率在85%以上呈流态,65%~ 85%时呈塑态,低于60%呈固态。当含水率变化时,可近似地用下式计算湿污泥的体积:

1

2122111w w S S P P P P V V --== 2)挥发性固体:挥发性固体(用VSS 表示),是指污泥中在600oC 的燃烧炉中能被燃烧,并以气体逸出的那部分固体,反映污泥的稳定化程度。

3)污泥中的有毒有害物质

4)污泥的脱水性能:用指数比抗阻值(r)或毛细吸水时间(CST)评价。

二.污泥的处理处置基本流程以及各部分的作用

(一)基本流程

原污泥→储存→浓缩→稳定→调理→脱水→干化→最终处理

(二)各部分的作用

1.浓缩:减少污泥体积,减少污泥体积的有效方法,减轻后续处理的负荷和费用。

2.稳定:去除或减少其中的有机物,抑制或杀灭其中的微生物,或改变污泥的环境条件使之不适宜微生物的生存,达到消除或减缓微生物对污泥腐化分解的作用。

3.调理:改变污泥的组织结构,减小污泥的黏性,降低污泥的比阻,达到改善污泥脱水性能的目的。

4.脱水:去除污泥中的毛细水和表面附着水,从而缩小其体积,减轻其质量。

5.最终处理:

三.污泥浓缩的目的与方法

(一)目的:减少污泥体积,减少污泥体积的有效方法,减轻后续处理的负荷和费用。

(二)方法:1.沉降法:主要用于浓缩初沉污泥及初沉污泥和剩余活性污泥的混合污泥。

2.气浮法:是依靠微小气泡与污泥颗粒产生黏附作用,使污泥颗粒的密度小于水而上浮,并得到浓缩。

优点:分离效果好,不受污泥沉降影响,污泥含固率高,占地面积小,停留时间短,臭气少,无厌氧放磷,运行可靠。

缺点:运行费用高,设备操作复杂,无贮存能力。

3.离心法:利用污泥中固、液相的密度不同,在高速旋转的离心机中受到不同的离心力而使两者分离,达到浓缩的目的。

优点:停留时间更短,占地更小,防治放磷,卫生条件好,不臭。

缺点:专用机械要求高,电耗大,维护管理复杂。

四.污泥脱水的方法:1.自然干化:简单易行、污泥含水率低,缺点是占地面积大、卫生条件差、铲运干污泥的劳动强度大,一般仅适用于中小规模的污水处理厂。

2.带式压滤机:连续工作、制造容易、操作管理简单、附属设备较少;但由于絮凝剂较贵,使得其运行费用较高。

3.离心脱水:设备小、占地少、效率高、分离能力强、操作条件好,缺点是制造工艺要求高、设备易磨损、对污泥的预处理要求高,必须使用高分子调理剂、动力费用较高。

4.板框压滤机:是最早应用于污泥脱水的机械;间歇操作、基建投资大,过滤能力低;但其滤饼的含固率高、滤液清、药剂用量少。

5.真空过滤机:是早期使用的连续机械脱水机械,特点是适应性强、连续运行、操作平稳、全过程自动化,缺点:污泥必须调理、工序多、费用高,滤带容易堵塞。

第十九章水处理厂的设计

(一)平面布置:

对个单元处理构筑物与辅助设施等的相对位置进行平面布置,包括处理构筑物与辅助构筑物,各种管道,辅助建筑物,以及道路,绿化等。

影响:用地面积,日常的运行管理与维修条件,以及周围地区的环境卫生。

原则:1)布置应紧凑,以减少处理厂占地面积和连接管(沟道)的长度,并应考虑工作人员的方便。

2)各处理构筑物之间的连接管(沟道)应尽量避免立体交叉,并考虑施

工、检修方便。

3)在高程布置上,充分利用地形,少用水泵并力求挖填土方平衡。

4)使需要开挖的处理构筑物避开劣质地基。

5)考虑分期施工和扩建的可能性,留有适当的扩建余地。

6)处理构筑物与生活、管理区应分别集中布置。

(二)高程布置

确定各处理构筑物和泵房的标高,选定连接管渠的尺寸和标高,计算各部分水面标高,以使污水能够按处理流程在各构筑物间通畅流动,保证污水处理厂的正常运行。

影响:污水处理厂的工程造价,运行费用,维护管理和运行操作。

二.污水处理流程以及确定其依据与原则

(一)处理流程:进水→预处理→一级处理→二级处理→深度处理———→出水

| | | |

|_________|_________|___________|_______污泥处理

(二)依据:1.污水处理的程度

2.处理规模和水质特点

3.工程造价和运行费用

4.污水处理控制要求

5.合理的污泥处理工艺。

(三)原则:先易后难、先粗后细;先成本低的处理方法、后成本高的处理方法。

水污染控制工程作业标准答案 (2)

水污染控制工程(下)课后作业标准答案 水污染控制工程作业标准答案1 1、试说明沉淀有哪些类型?各有何特点?讨论各类型的联系和区别。 答:自由沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀, 颗粒沉淀轨迹呈直线。沉淀过程中,颗粒的物理性质不变。发生在沉砂池中。 絮凝沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。沉淀过程中,颗粒的质量、形状、沉速是变化的。化学絮凝沉淀属于这种类型。 区域沉淀或成层沉淀:悬浮颗粒浓度较高(5000mg/L以上);颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。二次沉淀池与污泥浓缩池中发生。 压缩沉淀:悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。 联系和区别:自由沉淀,絮凝沉淀,区域沉淀或成层沉淀,压缩沉淀悬浮颗粒的浓度依次增大,颗粒间的相互影响也依次加强。 2、设置沉砂池的目的和作用是什么?曝气沉砂池的工作原理和平流式沉砂池有何区别? 答:设置沉砂池的目的和作用:以重力或离心力分离为基础,即将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒,以免这些杂质影响后续处理构筑物的正常运行。 平流式沉砂池是一种最传统的沉砂池,它构造简单,工作稳定,将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒。曝气沉砂池的工作原理:由曝气以及水流的螺旋旋转作用,污水中悬浮颗粒相互碰撞、摩擦,并受到气泡上升时的冲刷作用,使粘附在砂粒上的有机污染物得以去除。曝气沉砂池沉砂中含有机物的量低于5%;由于池中设有曝气设备,它还具有预曝气、脱臭、防止污水厌氧分解、除泡以及加速污水中油类的分离等作用。 3、水的沉淀法处理的基本原理是什么?试分析球形颗粒的静水自由沉降(或上浮)的基本规律,影响沉降或上浮的因素是什么?

高廷耀《水污染控制工程》第4版下册课后习题(城市污水回用)【圣才出品】

高廷耀《水污染控制工程》第4版下册课后习题 第十七章城市污水回用 1.城市污水回用的主要途径有哪些?其相应的水质控制指标采用的标准是什么? 答:(1)城市污水回用的主要途径 ①农、林、牧、渔业用水;②城市杂用水;③工业用水;④环境用水;⑤补充水源水。 (2)相应水质控制指标采用的标准 ①《农田灌溉水质标准》(GB5084—2005); ②《城市污水再生利用城市杂用水水质》(GB/T18921—2002); ③《城市污水再生利用工业用水水质》(GB/T19923—2005); ④《城市污水再生利用景观环境用水水质》(GB/T18921—2002); ⑤《地表水环境质量标准》(GB3838—2002)。 2.试论述针对不同的地区特点,宜采用怎样的回用系统更为合理。 答:针对不同的地区特点,宜采用的回用系统如下: (1)对于一栋或几栋建筑物的区域,宜采用建筑中水系统,处理站一般设在裙房或地下室,中水用作冲厕、洗车、道路保洁、绿化等。 (2)对于小区范围内,宜采用小区中水系统,水源来自临近城镇污水处理厂、工业洁净排水、小区内建筑杂排水和雨水等。包括覆盖全区回用的完整系统、供给部分用户使用的部分系统和仅用于地面绿化道路清洁的简易系统。 (3)对于城镇区域,宜采用城市污水回用系统,以城市污水、工业洁净排水为水源,经污水处理厂及深度处理工艺处理后,回用于工业用水、农业用水、城市杂用水、环境用水

和补充水源水等。 3.回用深度处理技术有哪些?如何进行工艺的合理组合? 答:(1)回用深度处理技术 有混凝沉淀(或混凝气浮)、化学除磷、过滤、消毒等。对回用水水质有更高要求时,可采用活性炭吸附、脱氨、离子交换、微滤、超滤、纳滤、反渗透、臭氧氧化等深度处理技术。 (2)工艺组合 污水回用处理工艺应根据规模、回用水水源的水质、用途及当地的实际情况,经全面的技术经济比较,将各单元处理技术进行合理组合,集成为技术可行、经济合理的处理工艺。 4.回用处理技术与常用污水处理技术的区别有哪些? 答:回用处理技术与常用污水处理技术的区别如下: (1)回用处理技术是在常用污水处理技术的基础上,融合给水处理技术、工业用水深度处理技术等发展起来的。 (2)处理技术上,常用污水处理技术以达标排放为目的,而回用处理技术则以综合利用为目的,根据不同用途进行处理技术组合,将城市污水净化到相应的回用水水质控制要求。 (3)回用处理技术将各种技术上可行、经济上合理的水处理技术进行综合集成,实现污水的资源化。 5.试分析城市污水回用与工业废水回用在水质指标和回用处理技术上的特点各是什么?

水污染控制工程讲义

水污染控制工程 第一章 概述 1.1 生物处理的目的和重要性 废水生物处理的目的:1) 絮凝和去除废水中不可自然沉淀的胶体状固体物; 2) 稳定和去除废水中的有机物;3) 去除营养元素氮和磷。 废水生物处理的重要性:1)城市污水中约有60%以上的有机物只有用生物法去除才最经济;2)废水中氮的去除一般来说只有依靠生物法;3)目前世界上已建成的城市污水处理厂有90%以上是生物处理法;4)大多数工业废水处理厂也是以生物法为主体的。 微生物在废水生物处理中主要有三个作用:1)去除有机物(以COD 或BOD 5表 示),去除其它无机营养元素如N 、P 等;2)絮凝沉淀和降解胶体状固体物;3)稳定有机物。 微生物代谢过程简介: 微生物代谢所需要的几个基本要素:能源;碳源;无机营养元素——N 、P 、S 、K 、C a 、M g 等;有时还需要一些特殊的有机营养物(也称生长因子,如维生素、生物素等) 废水生物处理中涉及的微生物代谢过程主要有:化能异养型代谢;化能自养型代谢;光合异养型代谢;光合自养型代谢。 生物处理中的重要微生物 ①细菌:细菌——包括了真细菌(eubacteria )和古细菌(archaebacteria );——是废水生物处理工程中最主要的微生物;根据需氧情况不同:好氧细菌、兼性细菌和厌氧细菌;根据能源碳源利用情况的不同:光合细菌——光能自养菌、光能异养菌;非光合细菌——化能自养菌、化能异养菌;根据生长温度的不同:低温菌(-10oC ~15 oC )、中温菌(15 oC ~45 oC )和高温菌(>45 oC ) ②真菌:真菌的三个主要特点:1)能在低温和低pH 值的条件生长;2)在生长过程中对氮的要求较低(是一般细菌的1/2);3)能降解纤维素。真菌在废水处理中的应用:1)处理某些特殊工业废水;2)固体废弃物的堆肥处理 ③原生动物、后生动物:原生动物主要以细菌为食;其种属和数量随处理出水的水质而变化,可作为指示生物。后生动物以原生动物为食;也可作为指示生物。 1.2 生物处理法在废水处理中的地位 有机物在废水中的存在形式及其主要去除方法:颗粒状有机物(>1μm ):可以采用机械沉淀法进行去除的颗粒物;胶体状有机物(1nm ~100nm ):不能采用机械沉淀法进行去除的较小的有机颗粒物;溶解性有机物(<1nm ):以分散的分子状态存在于水中的有机物 有机物 微生物 新的细胞物质 CO 2、H 2O 生物残渣 内源呼吸 分解 合成

(完整版)水污染控制工程期末复习试题及答案

水污染控制工程期末复习试题及答案(一) 一、名词解释 1、COD:用化学氧化剂氧化水中有机污染物时所消耗的氧化剂的量。 2、BOD:水中有机污染物被好氧微生物分解时所需的氧量。 3、污水的物理处理:通过物理方面的重力或机械力作用使城镇污水水质发生变化的处理过程。 4、沉淀法:利用水中悬浮颗粒和水的密度差,在重力的作用下产生下沉作用,已达到固液分离的一种过程。 5、气浮法:气浮法是一种有效的固——液和液——液分离方法,常用于对那些颗粒密度接近或小于水的细小颗粒的分离。 6、污水生物处理:污水生物处理是微生物在酶的催化作用下,利用微生物的新陈代谢功能,对污水中的污染物质进行分解和转化。 7、发酵:指的是微生物将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生不同的代谢产物。 8、MLSS:(混合液悬浮固体浓度)指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称之为污泥浓度。 9、MLVSS(混合液挥发性悬浮固体浓度):指混合液悬浮固体中有机物的含量,它包括Ma、Me、及Mi三者,不包括污泥中无机物质。P-102 10、污泥沉降比:指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。P-103 11、污泥体积指数:指曝气池混合液静止30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。P-103 12、污泥泥龄:是指曝气池中微生物细胞的平均停留时间。对于有回流的活性污泥法,污泥泥龄就是曝气池全池污泥平均更新一次所需的时间(以天计)。(网上搜索的) 13、吸附:当气体或液体与固体接触时,在固体表面上某些成分被富集的过程成为吸附。 14、好氧呼吸:以分子氧作为最终电子受体的呼吸作用称为好氧呼吸。 15、缺氧呼吸:以氧化型化合物作为最终电子受体的呼吸作用称为缺氧呼吸。 16、同化作用:生物处理过程中,污水中的一部分氮(氨氮或有机氮)被同化成微生物细胞的组成成分,并以剩余活性污泥的形式得以从污水中去除的过程,称为同化作用。 17、生物膜法(P190):生物膜法是一大类生物处理法的统称,包括生物滤池、生物转盘、生物接触氧化池、曝气生物滤池及生物流化床等工艺形式,其共同的特点是微生物附着生长在滤料或填料表面上,形成生物膜。污水与生物膜接触后,污染物被微生物吸附转化,污水得到净化。18、物理净化(P7):物理净化是指污染物质由于稀释、扩散、沉淀或挥发等作用而使河水污染物质浓度降低的过程。 19、化学净化(P-7):是指污染物质由于氧化、还原、分解等作用使河水污染物质浓度降低的过程。 20、生物净化(P-7):是指由于水中生物活动,尤其是水中微生物对有机物的氧化分解作用而引起的污染物质浓度降低的过程。 二、填空 1、污水类型:生活污水、工业废水、初期雨水、城镇污水 2、表示污水化学性质的污染指标:可分为有机指标(生化需氧量(BOD) 、化学需氧量(COD)、总有机碳(TOC)、总需氧量(TOC)、油类污染物、酚类污染物、表面活性剂、有机碱、有机农药、苯类化合物)和无机指标( PH、植物营养元素、重金属、无机性非金属有害有毒物(总砷、含硫化合物、氰化物) 3、水体自净分类:物理净化化学净化生物净化。 4、根据地域,污水排放标准分为哪些? 根据地域管理权限分为国家排放标准、行业排放标准、地方排放标准 5、沉淀类型 6-404

水污染控制工程课后题总结

1.试说明沉淀有哪些类型?各有何特点?讨论各类型的联系和区别。 答:自由沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀, 颗粒沉淀轨迹呈直线。沉淀过程中,颗粒的物理性质不变。发生在沉砂池中。 絮凝沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。沉淀过程中,颗粒的质量、形状、沉速是变化的。化学絮凝沉淀属于这种类型。 区域沉淀或成层沉淀:悬浮颗粒浓度较高(5000mg/L以上);颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。二次沉淀池与污泥浓缩池中发生。 压缩沉淀:悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。 联系和区别:自由沉淀,絮凝沉淀,区域沉淀或成层沉淀,压缩沉淀悬浮颗粒的浓度依次增大,颗粒间的相互影响也依次加强。 2.设置沉砂池的目的和作用是什么?曝气沉砂池的工作原理和平流式沉砂池有何区别?答:设置沉砂池的目的和作用:以重力或离心力分离为基础,即将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒,以免这些杂质影响后续处理构筑物的正常运行。 平流式沉砂池是一种最传统的沉砂池,它构造简单,工作稳定,将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒。曝气沉砂池的工作原理:由曝气以及水流的螺旋旋转作用,污水中悬浮颗粒相互碰撞、摩擦,并受到气泡上升时的冲刷作用,使粘附在砂粒上的有机污染物得以去除。曝气沉砂池沉砂中含有机物的量低于5%;由于池中设有曝气设备,它还具有预曝气、脱臭、防止污水厌氧分解、除泡以及加速污水中油类的分离等作用。 3.水的沉淀法处理的基本原理是什么?试分析球形颗粒的静水自由沉降(或上浮)的基本规律,影响沉降或上浮的因素是什么? 基本原理:沉淀法是利用水中悬浮颗粒的可沉降性能,在重力作用下产生下沉作用,以达到固液分离的一种过程。 基本规律:静水中悬浮颗粒开始沉降(或上浮)时,会受到重力、浮力、摩擦力的作用。刚开始沉降(或上浮)时,因受重力作用产生加速运动,经过很短的时间后,颗粒的重力与水对其产生的阻力平衡时, 颗粒即等速下沉。 影响因素:颗粒密度,水流速度,池的表面积。 4.加压溶气气浮法的基本原理是什么?有哪几种基本流程与溶气方式,各有何特点? 答:加压溶气气浮法的基本原理:空气在加压条件下溶解,常压下使过饱和空气以微小气泡形式释放出来。 基本流程及特点:全加压溶气流程,特点是将全部入流废水进行加压溶气,再经减压释放装置进入气浮池,进行固液分离。部分加压溶气流程:将部分入流废水进行加压溶气,再经减压释放装置进入气浮池,其它部分直接进入气浮池,进行固液分离。部分回流加压溶气流程:将部分清液进行回流加压,入流水则直接进入气浮池,进行固液分离。 5.废水处理中,气浮法与沉淀法相比,各有何优缺点? 答:气浮法:能够分离那些颗粒密度接近或者小于水的细小颗粒,适用于活性污泥絮体不易沉淀或易于产生膨胀的情况,但是产生微细气泡需要能量,经济成本较高。沉淀法:

水污染控制工程第四版(下册)试题及答案分析解析

水污染控制工程第四版(下册)试题及答案 一、名词解释题(每题3分): 1.水的社会循环:人类社会从各种天然水体中取用大量 水,使用后成为生活污水和工业废水,它们最终流入 天然水体,这样,水在人类社会中构成了一个循环体 系,称为~。 2.生化需氧量:表示在有氧的情况下,由于微生物的活 动,可降解的有机物稳定化所需的氧量 3.化学需氧量:表示利用化学氧化剂氧化有机物所需的 氧量。 4.沉淀::是固液分离或液液分离的过程,在重力作用 下,依靠悬浮颗粒或液滴与水的密度差进行分离。 5.沉降比:用量筒从接触凝聚区取100mL水样,静置 5min,沉下的矾花所占mL数用百分比表示,称为 沉降比。 6.滤速调节器:是在过滤周期内维持滤速不变的装置。 7.接触凝聚区:在澄清池中,将沉到池底的污泥提升起 来,并使这处于均匀分布的悬浮状态,在池中形成稳 定的泥渣悬浮层,此层中所含悬浮物的浓度约在3~ 10g/L,称为~。 8.化学沉淀法:是往水中投加某种化学药剂,使与水中 的溶解物质发生互换反应,生成难溶于水的盐类,形 成沉渣,从而降低水中溶解物质的含量。 9.分级沉淀:若溶液中有数种离子能与同一种离子生成 沉淀,则可通过溶度积原理来判断生成沉淀的顺序,这叫做分级沉淀。 10.总硬度:水中Ca2+、Mg2+含量的总和,称为总硬 度。 11.电解法:是应用电解的基本原理,使废水中有害物质, 通过电解过程,在阳、阴极上分别发生氧化和还原反 应转化成为无害物质以实现废水净化的方法。 12.滑动面:胶粒在运动时,扩散层中的反离子会脱开 胶粒,这个脱开的界面称为滑动面,一般指吸附层边 界。 13.氧化还原能力:指某种物质失去或取得电子的难易程 度,可以统一用氧化还原电位作为指标。 14.吸附:是一种物质附着在另一种物质表面上的过程, 它可发生在气-液、气-固、液-固两相之间。15.物理吸附:是吸附质与吸附剂之间的分子引力产生的 吸附。16.化学吸附:是吸附质与吸附剂之间由于化学键力发生 了化学作用,使得化学性质改变。 17.平衡浓度:当吸附质在吸附剂表面达到动态平衡时, 即吸附速度与解吸速度相同,吸附质在吸附剂及溶液中的浓度都不再改变,此时吸附质在溶液中的浓度就称为~。 18.半透膜:在溶液中凡是一种或几种成分不能透过,而 其它成分能透过的膜,都叫做半透膜。 19.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶 液中的某种溶质或者溶剂渗透出来,从而达到分离溶质的目的。 20.电渗析:是在直流电场的作用下,利用阴。阳离子交 换膜对溶液中阴阳离子的选择透过性,而使溶液中的溶质与水分离的一种物理化学过程。 21.生物处理:是主利用微生物能很强的分解氧化有机物 的功能,并采取一定的人工措施,创造一种可控制的环境,使微生物大量生长、繁殖,以提高其分解有机物效率的一种废水处理方法。 22.生物呼吸线:表示耗氧随时间累积的曲线。 23.污泥龄:是指每日新增的污泥平均停留在曝气池中的 天数,也就是曝气池全部活性污泥平均更新一次所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 24.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 25.总充氧量:稳定条件下,单位时间内转移到曝气池的 总氧量。 26.悬浮生长:在活性污泥法中,微生物形成絮状,悬浮 在混合液中不停地与废水混合和接触。 27.生物膜反应器:利用生物膜净化废水的装置。 28.面积负荷率法:即单位面积每日能去除废水中的有机 物等量。 29.自然生物处理法:是利用天然的水体和土壤中的微生 物来净化废水的方法。 30.活性污泥法:是以活性污泥来净化废水的生物处理方 法。 31.活性污泥:充满微生物的絮状泥粒。 32.污泥负荷率:指的是单位活性污泥(微生物)量在单 位时间内所能承受的有机物量。 33.污泥浓度:指曝气池中单位体积混合液所含悬浮固体 的重量,常用MLSS表示。 34.污泥沉降比:指曝气池中混合液沉淀30min后,沉

水污染控制工程讲义+笔记 同济大学环境学院硕士研究生复试参考资料(水污染控制工程)

目录 目录 (1) 专题一污水水质与污水出路 (2) 专题二污水的物理处理(1) (7) 专题三废水生物处理的基本概念和生化反应动力学基础 (13) 专题四稳定塘和污水的土地理 (22) 专题五污水的好氧生物处理(二)——活性污泥法 (26) 专题六污水的厌氧生物处理 (29) 专题七城市污水的深度处理 (36) 专题八污泥的处理和处置 (39)

专题一污水水质与污水出路 污水水质 国际通用三大类指标:物理性指标化学性指标生物性指标 水质分析指标 物理性指标 温度:工业废水常引起水体热污染造成水中溶解氧减少加速耗氧反应,最终导致水体缺氧或水质恶化色度:感官性指标,水的色度来源于金属化合物或有机化合物 嗅和味:感官性指标,水的异臭来源于还原性硫和氮的化合物、挥发性有机物和氯气等污染物质固体物质:溶解物质 悬浮固体物质挥发性物质 固定性物质 水和污水中固体成分的内部相关性 水和污水中杂质颗粒分布 化学性指标有机物 生化需氧量(BOD)biological oxygen demand 在一定条件下,好氧微生物氧化分解水中有机物所需要的氧量。(20℃,5d)。 反映了在有氧的条件下,水中可生物降解的有机物的量主要污染特性(以mg/L为单位)。 有机污染物被好氧微生物氧化分解的过程,一般可分为两个阶段:第一个阶段主要是有机物被转化成二氧化碳、水和氨;第二阶段主要是氨被转化为亚硝酸盐和硝酸盐。 污水的生化需氧量通常只指第一阶段有机物生物氧化所需的氧量,全部生物氧化需要20~100d完成。 实际中,常以5d作为测定生化需氧量的标准时间,称5日生化需氧量(BOD5);通常以20℃为测定的标准温度。 讨论:①任何日BOD与第一阶段BOD(L0)的关系 生化研究试验表明,生化反应的速度决定于微生物和有机物的含量,至于水中溶解氧的含量只要满足微生物的生命活动就可以,在反应初期,微生物的数量是增加的,但到一定时间后,微生物的量就受到有机物含量的限制而达到最大值,此时反应速度受到有机物含量的限制,即有机物的降解速度和该时刻水中有机物的含量成正比,由于有机物可以用生化需氧量表示,所以水中的耗氧速率和该时刻的生化需氧量成正比 d(L0-L t)/dt=KL t dL t/dt=-KL t 式中: L0、L t─分别表示开始、t时刻水中剩余的第一阶段的BOD K─反应速率常数,d-1 积分得:任何时刻水中剩余的BOD为Lt=L0 e -Kt 从而求得经t时间反应消耗的溶解氧BODt为: BODt=L0-L t=L0(1-e-Kt)=L0(1-10-kt) (k =K /2.303) (经验表明:20℃时,k=0.1 日-1,若t=5天,则 BOD5=0.68L0)系 ②反应速度常数k与温度的关系 利用阿累尼乌斯经验公式可求得: K(t)=k(20)θ(T-20) 式中:K(t)─20℃时反应速率常数,d-1 k(20)─T℃时反应速率常数,d-1 θ──温度系数(经验:在10--30℃时,θ=1.047) ③第一阶段BOD(L0)与温度的关系

水污染控制工程知识点

第九章污水水质和污水出路 1、污水有机物指标:①生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的 氧量。BOD5——五日生化需氧量 ②化学需氧量(COD或OC):用化学氧化剂氧化水中的有机污染物 时所消耗的氧化剂量。COD Mn或OC——以高锰酸钾作氧化剂时,地 下水;COD Cr或COD——以重铬酸钾作氧化剂时,地表水 ③总有机碳(TOC):包括水样中所有有机污染物的含碳量 ④总需氧量(TOD):当有机物全部被氧化时,C全部变为二氧化碳, H 、N及S怎被氧化成水、一氧化氮、二氧化硫等,此时需氧量称为 总需氧量 COD>BOD TOD>TOC 2、水体自净:①物理净化:污染物质由于稀释、扩散、沉淀或挥发等作用而使河水污染物 质浓度降低的过程 ②化学净化:氧化、还原、分解 ③生物净化:水中生物活动,尤其是水中微生物对有机物的氧化分解作用 3、水环境质量标准:《地表水环境质量标准》分五类水体 Ⅰ类主要适用于源头水、国家自然保护区; Ⅱ类主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地、鱼虾类产卵场、幼鱼的索饵场等; Ⅲ类主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、 洄游通道、水产养殖区等渔业水域及游泳区; Ⅳ类主要适用于一般工业用水区及人体非直接接触的娱乐用水区;

Ⅴ类主要适用于农业用水区及一般景观要求水域。 4、污水排放标准:①浓度标准:规定了排出口向水体排放污染物的浓度限值,其单位一般 为mg/L ②总量控制标准:是以与水环境质量标准相适应的水体环境容量为依据而 设定的 第十章污水的物理处理 5、格栅:①分为人工格栅和机械格栅:人工格栅倾角30°~60°,机械格栅(每日栅渣量> 0.2m3)倾角60°~90° ②设计参数:渠道宽度适当,过渠道水流速度一般0.4~0.9m/s,过栅流速 0.6~1.0m/s;格栅工作平台应高出设计水位0.5m 6、沉淀法:利用水中悬浮颗粒和水的密度差,在重力作用下产生下沉运动,达到固液分离 的效果,可用于以下几个方面: ①污水池里系统的预处理(沉砂池)②污水的初级处理(初沉池)③生物处理后 的固液分离(二沉池)④污泥处理阶段的污泥浓缩(污泥浓缩池) 7、沉淀类型:①自由沉淀:发生在水中悬浮固体浓度不高时的一种沉淀类型,直线下沉, 且颗粒物理性质不变(沉砂池) ②絮凝沉淀:悬浮颗粒浓度不高,但沉淀过程中悬浮颗粒之间有互相絮凝作 用,曲线下沉,且颗粒物速度质量性状等变(二沉池中间段) ③区域沉淀(成层沉淀、拥挤沉淀):高浓度悬浮颗粒的沉降过程(5000mg/L 以上)有明显泥水分离(二沉池下部和污泥重力浓缩池开始) ④压缩沉淀:高浓度悬浮颗粒的沉降过程中(二沉池污泥斗中、污泥重力浓 缩池)

水污染控制工程复习资料

习题 高廷耀,顾国维,周琪.水污染控制工程(下册).高等教育出版社.2007 一、污水水质和污水出路(总论) 1.简述水质指标在水体污染控制、污水处理工程设计中的作用。 答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。 2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系,画出这些指标的关系图。 答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 关系图 3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间 的联系及区别。

答:生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。 化学需氧量(COD):在酸性条件下,用强氧化剂将有机物氧化为CO2、H2O所消耗的氧量。 总有机碳(TOC):水样中所有有机污染物的含碳量。 总需氧量(TOD):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。 这些指标都是用来评价水样中有机污染物的参数。生化需氧量间接反映了水中可生物降解的有机物量。化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。TOC、TOD的耗氧过程及BOD 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。各种水质之间TOC或TOD及BOD不存在固定关系。在水质条件基本相同的条件下,BOD及TOD或TOC之间存在一定的相关关系。 4.水体自净有哪几种类型?氧垂曲线的特点和使用范围是什么? 答:水体自净从净化机制来看,可分为:物理净化、化学净化和生物净化。 氧垂曲线适用于一维河流和不考虑扩散的情况。特点 5.试论排放标准、水环境质量指标、环境容量之间的联系。 答:环境容量是水环境质量标准指定的基本依据,而水环境质量标准则是排放标准指定的依据。 6.我国现行的排放标准有哪几种?各标准的使用范围及相互关系是什么? 答:我国现行的排放标准有浓度标准和总量控制标准。根据地域管理权限又可分为国家排放标准、地方排放标准、行业排放标准。

水污染控制工程期末考试题目

《水污染控制工程》期末考试试题 一、填空(每空1分,共20分) 1、一般规律,对于性颗粒易与气泡粘附。 2、在常温、稀溶液中,离子交换树脂对Ca2+、Cr3+、Ba2+、Na+的离子交换势高低顺序依次为> > > 。在离子交换过程中,上述离子最先泄露的是。 3、反渗透膜是膜,反渗透的推动力是___,反渗透膜透过的物质是。 4、根据废水中可沉物的浓度和特性不同,沉淀可分为、、、四种基本类型。 5、过滤机理主要包括、、三种形式。 6、加Cl2消毒时,在水中起消毒作用的物质是。 7、测定废水的BOD时,有机污染物被好氧微生物氧化分解的过程,一般可分为两个阶段,第一阶段是,第二阶段是。 8、稳定塘按塘内微生物类型、供氧方式和功能来分类,主要类型有、、 和。 二、简答题(每小题6分,共30分) 1、为什么竖流式沉淀池常作为二沉池? 2、如何提高滤池的含污能力? 3、简述影响混凝效果的主要因素。 4、简述SBR工艺的工作原理,并说明该工艺具有哪些特点。 5、简述UASB反应器中颗粒污泥的形成条件。 三、论述题(共36分) 1、在20℃时,亚硝化细菌的世代时间是多少天?为什么污泥龄太短的曝气池氨的硝化作用不完全。(8分) 2、如何通过废水的BOD5和COD判断废水的可生化性?某工业废水水质为COD 650mg/L,BOD5 52mg/L,问该工业废水是否适宜采用生化处理。(8分) 3、在电渗析操作过程中,工作电流密度超过极限电流密度会出现什么现象,如何消除?(8分) 4、某企业以废箱板为主要原料生产箱板纸,其生产过程中排放大量的废水,主要

污染物为SS和COD,其水质为pH 7~8、COD900~1100mg/L、SS800~1100mg/L。请制定一废水处理工艺,使处理后出水水质达到pH 6.0~9.0;COD ≤100mg/L;SS ≤100mg/L,画出工艺流程简图,并说明各处理单元功能。(12分) 四、计算题(共14分) 1、某种生产废水中Fe3+浓度为2.0mg/L,要使Fe3+从水中沉淀析出,废水应维持多高的pH值?(K spFe(OH)3= 3.2×10-38) (4分) 2、有一工业废水,废水排放量为180m3/h,废水中悬浮物浓度较高,拟设计一座平流式沉淀池对其进行处理。沉淀池的设计参数为:停留时间1.5h、有效水深为3.0m、池宽为4.5m,请计算沉淀池的表面负荷和长度。(4分) 3、拟采用活性污泥法建一座城市污水处理厂。设计参数为:设计处理水量12000m3/d,进水BOD5为200 mg/L,出水BOD5为20 mg/L,MLSS为3000mg/L,污泥负荷率N S为0.18kg BOD5(去除量)/kgMLSS·d,污泥表现合成系数Yobs为0.36mg/mg。试求:(1)生化曝气池的有效容积;(2)曝气池的BOD5去除效率;(3)曝气池每日的剩余污泥排放量(kg干重)。(6分)

水污染控制工程知识点总结

第九章污水水质和污水出路 1污水污染指标中, 体物质的分类 水中所有残渣的总和称为总固体(TS):总固体=溶解性固体(DS)+悬浮固体(SS);水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS); 固体残渣根据挥发性能可分为挥发性固体(VS) +固定性固体(FS); 600°C温度下灼烧,挥发掉的最即为挥发性固体(VS),灼烧残渣则是固定性固体(FS) 2BOD COD BOD5 TOC TOD 生化需氧量(BOD):水屮有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg∕L) 5日生花需氧量(BODJ:测定有机物第一阶段的生化需氧量至少需要20天时间,在实际应用中周期太长,故目前以5天作为测定生化需氧最的标准时间 (BOD5=70?BOD2O) 化学需氧量(COD):化学需氧星是用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(mg∕L)(用高猛酸钾作氧化剂测COD Mn/OC,用重珞酸钾作氧化剂测得 COD cι∕COD) 总有机碳(TOC):包括水样中所有有机污染物的含碳量 总需氧量(TOD):当有机物被氧化时。碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量3水体自净作用的定义和净化机制 定义:是指河水中的污染物质在河水向下流动中浓度I i l然降低的现象机制:(1)物理净化:稀释、扩散、沉淀或挥发 (2)化学净化:氧化、还原、分解 (3)生物净化:水中微生物对有机物的氧化分解作用 4受到污水污染的河流,根据水体中BOm和Do曲线的关系,可以分为哪几个区域(氧垂曲线) U≡ _ 一河染带—斗-恢环 2 1 O 12 3456789 需水河流流卜时何/d m 1 -1 氣垂曲线示恵图 污染带:EOD5、DO均下降显苦阶段

高廷耀水污染控制工程(下册)习题讲解.

高廷耀,顾国维,周琪.水污染控制工程(下册).高等教育出版社.2007 一、污水水质和污水出路(总论) 1.简述水质指标在水体污染控制、污水处理工程设计中的作用。 答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。 2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系,画出这些指标的关系图。 答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 关系图 3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间 的联系与区别。 答:生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。化学需氧量(COD):在酸性条件下,用强氧化剂将有机物氧化为CO2、H2O所消耗的氧量。 总有机碳(TOC):水样中所有有机污染物的含碳量。 总需氧量(TOD):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。 这些指标都是用来评价水样中有机污染物的参数。生化需氧量间接反映了水中可生物降解的有机物量。化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。TOC、TOD的耗氧过程与BOD 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。各种水质之间TOC或TOD与BOD不存在固定关系。在水质条件基本相同的条件下,BOD与TOD或TOC之间存在一定的相关关系。 4.水体自净有哪几种类型?氧垂曲线的特点和使用范围是什么?

水污染控制工程(下册)重点知识点汇总

水污染控制工程下册重点知识点 第九章污水水质和污水出路 1、污水类型:生活污水、工业废水、初期雨水、城镇污水 2、物理指标:温度、色度、嗅和味(异臭:S和N化合物、挥发性有机物、氯气、总固体(溶解性固体DS、悬浮固体SS)固体残渣根据挥发性能可分为挥发性固体VS、固定性固体FS 3、有机物指标:BOD、COD、TOC、TOD (燃烧化学氧化反应) 4、无机物指标:PH (6-9)、植物营养元素、重金属、无机性非金属有害物(总砷、含硫化合物、氰化物) 5、生物指标:细菌总数、大肠菌数、病毒 6、自净作用:物理、化学、生物 7、混合过程:竖向混合阶段、横向混合阶段、断面充分混合后阶段(POP下降) 8、根据BOD5与DO曲线,可以把该河划分为清洁水区、污染恶化区、恢复区、清洁水区 9、污水排放标准:浓度标准、总量控制标准、国家排放标准、行业排放标准、地方排放标准 10、一级处理:主要去除 SS 、 COD 、 BOD 11、二级处理:去除有机物(90%) 12、三级处理:去除 N 、 P ,色度 第十章污水的物理处理

1、污水的物理处理法去除对象主要是污水中的漂浮物和悬浮物,采用的主要方法有:筛滤截留法、重力分离法、离心分离法 2、格栅作用:截留污水中较粗大漂浮物和悬浮物 3、格栅设计的主要参数:确定栅条间隙宽度 4、按格栅形状,可分为平面格栅、曲面格栅 5、曲面格栅:固定曲面格栅、旋转鼓式格栅 6、清渣方式:人工清渣(过水面积不小于灌渠有效面积的2倍)机械清渣(1.2倍) 7、工业废水根据水质确定是否有沉砂池 8、水流适当流速:0.4-0.9 污水通过格栅:0.6-1 最大 1.2-1.4 9、在典型的污水处理厂中沉淀法可用于下列几个方面:污水处理系统的预处理、污水的初级处理、生物处理后的固液分离、污泥处理阶段的污泥浓缩 10、沉淀类型:自由沉淀(水中悬浮固体浓度不高) 、絮凝沉淀(悬浮颗粒浓度不高(活性污泥二沉池中间)、区域沉淀(悬浮颗粒浓度高,二沉池下部、重力浓缩开始) 、压缩沉淀(高浓度悬浮颗粒,污泥浓缩、重力浓缩) 11、斯托克斯公式u=(P 固-P gd2/18μ 12、水温上升,黏度减小、沉速增大 13、理想沉淀池:进口区、沉淀区、出口区、缓冲区、污泥区 14、沉淀池工作原理:利用水中悬浮颗粒可沉降性能,在重力作用下产生下沉作用

高廷耀《水污染控制工程》第4版下册配套题库【课后习题】-第九章~第二十章【圣才出品】

第二部分课后习题 第九章污水水质和污水出路 1.简述水质污染指标在水体污染控制、污水处理工程设计中的作用。 答:水质污染指标包括物理性质污染指标,化学性质污染指标和生物性质污染指标,是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。 2.分析总固体、溶解性固体、悬浮固体及挥发性固体、固定性固体指标之间的相互关系,画出这些指标的关系图。 答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 关系图:总固体(TS)=溶解性固体(DS)+悬浮性固体(SS)=挥发性固体(VS)+固定性固体(FS) 3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间的联系与区别。

答:(1)生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义 ①生化需氧量(BOD)是指水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(以mg/L为单位)。 ②化学需氧量(COD)是用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(以mg/L为单位)。 ③总有机碳(TOC)包括水样中所有有机污染物的含碳量,也是评价水样中有机污染物的一个综合参数。 ④总需氧量(TOD),有机物中除含有碳外,还含有氧、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量(TOD)。 (2)四者之间的联系与区别 这些指标都是用来评价水样中有机污染物的参数。 ①BOD间接反映了水中可生物降解的有机物量,COD不能表示可被微生物氧化的有机物量。TOC、TOD的耗氧过程与BOD的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。 ②各种水质之间TOC或TOD与BOD不存在固定关系。在水质条件基本相同的条件下,BOD与TOD或TOC之间存在一定的相关关系。它们之间的相互关系为:TOD>COD>BOD20>BOD5>OC。 ③BOD反映出微生物氧化有机物、直接地从卫生学角度阐明被污染的程度。COD的优点是快速而比较精确地表示污水中有机物的含量,并且不受水质的影响。 ④污水中存在的还原性无机物(如硫化物)被氧化也需要消耗氧,以COD表示存在一定的误差。

水污染控制工程实习讲义(完整)演示教学

水污染控制工程实习讲义 环境科学与工程系 厦门大学嘉庚学院

实验一混凝沉淀实验 实验目的: 1.通过本实验,加深对混凝机理的理解,了解影响混凝沉淀的主要因素; 2.通过实验,确定给定所配水样的混凝剂最佳投药量; 3.认识几种混凝剂,掌握其配制方法。 实验原理: 水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体的表面物质,致使水中这种含浊状态稳定。向水中投加混凝剂后,由于1、能降低颗粒间的排斥能峰,降低胶粒的Zeta电位,实现胶粒“脱稳”;2、同时也能发生高聚物式高分子混凝剂的吸附架桥作用;3、网捕作用;而达到颗粒的凝聚。 混凝是水处理工艺中十分重要的一个环节。所处理的对象,主要是水中悬浮物和胶体物质。混合和反应是混凝工艺的两个阶段,投药是混凝工艺的前提,选者性能良好的药剂,创造适宜的化学和水利条件,是混凝的关键问题。 由于各种原水有很大差别,混凝效果不尽相同。混凝剂的效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。投加混凝剂的多少,直接影响混凝效果。投加量不足不可能有很好的混凝效果。同样,如果投加的混凝剂过多也未必能得到好的混凝效果。水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。 设备及用具: 1.定时变速六联搅拌机; 2.HS酸度计; 3.WG光电浊度仪; 4.1000 mL烧杯、洗耳球、移液管; 5.硫酸铝、氯化铁、蒸馏水; 6.水样。 注意事项: 1.在搅拌过程中,注意观察并记录矾花的形成、外观、大小、密实程度、沉降性能等; 2.因投药量少,所以要用洗瓶将加药管内的残余药液洗至水样杯内以免影响投药量的精确度; 3.吸取上清液时,要用相同条件吸取上清液,不要把沉下去的矾花搅带上来,以免影响测量效果。 步骤及纪录: 1.测定原水水温、浊度; 2.认真了解六联搅拌机的使用方法; 3.分别量取原水样600mL于六个1000mL烧杯中,置于搅拌机下; 4.选用一种混凝剂,用移液管分别量取不同量药液于搅拌机的加药试管中;

水污染控制工程知识点总结

第九章污水水质和污水出路 1 污水污染指标中,固体物质的分类 水中所有残渣的总和称为总固体(TS);总固体=溶解性固体(DS)+悬浮固体(SS); 水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS); 固体残渣根据挥发性能可分为挥发性固体(VS)+固定性固体(FS);600℃温度下灼烧,挥发掉的量即为挥发性固体(VS),灼烧残渣则是固定性固体(FS) 2 BOD COD BOD5 TOC TOD 生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L) 5日生化需氧量(BOD5):测定有机物第一阶段的生化需氧量至少需要20天时间,在实际应用中周期太长,故目前以5天作为测定生化需氧量的标准时间(BOD5=70%BOD20) 化学需氧量(COD):化学需氧量是用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(mg/L) (用高锰酸钾作氧化剂测得COD Mn/OC,用重铬酸钾作氧化剂测得COD Cr/COD) 总有机碳(TOC):包括水样中所有有机污染物的含碳量 总需氧量(TOD):当有机物被氧化时。碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量 3 水体自净作用的定义和净化机制 定义:是指河水中的污染物质在河水向下流动中浓度自然降低的现象 机制:(1)物理净化:稀释、扩散、沉淀或挥发 (2)化学净化:氧化、还原、分解 (3)生物净化:水中微生物对有机物的氧化分解作用 4 受到污水污染的河流,根据水体中BOD5和DO曲线的关系,可以分为哪几个区域(氧垂曲线)

水污染控制工程学习资料1

第一章绪论 一1.水资源与水循环 70%被水覆盖;我国水资源总量全国6,人均水量1/4,排116位; (三)水的循环,自然循环,社会循环(人类为了满足生产和生活的需要) 2废水的分类:(1)生活污水(成分较稳定);(2)工业污水(生产污水,生产废水);(3)降水(雨雪) 二、污水水质 污水污染指标包括物理性质【感官温度、色度】、化学性质【一般水质指标(包括PH ,碱度等);有毒化学物质指标】和生物性质。 1污水的物理性质和污染指标:主要有温度,色度,嗅和味,固体物质。 1)固体物质 水中所有残渣的总和称为总固体(TS)总固体包括溶解性固体(DS)和悬固体(SS),在国家标准和规范中,又称悬浮物,用SS表示)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS).)滤渣脱水烘千后即是悬浮固体〔SS)固体残渣很据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固休在600℃的温度下灼烧挥发掉的量即是挥发性固体(VS),灼烧残渣则是固定性固体(FS)溶解性固体一般表示盐类的含量悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量. 2)温度,色度(表色和真色),表色是由溶解物质+胶体+悬浮物质共同引起产生的颜色;真色是由溶解物质+胶体物质;液体过滤后测得真色。怎么测表色(直接测)真色(过滤) 2.污水的化学性质与污染指标 1.有机物 污水中有机污染物的组成较复杂,分别测定各类有机物的周期较长,工作量较大,通常在工程中必要性不大。有机物的主要危害是消耗水中溶解氧。因此,在工程中一般采用生化需氧量(BOD)、化学需氧量〔COD或OC)、总有机碳(TOC:)、总需氧量(TOD)等指标来反映水有有机物的含量。 (1)生化需氧量(BCD}):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量,间接反映了水中可牛物降解的有机物量。生化需氧最愈高,表示水中耗氧有机污染物愈多.有机污染物被好氧微生物氧化分解的过程一般可分为两个阶段:第一阶段主要是有机物被转化成二氧化碳、水和氨;第二阶段主要是氨被转化为亚硝酸盐和硝酸盐。污水的生化需氧量通常只指第一阶段有机物生物液化所需的氧量.微生物的活动与温度有关,测定生化需氧量时以之20℃作为测定的标准温度、,生活污水中的有机物一般需20天左右才能基本完成第一阶段的分解氧化过程,即测定第一阶段的生化需氧量至少需20天时间,这在实际应用中周期太长,目前以5天作为测定生化需氧璧的标准时间,简称5口生化需氧量。据试验研究,生活污水5日生化需氧量约为第一阶段生化需氧70%左右。(20℃下培养五天(只能完成70%)20天(完成95-99%)为什么不培养20天呢?因为20天是碳化和硝化过程的和,不能完全代表氧化过程。) (2)化学需氧量:化学需氧量是用化学斌化荆氧化水中有机污染物时所消耗的氧化剂量。化学需氧量愈高,也表示水中有机污染物愈多。常用的氧化剂主要是重铬酸钾和高锰酸钾.声以高锰酸钾作氧化剂时,测得的值称COD Mn,或简称Oc。以重铬酸钾作氧化剂时,测得的值称COD Cr重铬酸钾的氧化能力强于高锰酸钾,所测得的COD值是不同的,在污水处理中,通常采用重铬酸钾法。如果污水中有机物的组成相对稳定。则化学需氧量和生化需氧量之间应有一定的比例关系.、一般而言,重铬酸钾化学需氧量与第一阶段 5日生化需氧量(BOO)测试时间长,不能快速反映水体被有机物污染的程度。可以采用总有机碳和总需氧里的测定甲并寻求它们与BOD5的关系,实现快速测定。 总有机碳包括水样中所有有机污染物的含碳量,也是评价水样中有机污染物的一个综合参数:有机物中除含有碳外,还含有氢、氮、硫等元寒,当有机物全都被氧化时,碳被氧化为.二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量(TOD〕

相关主题