搜档网
当前位置:搜档网 › 毛细管的交流阻抗特性研究

毛细管的交流阻抗特性研究

毛细管的交流阻抗特性研究
毛细管的交流阻抗特性研究

DO I :10.3724/S P.J .1096.2010.00855

毛细管的交流阻抗特性研究

陈昌国*

李雷光 刘渝萍 范玉静

(重庆大学化学化工学院,重庆400044)

摘 要 采用交流阻抗法研究了电容耦合非接触电导检测池毛细管的阻抗特性,分别考察了电极连接方式和毛细管内径对检测池阻抗的影响。实验表明:高频时,除去毛细管外层保护层会使检测池的阻抗减小,有助于检测器灵敏度的提高;采用铜箔作电极能够有效地消除电极与毛细管壁之间的空隙,使得检测池在低频时阻抗减小。随着毛细管内径的变大,阻抗依次减小。通过Zv ie w 软件拟合,提出的简单的拟合等效电路为R (RC)CPE 。

关键词 毛细管电泳;电容耦合非接触电导检测池;交流阻抗;等效电路

2009 07 15收稿;2009 10 25接受本文系 211 工程三期建设项目(N o .S 09103)和天津市科技支撑计划重点项目(No .07ZCKFGX01800)资助*E m ai:l cgch en @cqu https://www.sodocs.net/doc/054957016.html,

1 引 言

毛细管电泳电容耦合非接触电导检测器(Capaciti v ely coupled contactless conductiv ity detector ,C 4

D )的检测原理主要源于毛细管的交流阻抗特性。1980年,Ga 等

[1,2]

提出了非接触电导检测法,并首次用

于粗内径毛细管等速电泳中。文献[3]和[4]将C 4

D 应用于毛细管电泳分析。近10年来,许多研究小组对C 4D 进行了广泛研究[5,6]。陈缵光等[7]

于2002年报道了高频电导检测法,根据高频滴定原理,设计了一套适用于毛细管电泳的高频电导检测装置,并将其初步应用于混合无机离子的测定。谭峰等

[8]

研制了一套C 4

D 系统,对碱金属、碱土金属和短链脂肪有机酸进行了测定。

王立新等[9]

基于电容耦合设计了一种激励信号发生器、检测池和检测电路一体化的新型毛细管电泳非

接触电导检测器,用于常见阴离子混合物(C l -,NO -2,NO -3,SO 2-4和H 2PO -4)的测定。

C 4

D 的检测池是由两个相隔一定距离(一般为几毫米)的管状电极分别轴向套在毛细管上组成,电极多由不锈钢注射器针头制成[10]

,也可采用铝箔或银漆制成[4]

。这种检测器将电极直接接在毛细管聚酰亚胺层外,可以随意改变检测位置,加工容易,具有广普性(类似于气相色谱仪的热导检测器TD ),正逐步取代传统的接触式电导检测器[11]

。C 4

D 的应用已先后扩展到离子色谱、高效液相色谱和微流控分

析等方法中

[6,12,13]

,在无机离子

[14]

、有机离子[15]

和中性分子

[16]

等方面的应用均有报道。C 4

D 检测方法

简单,许多研究小组也对其工作原理和等效电路进行了理论分析[18~21]

。do Lago 等[4]

提出了基于神经

网络法的复杂等效电路和简单的等效电路;Tum a 等[20]

研究了激发频率、电极长度和电极间距对检测性能的影响,认为提高激发频率和缩短电极长度可以提高检测的灵敏度。Ze m ann [3]

和Kub n [21]

等发现电

极长度对分离效率、信号强度和重现性无影响。

为改进和提高C 4

D 的检测性能,本实验采用电化学阻抗测定方法[22]

对毛细管的交流阻抗谱(AC I m p)进行了实验测定和等效电路拟合分析,以期探索毛细管的阻抗特性,并为改进毛细管电泳电容耦合非接触电导检测器的检测性能提供指导。

2 实验部分

2.1 实验设备

不同内径(10,25,50,75和100 m,.i d .)的弹性石英毛细管(375 m o .d .,河北永年光导纤维厂);医用7#注射器针头(400 m .i d .,700 m o .d .);10 m 厚的铜箔;AutoLab PGSTAT302电化学工作站(瑞士M etro Ohm E coChe m 公司)。

第38卷2010年6月

分析化学(FENX I HUAXU E) 研究简报Ch i nese Journa l o f A na l y tica l Che m i stry

第6期855~858

2.2 实验方法

取医用7#注射器针头(400 m .i d .,700 m o .d .)用细锉截取长度为4mm 的针头,用800目的砂

纸将其两端磨平,制作成C 4

D 的检测电极。用铜箔制作成4mm 长的检测电极。实验时将毛细管穿过两个检测电极并调整好电极间距即可,如图1所示。阻抗测量时的极化电位0mV,交流幅值350mV

。所得 图1 C 4D 检测头的示意图F ig .1 D etection cell of capac iti ve l y coupled con tectless condocti v ity detector(C 4D )

1.毛细管(Cap illary);

2.激发电极(Excitati on el ec trode);

3.接受电极(Detecti on electrde)。

谱图采用Zv i e w 阻抗软件进行等效电路及其元件的拟合。2.3 C 4

D 的检测器的工作原理

在激发电极上施加一定频率的交流电压,通过电容耦合,在接受电极一端产生电流信号。电流信号的大小与检

测池内溶液的电导成正比,其对分析物响应公式[97]

如下:

V =R G 11+ fC G S -11+

fC G BGE

fC V p p

(1)式中:f 为激发频率,V p p 为激发电压,G BGE ,G S 分别为缓冲溶液和样品溶液的电导,C 为等效电容,R G 为信号放大增益。

由于激发电压正比于检测池间的总阻抗,在接受电极

产生的电流信号。此信号与检测池材料的阻抗有关,通过降低检测池材料的阻抗可以提高电流信号,从而提高检测器的灵敏度。

3 结果与讨论

3.1 电极接触方式的影响

采用长4mm 的铜箔,与不锈钢针头电极相间1mm ,测量毛细管(内空)有无保护层时的交流阻抗谱,实验结果见图2A 和B 。由图

2B 可见,针头和铜箔作电极时,在104

~106

H z 高频段,去掉保护层之后,阻抗值变小,但在低频区,阻抗值则变大。当用铝箔测量时结果与铜箔基本相符。

图3的等效电路能够最好地拟合图2的阻抗谱,具体参数值见表1。

图2 不同电极测得毛细管(内空)的阻抗复平面图(A )和阻抗Bode 图(B)

F i g .2 N yquist p l ots (A )and Bode p l ots (B)o f a lternative current i m pedance(A CI m p)and its dependance on diff e rent e l ec trode m ate rials

a .铜箔 毛细管未去保护层(Copp er f o il capill ari es w i th Pol y i m i de coat ed );

b .注射器针头 毛细管未去保护层(H ypoder m i

c nee

d l

e cap illari es w i th Pol y i m ide coated );c .铜箔 毛细管去保护层(C opper foil cap ill aries w it h out Po l yi m i de coated);

d.注射器针头毛细管去保护层(H ypod er m i c need l e l cap ill ari es w it hou t Pol y i m i d e coated)。

图3 交流阻抗等效电路

F ig .3 Equ i va lent circu it f o r AC I m p

表1 拟合图2阻抗谱所得参数

T able 1 Pa rame ters obtained by fitti ng ACI m p i n F i g .2

接触方式

C on t act approach 电路元件C ircu itry ele m ent R 1/(k )

C 1/(pF)R 2/(M )Z o /(M )n a 69.85 1.390 2.221343.040.1128c 37.44 1.9544 4.134975.190.0611

b 45.98 1.742 3.257823.550.3827d

25.19

2.326

4.7137

20.58

0.3259

856

分析化学第38卷

C 1的阻抗可以用式(2)表示:

Z W =-j

2 fC 1

=j 2 f

2 e 0l ln (R /r )

(2)

其中,Z W 为C 1的阻抗值,l 是电极长度, 0是真空介电常数, r 为石英毛细管的介电常数,R 为毛细管外径;r 为毛细管内径。对测量时的部分容性元件(Cx )采用恒相元件(CPE )Q 来拟合可以得到更好的结果,Q 的阻抗Z Q 定义如下:

Z Q =Z 0/(j )

n

(3)

其中:j 为单位虚部, 为角频率,n 为CPE 弥散指数,Z 0为CPE 阻抗系数。若n =0,Z o 相当于等效电阻R;若n =1,Z o 相当于等效电容的倒数;若n =-1,则Z 0相当于等效电感;若n =0.5,Z Q 为半无限扩散引起的W arburg 阻抗。

图2中b 和d 曲线表示针头作为电极时,毛细管有无保护层的阻抗特性。从复平面图可以看出,在高频区:都有一个容抗弧,但去掉保护层之后,容抗弧变大,C 1和R 2也增大;在低频区:出现一条为夹角约为45 的直线,用恒相元CPE1拟合得到较好的效果,这可能是由于毛细管壁与电极的耦合电容所引起。随着频率的减小,耦合作用逐渐变小,并且电极与毛细管壁之间有缝隙,使得阻抗逐渐变大。CPE1 P 值均小于0.5,表明该恒相角元件主要起到电容的作用,类似半无限扩散引起的W arbur g 阻抗。

当采用铜箔电极时,在高频区同样只有一个容抗弧,去掉保护层之后,容抗弧变大,C 1和R 2也增大;而在低频区,出现一条近似水平的直线。这可能是铜箔为电极时有效地消除了铜箔与毛细管壁之间的空隙。去掉保护层之后的阻抗值比未去掉保护层之后的阻抗值大,CPE1 P 值接近0,表明恒相元主要类似电阻的作用。

3.2 阻抗随毛细管内径的变化

采用长4mm,厚10 m 的铜箔制作管状电极,不同内径石英毛细管的交流阻抗如图4所示,考虑到石英毛细管制作时固化温度的不同,外层的聚酰亚胺保护层不同,测试过程中去除了毛细管保护层。毛细管内未充溶液。根据图3的等效电路进行拟合所得各参数值如表2

所示。

图4 不同毛细管内径所得的复平面阻抗图(A )和Bode 阻抗图(B )

F i g .4 N yquist plots (A )and Bode p l o ts (B)of o fAC I m p and i ts dependance on different capillary i nte r radii

a ,100 m;b,75 m;c ,50 m;d ,25 m;e ,10 m.

表2 拟合图4b 阻抗谱所得参数

T able 2 R esu lt ob tained by fitti ng A CI m p i n F ig .4b

内径R ad i us

( m )

电路元件C ircu itry ele m ent

R 1/(k )C 1/(pF)R 2/(M )Z o /(M )n 10059.12 1.48014.6915.790.0467558.19 1.48326.0430.730.0285058.62 1.50242.71177.620.0102557.83 1.51361.19292.390.00710

58.03

1.520

87.71

215.98

0.010

由图4和图2可知:在复平面图中,103

~106

H z 高频段有一个容抗弧,随着毛细管内径的减小,R 2依次增大,这是因为毛细管外径相同,内径越小毛细管

壁就越厚,其相应阻值也变大。但C 1变化不大。在低频区出线一条基本不随内径的变化的水平直线。这可能是铜箔作电极时,有效地消除了铜箔与毛细管壁之间的空隙。从Bode 图中也可以看

857第6期陈昌国等:毛细管的交流阻抗特性研究

出,在103

~106

H z 高频段,随着毛细管内径的减小,检测池的总阻抗值逐渐变大;在中频和低频区出现平台,随着毛细管内径的变化,阻抗值不变。3.3 小结

实验表明,交流阻抗法能从实验上有效表征毛细管(非接触电导检测池)的阻抗特性;铜箔电极可有效地消除电极与毛细管壁之间的空隙,使得检测池阻抗在低频时减小,高频时除去毛细管外层保护层会使检测池的阻抗减小,从而提高非接触电导检测器的灵敏度。R eferences

1 G a B ,V ac k J .Che m.L ist y.,1980,74(2):652~658

2 G a B ,D e m janenko M,V ac i k J .Chromatogr.,1980,192(2):253~257

3 Zemann A J ,Schne ll E,V o l gger D,Bonn G K.A nal .Che m.,1998,70(3):563~567

4 da S ilva J A F ,D o L ago C L.A nal .Che m.,1998,70(20):4339~4343

5 T anyany i wa J ,G a lli ker B ,Sch w arzM A,H auser P C .A nal y st ,2002,127(2):214~218

6 Pu m era M.T alan t a ,2007,74(3):358~364

7 C HEN Zuan Guang(陈缵光),M O Ji n Y uan (莫金垣).Che m.J.Chinese Universities (高等学校化学学报),2002,23(5):801~804

8 TAN F eng(谭峰),YANG B i ng Cheng(杨丙成),GUAN Y a F eng(关亚凤).L i f e Science Instru m ents (生命科学仪器),2004,(1):25~279 W ANG L i X i n(王立新),FU Chong G ang(傅崇岗).Journal of T ransducer T echno logy (传感器技术),2005,24(10):38~4010 T anyany i w a J ,H auser P C.E lectrophoresis ,2002,23(21):3781~378611 Brito N e t o J G,da Sil va J A F,B l anes L,do L ago C L.E lectroanaly sis ,2005,17(13):1198~120612 K uban P ,H auser P C .J.Chromatog r .A ,2007,1176(1 2):185~19113 H addad P R,N esterenko P N,Buchberger W.J.Chro m atogr .A ,2008,1184(1 2):456~47314 K uban P ,N guyen H T A,M acka M,H addad P R,H auser P C .E lectroanaly sis ,2007,19(20):2059~206515 G ong X Y,Dobrunz D,K u m i n M,W iesnerM,R evell J D,W enne m ers H,H auser P C .E lectrodriven Separa tion ,2008,31(3):565~573

16 N guyen H T A,K uban P,Pham V H,H auser P C .E lectrophoresis ,2007,28(19):3500~350617 K uban P ,H auser .A na l .Chi m.A cta ,2008,607(1):15~2918 N ovotny M,O pekar F ,Stuli k K.E lectroanal y sis ,2005,17(13):1181~118619 Brito N e t o J G A,da Sil va J A F,B l anes L,do L ago C L.E lectroanaly sis ,2005,17(13):1207~121420 T u m a P,O perkar F,Stuli k K.Electrophoresis ,2002,23(21):3718~372421 K ub n P ,H auser P C .E lectrophoresis ,2004,25(20):3387~339722

Chen C G,L i L G,S iY J ,L i u Y P .E lectrochi m.A cta ,2009,54(27):6959~6962

A lternati ve Current I mpedance Characteristics of Capill ary

C HEN Chang G uo *

,L I Le i Guang ,L I U Y u P i ng,FAN Yu Ji ng

(College of Che m istry and Che m ical E ngineer i ng,Chongq i ng Universit y,Chongq i ng 400044)

Abst ract The i m pedance characteristics of capac itively coup led contactless conductiv ity detection (C 4

D )

cell i n capill a ry electrophoresis w as exa m ined for different ce ll para m eters by alternative current i m pedance (AC I m p)techn i q ue .The effect o f the electrodes m aterial and the radi u s o f the cap illary on the i m pedance

behav ior o f C 4

D cell w ere stud ied .A s a resul,t the ce ll i m pedance decreased i n t h e high frequency reg ion w it h out po lyi m i d e coated on t h e capillar y .The i m pedance i n creases w ith t h e i n crease of gap bet w een the elec trodes ,wh ich sho w s that tigh tl y coupli n g of the electrodes to the outer w a ll o f the cap illary is needed .The i m pedance decreased w it h the increase of the rad i u s o f the capillary .The pri n c i p l e of ax ial contactless conduc to m etric detector can effectively be expla i n ed by the si m plest possi b le equ i v alen t c ircu itry consisting o f a capacitor ,resistor ,a second resister and t h e W arburg i m pedance .K eywords Capill a ry electr ophoresis ;Capaciti v e l y coup led contactless conducti v ity cel;l A lternati v e curren t i m pedance ;Equivalent circu itry

(Recei ved 15Ju l y 2009;accepted 25O ctober 2009)

858

分析化学第38卷

交流阻抗法发展历史和研究进展

目录 引言 (1) 交流阻抗技术的发展历史 (1) 基本原理 (1) 电极系统的交流阻抗 (3) 交流阻抗技术的应用 (4) 需要注意的问题 (5) 发展和应用前景 (5)

引言 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段,其应用范围已经超出电化学领域,越来越广泛。目前应用交流阻抗技术较多的如电化学领域中研究电极过程、金属腐蚀机理和耐蚀性能、缓蚀剂性能评价等;生物领域中研究生物膜的性能等;物理学领域研究电子元器件、导电材料的性能等;材料科学中研究材料的力学性能以及材料表面改性后的性能评价等。 交流阻抗技术的发展历史 交流阻抗法系指小幅度正弦波交流阻抗法,是控制电极电流(或电位)按正弦波规律随时间变化,同时测量相应的电极电位(或电流)随时问的变化,或者直接测量电极的交流阻抗,进而计算各种电极参数。 随着电化学理论的不断完善与发展,电化学方法也得到了相应的发展。在电化学测量中做出了重要贡献的是Stern 和他的同事。他们在1957年提出了线性极化的重要概念,虽然线性极化技术有着一定的局限性,但在实验室和现场快速测定腐蚀速度时还是一种简单可行的方法。腐蚀工作者在随后的十余年中又做了许多工作,完善和发展了极化电阻技术。电子技术的迅速发展促进了电化学测试仪器的发展,现代电子技术的应用和用于暂态测量测试仪器的出现,一些快速测量方法和暂态响应分析方法也得到了发展,最典型的例子就是交流阻抗技术的发展。最初测量电化学电阻采用交流电桥和李沙育方法等,这些方法既费时间又较繁琐,干扰影响也大。随着电子技术的发展,锁相技术和相关技术的仪器(如频率响应分析仪、锁相放大器等)被用于交流阻抗测试,它们的灵敏度高,测试方便,而且容易应用扫频信号实现频域阻抗图的自动测量。后来可以利用时频变换技术从暂态响应曲线得到电极系统的阻抗频谱,从而实现了在线测量,追踪电极表面状态的变化。最近一种利用震动探针电极测量局部电极阻抗的技术也得到开发。计算机技术引入电化学领域,可以由计算机对电化学交流阻抗测量进行控制,自动完成数据采集和数据分析。 基本原理 交流阻抗方法是用小幅度交流信号扰动电解池,并观察体系在稳态时对扰动的跟随的情况,同时测量电极的交流阻抗,进而计算电极的电化学参数。由于电极过程可以用电阻R 和电容C 组成的电化学等效电路来表示,因此交流阻抗技术实质上是研究RC 电路在交流电作用下的特点和规律。 一个正弦交流电压可表示成: 式中,E 0为交流电压的幅值;t 为时间;ω为正弦波角频率。角频率为 根据欧拉公式,上式也可写为指数表示式: t j e E E ω?=0 在将一个正弦波的交流电压E 加到一个纯电阻上时,根据欧姆定律,流过电阻的电流为 t E t E ωsin )(0=f πω2=

生物阻抗特性及测量的国内外现状

姓名:袁亚南学号:0743032052 班级:07303042 生物阻抗特性及测量的国内外现状 生物阻抗: 人类很早就了解到生物的电阻特性,也给出了生物体产生电阻的原因:它是当细胞内外液中电解质离子在电场中移动时,黏滞介质和狭小管道对离子运动的阻碍作用所致。进一步的研究表明,当低频电流通过时,生物结构具有更为复杂的电阻性质,可分解为不随时间变化的分量和随时间变化的分量。前者就是普通的直流电阻成分,在一定限度内阻值保持不变,电流与电压呈线性关系,起变阻器作用;后者随外加电压时间的延长,电流和电压的变化呈非线性变化,即具有交流电阻抗特性(或成分),起滤波器的作用。目前,这两种作用是解释神经和肌肉等组织兴奋和冲动的基础。 在描述物质的电阻特性时,有两个重要的概念:一是电阻率;二是电导率。它们之间互为倒数,都是表示物质导电性能的物理量。表5.1中列出了一些生物组织的电阻率和电导率。可以看出,人体内各种组织的电阻率极不相同,血清电阻率最低,肌肉次之,肝、脑等组织的电阻率稍高,脂肪和骨骸的电阻率最高,肿瘤组织与正常组织亦有差别,在身体内这些组织交叉组合形成了非均质导体。 生物膜具有电容特性,有关研究表明,生物膜不但具有静态电容性质,而且还具有极化电容性质,即当外加交流电时,生物膜的电容率不仅变化,

膜的电容值也要发生变化。 有关细胞的许多电特性研究表明,一般活细胞表面带有负电荷,细胞内部电场为零,内部为等势区,只是在细胞膜上存在电场,因此细胞膜可以看作是一个电容器。 1925-1927年,H ·弗里克用阻抗法测出狗的红电球细胞单位面积的电容值为0.81μF ·cm -2,根据实验结果,弗里克提出了他的假设,认为多数类型细胞膜为一球形膜,膜是由双分子层脂类分子组成,其相对电容率为εr =3。根据球形电容器公式可知,膜单位面积的电容公式为 d C r m εε0= 通过上式可得细胞膜的厚度为d ≈3nm 。而现代测量手段(如X 射线和电镜等)测出的各种细胞膜厚度为7~10.5nm ,结果不相吻合,这说明弗里克假设的细胞膜结构存在缺陷。 更新的研究表明,细胞膜的结构除双分子层脂膜外,在其两侧各覆盖一层蛋白质层,形成蛋白质-脂类物-蛋白质的三重结构,如图5.2所示,它的相对电容率为εr ≈10。如果将此值代入式(5.4),得到的细胞膜厚度为d ≈10nm ,与现代技术所测结果吻合得极好,说明了膜电容存在的真实性。 对于细胞膜和细胞质而言,细胞膜既存在电容,又存在电阻;而细胞质 只存在电阻。表5.2列出了一些细胞的电学参量。 在现代生物学中,对于生物器官、组织及细胞 电阻抗的研究有着非常重要的理论价值。例如,由 细胞膜电容值的测定,人们认识了膜的双分子层结 构;从肌肉细胞膜的高电容(1.5μF ·cm -2)特性导 出了肌肉细胞膜的折叠性质;通过测定神经细胞受 刺激后阻抗下降、电导率增加规律,为人类对神经 兴奋、传导和自发过程的认识提供了理论基础。另外,通过生物电阻抗的测定,在医学上可以诊断机体的健康状况。 ②r m 为单位面积膜电阻(ω·cm 2),r i 为单位面积细胞质电阻(ω·cm 2);③ω

电容器阻抗

电容器阻抗/ESR频率特性是指什么? 本专栏为解说电容器基础的技术专栏。 现就电容器的阻抗大小|Z|和等价串联电阻(ESR)的频率特性进行阐述。 通过了解电容器的频率特性,可对诸如电源线消除噪音能力和抑制电压波动能力进行判断,可以说是设计回路时不可或缺的重要参数。此处对频率特性中的阻抗大小|Z|和ESR进行说明。 1.电容器的频率特性 如假设角频率为ω,电容器的静电容量为C,则理想状态下电容器(图1)的阻抗Z可用公式 (1)表示。 图1.理想电容器 由公式(1)可看出,阻抗大小|Z|如图2所示,与频率呈反比趋势減少。由于理想电容器中无损耗,故等价串联电阻(ESR)为零。 图2.理想电容器的频率特性 但实际电容器(图3)中除有容量成分C外,还有因电介质或电极损耗产生的电阻(ESR)及电极或导线产生的寄生电感(ESL)。因此,|Z|的频率特性如图4所示呈V字型(部分电容器可能会变为U字型)曲线,ESR也显示出与损耗值相应的频率特性。

图3.实际电容器 图4.实际电容器的 |Z|/ESR频率特性(例) |Z|和ESR变为图4曲线的原因如下。 低频率范围:低频率范围的|Z|与理想电容器相同,都与频率呈反比趋势减少。ESR值也显示出与电介质分极延迟产生的介质损耗相应的特性。 共振点附近:频率升高,则|Z|将受寄生电感或电极的比电阻等产生的ESR影响,偏离理想电容器(红色虚线),显示最小值。|Z|为最小值时的频率称为自振频率,此时|Z|=ESR。若大于自振频率,则元件特性由电容器转变为电感,|Z|转而增加。低于自振频率的范围称作容性领域,反之则称作感性领域。 ESR除了受介电损耗的影响,还受电极自身抵抗行程的损耗影响。 高频范围:共振点以上的高频率范围中的|Z|的特性由寄生电感(L)决定。高频范围的|Z|可由公式(2)近似得出,与频率成正比趋势增加。 ESR逐渐表现出电极趋肤效应及接近效应的影响。 以上为实际电容器的频率特性。重要的是,频率越高,就越不能忽视寄生成分ESR或ESL的影响。随着电容器在高频领域的应用越来越多,ESR和ESL与静电容量值一样,成为表示电容器性能的重要参数。

详解Polar Si 软件计算阻抗

一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包 括:Si6000,Si8000,及Si9000. 二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗. 1.外层特性阻抗模型: 2.内层特性阻抗模型: 3.外层差分阻抗模型: 4.内层差分阻抗模型: 5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗. 三,再次给大家介绍一下芯板(即Core)及半固化片(即PP), 每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分 有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为 0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度 是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM. 半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为 0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM. 当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.3,另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象. 后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用! 四, 怎样使用Polar Si9000软件计算阻抗: 首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求! 五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构: 1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。Zdiff为阻抗值。Calculate为计算按钮,各因素是可以互相推算的,例如我们要控制50欧姆的阻抗,线宽为

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

电路分析基础习题第七章答案

第7章 选择题 1.下列说法中正确的是( D )。 A.同频率正弦量之间的相位差与频率密切相关 B.若电压与电流取关联参考方向,则感性负载的电压相量滞后其电流相量?90 C.容性负载的电抗为正值 D.若某负载的电压相量与其电流相量正交,则该负载可以等效为纯电感或纯电容 2.下列说法中错误的是( B )。 A.两个同频率正弦量的相位差等于它们的初相位之差,是一个与时间无关的常数 B.对一个RL 串联电路来说,其等效复阻抗总是固定的复常数 C.电容元件与电感元件消耗的平均功率总是零,电阻元件消耗的无功功率总是零 D.有功功率和无功功率都满足功率守恒定律,视在功率不满足功率守恒定律 3.已知RC 并联电路的电阻电流6A =R I ,电容电流8A =C I ,则该电路的端电流I 为( D )。 A.2A B.14A C.A 14 D.10A 4.已知RLC 串联电路的电阻电压4V =R U ,电感电压3V =L U ,电容电压6V =C U ,则端电压U 为( C )。 A.13V B. 7V C.5V D.1V 5.已知某电路的电源频率Hz 50=f ,复阻抗Ω?∠=3060Z ,若用RL 串联电路来等效,则电路等效元件的参数为( C )。 A.Ω=96.51R , H 6.0=L B.Ω=30R , H 96.51=L C.Ω=96.51R , H 096.0=L D.Ω=30R , H 6.0=L 6.已知电路如图所示,则下列关系式总成立的是( C )。 A.??+=I C j R U )(ω B.? ?+=I C R U )(ω C.?? ??????+=I C R U ωj 1 D.?? ??????-=I C j R U ω1 选择题5图

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

传输线的特性阻抗分析

传输线的特性阻抗分析 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段l可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。

传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。 单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下: ?? 与迹线到参考平面的距离(介质层厚度)成正比 ?? 与迹线的线宽成反比

上海交通大学---电路元件交流阻抗频率特性

SHANGHAIJIAOTONG UNIVERSITY 电路元件交流阻抗频率特性 一、实验目的 (1)加深了解R 、L 、C 元件的频率与阻抗的关系。 (2)加深理解R 、L 、C 元件端电压与电流间的相位关系。 (3)熟悉低频信号发生器等常用电子仪器的使用方法。 二、实验内容 正弦交流可用三角函数表示,即由最大值(U m 或I m );频率f(或角频率ω=2πf)和初相位三要素来决定。在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。 在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。此时其电压与电流可用复数欧姆定律来描述: U ? =R I ? 式中R 为线性电阻元件。U ? 与I ? 之间无相角差。电阻中吸收的功率为 P=UI=I 2R 因为略去附加电感和分布电容,所以电阻元件的阻值与频率无关。即R-f 关系如图1.11-1。 电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为只具有电容C 。在正弦电压作用下流过电容的电流之间也可用复数欧姆定律来表示: U ?=X C I ? 式中X C 是电容的容抗,其值为X C =1/j ωc 所以有U ? =1/j ωc ·I ? = I ωc ∠-90° 电压U 滞后电流I 的相角为90°,电容所吸收的功率平均为零。 电容的容抗与频率的关系X C -f 曲线如图1.11-2。 电感元件因其由导线绕成,导线有电阻,在低频时如略去其分布电容则它仅由电阻R L 与电感L 组成。 在正弦电流的情况下其复阻抗为 Z=R L + j ωL=Z ∠Φ 式中R L 为线圈导线电阻。阻抗角Φ可由R L 及L 参数来决定: ..。

传输线特性阻抗基知识

什么叫传输线的特性阻抗? 传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。 传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。

单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下:与迹线到参考平面的距离(介质层厚度)成正比 与迹线的线宽成反比 与迹线的高度成反比 与介电常数的平方根成反比 单端传输线特性阻抗的范围通常情况下为25Ω至120Ω,几个较常用的值是28Ω、33Ω、50Ω、52.5Ω、58Ω、65Ω、75Ω。 差分传输线路 下图为典型的差分(通常称为平衡式)传输线电路。 差分传输线适用于对噪声隔离和改善时钟频率要求较高的情况。在差分模式中,传输线路是成对布放的,两条线路上传输的信号电压、电流值相等,但相位(极性)相反。由于信号在一对迹线中进行传输,在其中一条迹线上出现的任何电子噪声与另一条迹线上出现的电子噪声完全相同(并非反向),两条线路之间生成的场将相互抵消,因此与单端非平衡式传输线相比,只产生极小的地线回路噪声,并且减少了外部噪声的问题。 这是一个平衡线路的示例-- 信号线和回路线的几何尺寸相同。平衡式传输线不会对其他线路产生噪声,同时也不易受系统其他线路产生的噪声的干扰。 差分模式传输线的特性阻抗(也就是通常所说的差分阻抗)指的是差分传输线中两条导线之间的阻抗,它与差分传输线中每条导线对地的特性阻抗是有区别的,

TCSC的基频阻抗特性分析与仿真

TCSC的基频阻抗特性分析与仿真 0.引言 串联补偿在电力系统中的应用历史非常悠久,最早可以追溯到1928年前后,纽约电网33kv系统曾采用串联电容补偿来实现潮流均衡;1950年,在瑞典的一个23OkV电网中首次应用串联补偿装置来提高输电系统的传输能力。此后,串联电容补偿成为远距离输电中增大传输容量和提高稳定性的重要手段而得到大力的发展和广泛的应用。 采用串联补偿可以改变传输线的等效阻抗或在线路中串入补偿电压,方便地调节系统的有功无功潮流,从而有效地控制电力系统的电压水平和功率平衡。因此,在线路上采用串联补偿能更好地实现潮流控制,提高系统的电压稳定性、暂态稳定性和振荡稳定性,抑制次同步谐振。 在考虑远距离、大容量输电经济性的时候,采取串联电容补偿策略往往是必然选择。而TCSC常被用于抑制由串补电容引起的系统次同步振荡,它所产生的无功功率,随着线路负荷增加而增加且可以在负荷变化的全范围内进行调节;线路传输相同的功率,串联补偿较并联补偿而言,所需的无功功率增量要小;就抑制次同步振荡而言,TCSC具有较大优势。输电线路接入串联电容补偿可以抵消部分线路电感,等效缩短线路电气距离,相当于为负载提供一个电压特性“很硬”的电压源。 1.TCSC的结构 晶闸管控制串联电容器基本的、概念性的TCSC模块由一个容抗固定的电容器与一个晶闸管控制的电抗器并联而成。。TCSC补偿方案的基本思路是通过改变晶闸管的触发角来调节并联支路的等效电感,进而达到控制TCSC等效阻抗的目的。

图1 TCSC主要由四个元器件组成:电力电容器C,旁路电感L,两个反相并联大功率晶闸管SCR。实际装置中还包括保护用的金属氧化物压敏限压器MOV,旁路断路器等金属氧化物可变电阻器(MOV),本质上为一个非线性电阻器, 跨接在串联电容器上,用以防止电容器上发生高的过电压。MOV不但能限制电容器上的电压,而且能使电容器保持接入状态,即使在故障情况下也是如此,从而有助于提高系统的暂态稳定性。跨接在电容器上的还有一个断路器CB,用以控制电容器是否接入线路。 2.TCSC的运行原理 TCSC通过对触发脉冲的控制,改变晶闸管的触发角a,即可改变由其控制的电感支路中电流的大小,因而可以连续改变总的等效电抗,也即使线路的串补程度连续的变化。对TCSC功能的理解可以通过分析一个由固定电容器(C)和可变电抗器(L)相并联的电路的行为来获得,如图所示 图2 该LC并联电路的等效阻抗Ze。可以表达为:

差分阻抗-差模阻抗与特性阻抗区别

差模信号、共模信号、共模抑制比、差分阻抗、共模阻抗、单端阻抗 差模又称串模,指的是两根线之间的信号差值;共模噪声又称对地噪声,指的是两根线分别对地的噪声。对于一对信号线A、B,差模干扰相当于在A与B之间加上一个干扰电压,共模干扰相当于分别在A与地、B与地之间加上一个干扰电压。平常用双绞线传输差分信号就是为了消除共模噪声,原理很简单,两线拧在一起,受到的共模干扰电压很接近, Ua - Ub 没什么变化,当然这是理想情况。RS422/485总线就是利用差分传输信号的一种具体应用。实际应用中,温度的变化、各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中两根线的对地的噪声衰减不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中的差分电路单端输入情况。 差模是相对共模来说的,差分是一种方式。假如一个ADC有两个模拟输入端,并且AD 转换结果取决于这两个输入端电压之差,我们说这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压并不一定总是大小相等方向相反,甚至很多情况下是同符号的(即不一定是一正一负),我们把它们的差叫做差模输入,而把它们共有的量(即平均值)叫做共模输入。 差分是一种电路形式的叫法,差模是对信号的定义(相对共模)。差模信号:大小相等,方向相反的信号;共模信号:大小相等,方向相同的信号。在差分放大电路中,经常提到共模信号和差模信号,在差分放大电路中共模信号是不会被放大的,可以理解为三极管的温漂引起的电流信号,为了形象化温漂而提出了共模信号,差模信号为输入信号,Ui就是放大的对象。在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号(这是有用的信号),放大器能产生很大的放大倍数,这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。如果在两个输入端分别输入大小相等,相位相同的信号(实际是由于上一级温度变化而产生的信号,是一种有害的信号),这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。由于差动放大电路的构成特点,电路对共模信号有很强的负反馈,所以共模放大倍数很小(一般都小于1),计算公式又分为单端输出和双端输出,所以有时候共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同。 差模信号:双端输入时,两个信号的相位相差180度。

元件阻抗特性测定实验报告

竭诚为您提供优质文档/双击可除元件阻抗特性测定实验报告 篇一:电路基础实验实验十一_R、L、c元件阻抗特性的测定 实验十一R、L、c元件阻抗特性的 测定 实验成员:班级:整理人员: 实验十一R、L、c元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f,xL~f 与xc~f特性曲线。2.加深理解R、L、c元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R两端电压与流过的电流有关系式 u?RI 在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性

R~f如图9-1。 如果不计线圈本身的电阻RL,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 ? ? ?? u L ? jxI感抗x L L ?2?fL 感抗随信号源频率而变,阻抗频率特性xL~f如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 u ? c ?? jx c

I容抗 ? xc? 12?fc 容抗随信号源频率而变,阻抗频率特性xc~f如图 9-1. c f 图9-1 图9-2 2.单一参数R、L、c阻抗频率特性的测试电路如图9-2所示。 途中R、L、c为被测元件,r为电流取样电阻。改变信号源频率,测量R、 L、c元件两端电压uR、uL、uc,流过被测元件的电流则可由r两端电压除以r得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ ~f。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器YA和Yb两个输入端。调节示波器有关旋钮,使示波器屏幕上出现

实验十 RLC电路的阻抗特性分析

实验十 RLC 电路的阻抗频率特性分析 一实验目的 1、掌握交流电路中电阻、电容和电感的阻抗与频率的关系。 2、加深理解三个元件的电压与电流相位关系。 3、观察RLC 串联谐振现象,了解谐振电路特性,加深其理论知识的理解。 二 实验原理 1、R 、L 、C 元件的阻抗频率特性 正弦交流信号包含最大值、频率和初相位,在正弦稳态交流电路中,通过元件的电流有效值和加于该元件两端电压有效值之间的关系U =f (I ),称为元件的交流伏安特性,每个元件不仅讨论电压、电流有效值关系,还要观察两者相位之间的关系。 线性电阻欧姆定律的相量形式为:U RI = 。说明电阻两端电压的有效值与流过电流的有效值成正比,R 大小与频率无关,相位差为0,即同相位。 (2)电容 线性电容电压电流关系的相量形式为:1U j I C ω=- 。表明电容两端电压有效值与流过电流有效值关系为1 U I C ω=,相位差为-90 ,即电流超前电压90度。 (3)电感 线性电感的电压电流关系的相量形式为:U j LI ω= 。说明电感两端电压的有效值与流过电流的有效值关系为U LI ω=,相位差为90 ,即电压超前电流90度。 正弦稳态电路中,RLC 元件的阻抗频率特性曲线如图10-1所示。 图10-1 R 、L 、C 元件的阻抗频率特性曲线

RLC串联电路中,当正弦交流信号源的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流I也随频率f而变。交流电压 S U(有效值)的角频率 为ω,则电路的阻抗为 1 () Z R j L C ω ω =+-, 阻抗的模:Z= 阻抗的幅角 1 arctan L C R ω ω ? - =,即该电路总电压与电流的相位差。 图10-3(a)、(b)分别为RLC串联电路的阻抗、相位差随频率的变化曲线。 图10-3(a)z f -曲线图10-3(b)f ?-曲线 由曲线图可以看出,存在一个特殊的频率 f,特点为: (1)当 f f <时,0 ?<,电流相位超前于电压,整个电路呈电容性; (2)当 f f >时,0 ?>,电流相位滞后于电压,整个电路呈电感性; (3)当 1 L C ω ω -=时,即 ω= f=时,阻抗Z R =,此时0 ?=,表明电路中电流I和电压U同相位,整个电路呈现纯电阻性。

特征阻抗

特征阻抗,又称为特性阻抗,它是在甚高频、超高频范围的概念。那什么是特征阻抗呢?在信号的传输过程中,在信号沿到达的地方,信号线和参考平面(参考平面指的是电源平面或者是地平面)之间由于电场的建立,就会产生一个瞬间的电流,如果传输线是各向同性的,那么只要信号在传输,就会始终存在一个电流I,而如果信号的输出电平为V,则在信号传输过程中传输线就会等效成一个电阻,大小为V/I,我们把这个等效的电阻称为传输线的特征阻抗(Characteristic Impedance)Z. 那么这个定义如何去理解?首先,必须明白特征阻抗跟线的阻抗的区别,特征阻抗属于传输线的概念,指的是传输线上点的阻抗,而线的阻抗(一般称为电阻)是对与直流而言的;其次传输线又分为微带线和带状线,微带线是指只有一个参考平面的传输线,带状线是指有两个参考平面的传输线;最后特征阻抗是对交流信号而言,对直流信号来说传输线的电阻并不是Z,而是远远小于这个 值(也就是所说的直流电阻)。 特征阻抗的意义在于什么呢?信号在传输的过程中,如果传输线上的特征阻抗发生变化,信号就会在阻抗不连续的结点上产生反 射,后果就是EMI有问题,信号不完整。 特征阻抗的计算比较复杂,一般是采用专门的就算软件。业界用的比较多的Polar Si系列(一般的PCB公司采用) 1.单端特征阻抗的计算 参数说明如下(单位是mil,特殊参数取标准常数): H1:是指示顶层的厚度,也就是说第二层到第一层的距离,一般来说这个有PCB公司决定,4mil是用的比较多的。4点多mil 都是可以的。 Er1:是指板材的介质常数,对于FR-4来说,一般为4.2-4.4。 T1:是指铜薄的厚度,一般用mil来表示。定义是这样的,一OZ(盎司)的铜铺在一平方英寸所形成的铜薄厚度。它们的具体 转化如下 OZ 1/4 1/2 1 2 3 4 mil 0.36 0.7 1.4 2.8 4.2 5.6 W1和W2:是指传输线的线宽,而它为什么不一样呢?因为在PCB的制作过程中是从上到下腐蚀的,因此有梯形的感觉,一般来 说取W2=W-0.5,W1=2+0.5(W是原始传输线的宽度)。 CEr:是指绿漆的介电常数,一般来说取3.5-3.8。 C1和C2:是指绿漆的厚度,一般取1左右。 参数都明白意思了,要计算特征阻抗那就是很容易的一件事情了。 2.差分特征阻抗的计算 差分特征阻抗是指差分线的差分阻抗,计算的方法跟单端的基本上一样,只不过多了一线间距离S。 3.常用的传输线特征阻抗 差分阻抗单端阻抗 HDMI 100 ohms+/-10% 50 ohms+/-10% USB 90 ohms+/-10% 42-78 ohms+/-10% DDR NC 60 ohms+/-10%

交流阻抗谱方法的方法和原理

什么是交流阻抗谱方法(频响分析法),交流阻抗谱方法的方法和原理 交流阻抗谱(也称频响分析法,frequencyresponseanalysis)是研究地球物质电学性质的一种方法。经过 几十年的发展,交流阻抗谱已经在材料研究、表面处理、器件研究、生命科学和地球科学的研究中得到不同程度的应用。 交流阻抗谱在地球科学中的应用相对较晚,直到20世纪80年代,该方法才被应用于水饱和地壳岩的研究中,而将该方法应用于干燥地幔岩电性研究的是Arizon州立大学的Tyburczy 和Roberts,他们在一个大气压下研究了橄榄石单晶样品、橄榄石多晶样品以及天然纯橄榄岩的电导率,并且分析了不同阻抗弧形成的原因。 此后,Huebner和Dillenburg等人在1~2GPa下用交流阻抗谱研究了单斜辉石电学性质,结果发现,随压 力的升高颗粒边界电阻在显著的降低。Xu等利用交流阻抗谱在超过15GPa条件下对橄榄石高压相的电导率进行了研究。 在国内,该方法已经在地球深部物质的电性研究中有了一定程度的应用,也取得了一些成果。在本文中,作者根据自己和其他学者的研究,介绍了交流阻抗谱的方法、原理以及该方法在地球深部物质电学性质研究中的一些应用。 交流阻抗谱方法是一种以小振幅的正弦波电位为扰动信号的电测量方法。由于以小振幅的电信号对体系进 行扰动,一方面可避免对体系产生大的影响,另一方面也使得扰动与体系的响应之间近似呈线形关系,这就使得测量结果的数学处理变得单。 同时它又是一种频率域的测量方法,通过在很宽的频率范围内测量阻抗来研究电极系统,因而得到比其他常 规的电化学方法更多的动力学信息及电极界面结构的信息。 如果对系统施加一个正弦波电信号作为扰动信号,则相应地系统产生一个与扰动信号相同频率的响应信号。 为时间。 如果对体系施加如式(1)的正弦信号,则体系产生如式(2)的响应信号

实验5 阻抗特性

实验5 R、L、C单个元件阻抗频率特性测试 一、实验目的 1、掌握交流电路中R、L、C单个元件阻抗与频率间的关系,测绘R-f、X L-f、X C-f特性曲线。 2、掌握交流电路中R、L、C元件各自的端电压与电流间的相位关系。 3、观察在正弦激励下,R、L、C三元件各自的伏安关系。 二、实验设备 1、电路分析综合实验箱 2、低频信号发生器 3、双踪示波器 三、实验内容 图5、1 测试电路如图5、1所示,R、L、C三个元件分别作为被测元件与10Ω采样电阻相串联,其中电阻R =2kΩ,电感L =2、7mH,电容C = 0、1μF,信号源输出电压的有效值为2V。 1、测绘R、L、C单个元件阻抗频率特性曲线 1)按照图5、1接好线路。注意:信号源输出电压的幅度须始终保持2V有效值,即每改变一次输出电压的频率,均须监测其幅度就是否为2V有效值。 2)改变信号源的输出频率f如表5、1所示,利用示波器的自动测量功能监测2通道信号

的电压有效值,并将测量数据填入表中相应位置。 3)计算通过被测元件的电流值I AB 以及阻抗的模Z ,并填入表5、1 中相应位置。 BC AB BC 10U I I == S AB AB 2U Z I I == 4)在图5、2上绘制R 、L 、C 单个元件阻抗频率特性曲线,要求:将三条曲线画在同一坐标轴中。 表5、1 f (K Hz) 10 20 30 40 50 U S (V ) 2 U BC (mV ) R L C I AB (mA ) R L C Z (K Ω) R L C 图5、2 2、 R 、L 、C 单个元件的相位测量

1)测试电路不变,信号源的输出电压有效值为2V ,输出频率为10kHz 。 2)在示波器上观察R 、L 、C 三个元件各自端电压与电流的相位关系,将波形存储到U 盘,课后打印并贴在图5、3上相应方框处。 3)计算R 、L 、C 三个元件各自的相位差 ,并用文字描述R 、L 、C 三个元件各自电压、 电流的相位关系。 R : 360?=?=CD AB Φ 结论: L : 360?=?=CD AB Φ 结论: C : 360?=?=C D AB Φ 结论:

相关主题