搜档网
当前位置:搜档网 › 生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理
生物化学知识点总整理

一、蛋白质

1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。

2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电

荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。

3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。

4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:

在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。

5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。

6.半胱氨酸连接用二硫键(—S—S—)

7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。

8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的

α羧基,称为羧基端或C端。

9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,

其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基

酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和

相互作用。

10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在

螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。

11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。

12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。

13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。

14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。

15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举

例说明实际工作中应用和避免蛋白质变性的例子?

蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。

蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原

来的构象及功能,这一现象称为蛋白质的复性。

蛋白质沉淀:蛋白质分子从溶液中析出的现象。

变性与沉淀关系:变性的蛋白质易于沉淀,有时蛋白质发生沉淀并不发生变性。

导致蛋白质变性的因素物理因素:高温、高压、振荡、紫外线和超声波等;化学因素:强酸、强碱、乙醇、丙酮、尿素、重金属盐和去污剂。

变性和沉淀在实际工作中应用:可采用酒精、加热、紫外线照射等方法进行消毒、灭菌,

利用钨酸、三氯醋酸等方法使其变性,沉淀去除血清蛋白质。

避免蛋白质变性的例子:化验室检测,制备酶、疫苗、免疫血清等蛋白质制剂时,应选用

不引起变性的沉淀剂,并在低温等适当条件下保存。

16.分子病:由基因突变造成蛋白质结构或合成量异常而导致的疾病。

17.疯牛病:感染朊病毒后,以α螺旋为主的PrP c构象被以β螺旋为主的PrP sc构象转变成PrP sc构象,疯牛病形成与此有关。

18.镰刀形红细胞贫血(镰状细胞病)形成原因:是由血红蛋白分子结构异常而导致的分子病。镰状细胞病患者的血红蛋白是HbS而非HbA,即N端6号为谷氨酸而非缬氨酸。谷氨酸带一个负电荷,而缬氨酸的R基不带电荷,则HbS比HbA少两个负电荷,极性低。因此,HbS的溶解度降低,在脱氧状态下能形成棒状复合体,使红细胞扭曲成镰状,这一过程会损害细胞膜,使其极易被脾脏清除,发生溶血性贫血。

二、核酸

1.核酸:以核苷酸为基本组成单位的携带和传递遗传信息的生物大分子,包括核糖核酸和

脱氧核糖核酸,主要元素为C、H、O、N、P,由碱基、戊糖、磷酸组成

2.核苷之间通过糖苷键连接,核苷酸之间通过3’,5’--磷酸二酯键连接。

3.核苷酸结构:磷酸酯键、糖苷键、酸酐键。

4.核苷的种类:AR、GR 、UR、CR;脱氧核苷的种类:dAR、 dGR、 dTR、 dCR 。

5.核酸的分子结构:(1)一级结构:核酸的核苷酸序列;(2)二级结构:DNA双螺旋结构;(3)三级结构:在二级结构的基础上,DNA双螺旋进一步盘曲,形成更加复杂的结构,称为DNA的三级结构,又叫超螺旋结构。

6.DNA双螺旋结构:(1)DNA是由两条链互补构成的双链结构,在该结构中,由脱氧核糖与磷酸交替构成的亲水骨架(DNA主链)位于外侧,碱基位于内测,碱基之间形成氢键,而将两条链结合在一起,由于受结构限制,氢键形成于特定的碱基对之间,A=T、G≡C,(2)DNA

通过碱基堆积力进一步形成右手螺旋结构,双螺旋直径2纳米,每一螺旋含十个碱基对,螺距3.4纳米,相邻碱基对之间的轴向距离0.34纳米;氢键(横向)和碱基堆积力(纵向)维系DNA双螺旋结构的稳定性。氢键—维持横向稳定性;碱基堆积力—维持纵向稳定性。

7.核小体:由DNA与组蛋白组成。

8.mRNA的结构特点:帽子和A尾。

9.tRNA的二级结构特点:三叶草形,四臂三环(氨基酸臂,反密码子臂,反密码子环,TfaiC臂,TfaiC环,二氢尿嘧啶臂(D臂),二氢尿嘧啶环(D环))。三级结构:倒“L”型。

10.DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。

11.DNA复性:缓慢降低温度,恢复生理条件,变性DNA单链会自发互补结合,重新形

成原来的双螺旋结构,称为DNA复性,也称为退火。

12.OD260的应用:判断核酸样品纯度;DNA纯品;OD260 /OD280 = 1.8;RNA纯品OD260 /OD280=2.0

13.T m(解链温度)变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸

收值达到最大值的50%时的温度,称为T m,又称熔解温度,其大小与G+C含量成正比。

14.增色效应:DNA变性导致其紫外吸收增加,称为增色效应。

15.分子杂交:不同来源的核酸链因存在互补序列而形成互补双链结构,这一过程称为核酸分子杂交。

三、酶

1.全酶为脱辅基酶蛋白和辅助因子;辅酶与脱辅基酶蛋白结合牢固,可以用透析或超滤的

方法除去;辅基与脱辅基酶蛋白结合牢固,不可以用透析或超滤的方法除去。

2.根据分子组成分为单纯酶、结合酶。

3.必需基团:与酶活性密切相关的基团,分为两类,一类位于活性中心外,另一类位于活

性中心内。位于活性中心内的分为结合基团和催化基团。

4.酶的活性中心:又称活性部位,是酶蛋白构象的一个特定区域,能与底物特异结合,并

催化底物发生反应,生成产物。

5.酶促反应特点:催化效率极高、特异性高、酶蛋白易失活、酶活性可以调节。

6.酶促反应的机理:酶促反应特异性的机制、酶促反应高效率的机制(邻近效应与定向排列、表面效应、多元催化)。

7.酶促反应的影响因素:酶浓度、底物浓度、温度、PH值、抑制剂、激活剂。

8.诱导契合假说:酶的活性中心在结构上是柔性的,即具有可塑性和弹性,当底物与活性

中心接触时,酶蛋白的构象会发生变化,这种变化使活性中心的必需基团正确地排列和定向,

适宜与底物结合并催化反应。

9.米氏方程:V=V max[S]/(K m+[S])

10.米氏常数的意义:(1)是反应速度为最大反应速度一半时的底物浓度;(2)是酶的特征常数;(3)反应酶与底物的亲和力;(4)同一酶对不同的底物有不同的Km值。(Km↑,亲和力↓)

11.酶的抑制剂:(1)不可逆抑制作用举例:

(2)可逆抑制作用:(1)竞争性抑制作用--特点:a.抑制剂结构和底物相似;b.竞争性抑制

的强弱取决于抑制剂和底物的相对浓度以及它们与酶的相对亲和力;c.动力学特点:Vmax降低,表观Km不变;(2)非竞争性抑制作用—特点:a.抑制剂与酶活性中心外的必需基团结合,底物与抑制剂之间无竞争关系;b.抑制程度取决于抑制剂浓度;c.动力学特点:Vmax降低,表

观km不变;(3)反竞争性抑制作用—特点:a.抑制剂只与酶—底物复合物结合;b.抑制程度取决于抑制剂浓度及底物浓度;(3)动力学特点:Vmax降低,表观Km降低。

12.磺胺类药物的抑菌机制:

细菌由二氢叶酸合成酶催化,利用对氨基苯甲酸合成二氢叶酸;

二氢叶酸有二氢叶酸还原酶催化还原成四氢叶酸;

磺胺类药物与对氨基苯甲酸结构类似,能与二氢叶酸合成酶结合,抑制二氢叶酸的合成;

磺胺增效剂与二氢叶酸结构相似,能与二氢叶酸还原酶结合,抑制二氢叶酸还原成四氢叶酸;

四氢叶酸是一碳单位代谢不可缺少的辅助因子,没有了四氢叶酸,细菌的一碳单位代谢受到影响,其核酸和蛋白质的合成受到阻抑;如果单独使用磺胺类药物或磺胺增效剂,它们只是抑制细菌的生长繁殖,但如果联合应用,它们就可以通过双重抑制作用杀死细菌。

13.酶原:酶的无活性前体。

14.酶原激活:酶原向酶转化的过程。

15.同工酶:是指能催化相同的化学反应,但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶。

四、维生素

1.维生素:机体维持正常功能所必需,在体内不能合成或合成量很少必须由食物供给的一组低分子量有机物质,分为水溶性维生素和脂溶性维生素。

4.巨幼红细胞性贫血的机理:缺乏叶酸时,DNA复制及细胞分裂受阻,细胞变大,造成巨幼红细胞贫血。

五、生物氧化

1.生物氧化:物质在生物体内进行氧化,叫生物氧化,主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成二氧化碳和水的过程。

2.呼吸链:代谢物脱下的成对氢原子通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。

3.呼吸链组成:NADH氧化呼吸链:NADH → FMN/Fe-S →①CoQ → Cytb →②Cytc1 → Cytc → Cytaa3 →③ O2

琥珀酸氧化呼吸链:琥珀酸→ FAD/Fe-S → CoQ → Cytb →②Cytc1 → Cytc → Cytaa3 →③ O2

4.

5.递氢体:NAD、FMN、FAD、Q;递电子体:Fe-S、Cyta、Cytb、Cytc

6.呼吸链抑制剂:①鱼藤酮、粉蝶霉素A、异戊巴比妥;②抗霉素A、二巯基丙醇;③氰化物(CN-)、叠氮化物(N3-)、CO、H2S。

7.氧化磷酸化:在呼吸链电子传递过程中,偶联ADP磷酸化生成ATP,又称为偶联磷酸化;底物水平磷酸化:是底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP 的过程。

氧化磷酸化的影响因素:(1)抑制剂(呼吸链抑制剂、解偶联剂、氧化磷酸化抑制剂);(2)ADT的作用;(3)甲状腺激素的作用;(4)线粒体DNA突变。

8.高能化合物:含有高能键的化合物。

9.ATP的两个来源:氧化磷酸化、底物水平磷酸化。

10.跨膜转运机制:3—磷酸甘油穿梭、苹果酸—天冬氨酸穿梭。

11.磷/氧比值:物质氧化时,每消耗一摩尔原子氧所消耗的无机磷的摩尔数,称为该物质的磷/氧比值。

12.化学渗透假说:电子进行呼吸链传递时,可将质子(H+)从线粒体内膜的基质侧泵到内膜胞浆侧,产生膜内外质子电化学梯度,以此储存能量。当质子顺浓度梯度回流时,驱动ATP合酶,利用ADP和Pi合成ATP。

六、糖代谢

1.糖的生理功能:氧化供能(主要功能)、提供合成体内其他物质的原料、作为机体组织细胞的组成成分。

2.糖的吸收机制:Na+依赖型葡萄糖转运体。

3.血糖的来源:(1)食物消化吸收;(2)肝糖原分解;(3)非糖物质糖异生。

血糖的去路:(1)氧化供能;(2)合成肝糖原、肌糖原;(3)转化成核糖、脂肪、氨基酸;(4)过高时随尿液排出。

4.乳酸循环生理意义:(1)乳酸再利用,避免乳酸损失;(2)防止乳酸堆积,引起酸中毒。

5.糖的有氧氧化:在机体氧供充足时,葡萄糖彻底氧化成水和二氧化碳,并释放出能量的

过程,是机体主要供能方式。在胞液及线粒体中发生,过程为糖酵解途径、酮酸的氧化脱羧、

三羧酸循环、氧化磷酸化。

6.糖酵解:在缺氧情况下葡萄糖生成乳酸的过程;产能方式:底物水平磷酸化;代谢途径:

生理意义:(1)机体在缺氧情况下,获取能量的一种有效方式;(2)是某些细胞在氧供应正常情况下的重要功能途径。

7.三羧酸循环:乙酰辅酶A的氧化分解从乙酰辅酶A和草酰乙酸缩合生成含三个羧基的柠檬酸开始,经一系列反应又转变成草酰乙酸的循环。在线粒体中发生,关键酶为柠檬酸合酶、

异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系。

反应特点:一次底物水平磷酸化,两次脱羧生成两分子二氧化碳,三个关键酶,四次脱氢,一次交给FAD、三次交给NAD+,反应不可逆。

生理意义:(1)是糖类、脂类和蛋白质分解代谢的共同途径:(2)是糖类、脂类和蛋白质代谢联系的枢纽;(3)为其他物质代谢提供小分子前提;(4)为呼吸链提供H+和电子。

9.磷酸戊糖途径:由葡萄糖生成磷酸戊糖及NADPH和H+,前者进一步转变成3-磷酸甘

油醛和6-磷酸果糖。

生理意义:(1)为核苷酸的生成提供核糖;(2)提供NADPH作为供氢体,参与多种代谢反

应a.NADPH是体内脂肪、胆固醇、类固醇激素合成代谢的供氢体;b.NADPH参与体内羟化

反应,与生物合成或生物转化有关;c.NADPH可维持GSH(还原型谷胱甘肽)的还原性。

10.糖原分解:即肝糖原分解成葡萄糖的过程。肌肉组织中不存在葡萄糖—6—磷酸酶,无法生成葡萄糖,其关键酶为糖原磷酸化酶;糖原合成的关键酶为糖原合酶。

11.活性葡萄糖:UDPG(尿苷二磷酸葡萄糖)。

12.糖异生:由非糖物质合成葡萄糖或糖原的过程,在肝肾细胞的胞浆及线粒体中发生,原料为氨基酸、甘油和有机酸。关键酶为丙酮酸羧化酶、磷酸烯醇式丙酮酸羧基酶、果糖—

1,6—二磷酸酶、葡萄糖—6—磷酸酶。

途径:(1)丙酮酸羧化支路;(2)1,6—二磷酸果糖水解生成6—磷酸果糖;(3)6—磷酸葡萄

糖水解生成葡萄糖。

13.6—磷酸果糖(G—6—P)代谢去路:

14.草酰乙酸转运出线粒体的方式:

15.葡萄糖有氧氧化生成的ATP计算:

七、脂类代谢

1.脂肪动员:存储在脂肪细胞中的脂肪被脂肪酶逐步水解为脂肪酸及甘油并释放入血,以

供其他组织氧化利用的过程,关键酶为激素敏感性甘油三酯脂肪酶。

2.三种必须脂肪酸:亚油酸、亚麻酸、花生四烯酸。

3.脂肪酸的β氧化:脱氢、加水、再脱氢、硫解;在线粒体中,关键酶为肉碱酯酰转移酶Ⅰ。

4.乙酰辅酶A的来源:糖的有氧氧化、脂肪酸的β氧化、某些氨基酸的分解代谢、酮体的

氧化分解。

去路:进入三羧酸循环被彻底氧化、在肝脏合成酮体、合成脂肪酸和胆固醇、参与乙酰

化反应。

5.脂肪酸氧化的能量生成:

6.酮体:包括乙酰乙酸,β—羟丁酸和丙酮。代谢定位:肝脏生成、肝外利用。

7.酮体的生成和利用:

8.酮体代谢的生理意义:是肝脏输出能源的一种形式,并且酮体可通过血脑屏障,是脑组

织的重要能源;酮体利用增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质消耗。

八、蛋白质的分解代谢

1.必需氨基酸:苯丙氨酸、甲硫氨酸、赖氨酸、苏氨酸、色氨酸、亮氨酸、异亮氨酸、缬

氨酸。(笨蛋来宿舍晾一晾鞋)

2.氨基酸的吸收方式:氨基酸寡肽和二肽。

3.氨基酸代谢库:分布于全身的游离氨基酸。

4.氨基酸脱氨基作用的方式:转氨基反应、氧化脱氨基作用、联合脱氨基作用(主要)、其他非氧化脱氨基作用。

5.生酮氨基酸:赖氨酸和亮氨酸,生糖兼生酮氨基酸、苯丙氨酸、酪氨酸、色氨酸、苏氨酸、异亮氨酸。

6.氨基酸的代谢来源:食物蛋白消化吸收、组织蛋白降解、利用α—酮酸和NH3合成非必需氨基酸。

去路:主要是合成组织蛋白、脱氨基生成α—酮酸和NH3、脱羧基生成胺类和CO2、通过特殊代谢途径生成一些重要的生物活性物质。

7.SAM(活性甲亮氨酸)为体内甲基的直接供体;PAPS(3’磷酸腺苷5’磷酸硫酸)为活性硫酸,是体内硫酸基的供体。

8.酶原激活的生理意义:可保护胰组织免受蛋白酶的自身消化作用;保证酶在其特定的部

位和环境发挥催化作用;酶原还可视为酶的贮存形式。

9.蛋白质的腐败作用:肠道细菌对未被消化和吸收的蛋白质及其消化产物所起的作用。

10.氮平衡:是指摄入氮与排出氮之间的平衡关系,它反映出体内蛋白质的代谢状况,有三种情况:(1)氮总平衡:摄入氮等于排出氮;(2)氮正平衡:摄入氮多于排出氮:(3)氮负平衡:

摄入氮少于排出氮。

11.尿素循环:

12.转氨作用:(书166)

13.血氨的代谢来源:氨基酸脱氨基产生NH3、胺类物质氧化产生NH3、肠道内的腐败作用和尿素分解产生NH3。

去路:在肝脏合成尿素(主要)、合成非必需氨基酸等含氮化合物、合成谷氨酰胺、肾小

管泌氨。

14.一碳单位:有些氨基酸在分解代谢的过程中,可以产生含有一个碳原子的活性基团,称为一碳单位。分类:甲酰基、甲炔基、亚胺甲基、甲烯基、甲基。载体:四氢叶酸。生理功能:作为嘌呤和嘧啶的合成原料是氨基酸和核苷酸联系的纽带。

15.个别氨基酸的代谢:(书173)

16.白化病:人体缺乏酪氨酸酶。

17.肝性脑病的形成原因:假神经递质并不能传递兴奋,反而竞争性抑制儿茶酚胺传递兴奋导致大脑功能障碍,发生深度抑制而昏迷,临床上称为肝性脑病。

18.高血氨症和氨中毒:肝功能严重受损时,尿素合成发生障碍,会导致血氨升高,称为高血氨症。血氨升高,大量氨气进入脑组织,与脑细胞内的α—酮戊二酸结合生成谷氨酸,并进

一步生成谷氨酰胺。此过程消耗谷氨酸,谷氨酸是神经递质,能量及神经递质严重缺乏时,影

响到脑功能直至昏迷,临床上称为氨中毒。

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

生物化学知识点

生物化学知识点 时间:2011-8-10 18:04:44 点击:486 核心提示:生物化学一、填空题 1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。 2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。 3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等... 生物化学 一、填空题 1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。 2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。 3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等非共价键和(二硫键)。 4、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、(某些酸类沉淀法)、(重金属盐沉淀法)。 5、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。 6、核酸中嘌呤碱主要有(腺嘌呤A)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶C)、(尿嘧啶U)和(胸腺嘧啶T)三种。 7、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 9、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、(PH)、(激活剂)、(抑制剂) 10、正常情况下空腹血糖浓度为(3.9-6.1mmol/L),糖的来源有(食物中糖的消化吸收)、(肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。

医学生物化学重点总结

第二章蛋白质的结构和功能 第一节蛋白质分子组成 一、组成元素: N为特征性元素,蛋白质的含氮量平均为16%.-----测生物样品蛋白质含量:样品含氮量×6.25 二、氨基酸 1.是蛋白质的基本组成单位,除脯氨酸外属L-α-氨基酸,除了甘氨酸其他氨基酸的α-碳原子都是手性碳原子。 2.分类:(1)非极性疏水性氨基酸:甘、丙、缬、亮、异亮、苯、脯,甲硫。(2)极性中性氨基酸:色、丝、酪、半胱、苏、天冬酰胺、谷氨酰胺。(3)酸性氨基酸:天冬氨酸Asp、谷氨酸Glu。(4)(重)碱性氨基酸:赖氨酸Lys、精氨酸Arg、组氨酸His。 三、理化性质 1.两性解离:两性电解质,兼性离子静电荷+1 0 -1 PH〈PI PH=PI PH〉PI 阳离子兼性离子阴离子等电点:PI=1/2(pK1+pK2) 2.紫外吸收性质:多数蛋白质含色氨酸、酪氨酸(芳香族),最大吸收峰都在280nm。 3.茚三酮反应:茚三酮水合物与氨基酸发生氧化缩合反应,成紫蓝色的化合物,此化合物最大吸收峰为570nm波长。此反应可作为氨基酸定量分析方法。 四、蛋白质分类:单纯蛋白、缀合蛋白(脂、糖、核、金属pr) 五、蛋白质分子结构 1.肽:氨基酸通过肽键连接构成的分子肽肽键:两个氨基酸α氨基羧基之间缩合的化学键(—CO—NH—) 2.二肽:两分子氨基酸借一分子的氨基与另一分子的羧基脱去一分子的水缩合成 3.残基:肽链中的氨基酸分子因脱水缩合而残缺,故被称为氨基酸残基。 4.天然存在的活性肽: (1)谷胱甘肽GSH:谷,半胱,甘氨酸组成的三肽 ①具有还原性,保护机体内蛋白质或酶分子免遭氧化,使蛋白质或酶处于活性状态。②在谷胱甘肽过氧化物酶催化下,GSH可还原细胞内产生的过氧化氢成为水,同时,GSH被氧化成氧化性GSSG,在谷胱甘肽还原酶作用下,被还原为GSH③GSH的硫基具有噬核特性,能与外源性的噬电子毒物(如致癌物,药物等)结合,从而阻断,这些化合物与DNA,RNA或蛋白质结合,以保护机体(解毒) (2)多肽类激素及神经肽 ①促甲状腺激素释放激素TRH②神经肽:P物质(10肽)脑啡肽(5肽)强啡肽(17肽)

(完整word版)生物化学实验知识点整理,推荐文档

生物化学实验知识点整理 实验一 还原糖的测定、实验二 粮食中总糖含量的测定 1.还原糖测定的原理 3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量 2.总糖测定原理 多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量 3.电子天平使用 4.冷凝回流的作用: 使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。 5.多糖水解方法: 加酸进行水解 6.怎样检验淀粉都已经水解: 加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。 7.各支试管中溶液的浓度计算 8.NaOH 用量:HCl NaOH n n = 9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同 10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。这种选择吸收的定量关系服从式/E h hc νλ?==。 实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律 分光光度计就是以郎伯比尔定律为原理,来测定浓度 11.为什么要水解多糖才能用DNS 因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。 12.为什么要乘以0.9 以0.9才能得到多糖的含量。 13.为什么要中和后再测? 因为DNS 要在中性或微碱性的环境下与葡萄糖反应 实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度 1.纸色谱分离氨基酸分离原理 由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。 2.天然氨基酸为L 型 3.酸式水解的优点是:是保持氨基酸的旋光性不变,原来是L 型,水解后还是L 型,由于甘氨酸所有的R 基团是氢原子,所以它不是L 型

生物化学知识点汇总

生物化学知识点486 时间:2011-8-10 18:04:44 点击: 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要1生物化学一、填空题核心提示:折、蛋白质二级结构的主形式是(a-螺旋)、(B-元素组成的,组成蛋白质的基本单位是(氨基酸)。2(疏3、维行蛋白质的空间结稳定的化 学键主要有(氢键)、(盐键)、叠)(B-转角)(无规则卷曲)。... 水键)、(范德华力)等生物化学 一、填空题 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白1 质的基本单位是(氨基酸)。 转角)(无规则卷曲)。、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-2、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华3 力)等非共价键和(二硫键)。 、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、、4 (重金 属盐沉淀法)。、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),5 核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。)、CA)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶6、核酸中嘌呤碱主要有(腺嘌呤)和(胸腺嘧啶T)三种。(尿嘧啶U、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称7 为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、9 )、(激活剂)、(抑制剂)(PH),糖的来源有(食物中糖的消化吸收)、3.9-6.1mmol/L10、正常情况下空腹血糖浓度为((肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。,反应在(线12)分子ATP411、三羧酸循环中有(2)次脱羧()次脱氧反应,共生成(酮戊二酸脱氢酶粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a- 系)。、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中12 毒。 、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的13 糖主要是(淀粉)。、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),14 1 甚至出现(糖尿)),并释放能量的过程称(生H2O、营养物质在(生物体)内彻底氧化生成(CO2)和(15 物氧化),又称为(组织呼吸)或(细胞呼吸)。琥珀酸氧化呼吸链),两FADH2、体内重要的两条呼吸链是(NADH氧化呼吸链)和(16 2ATP)。条呼吸链ATP的生成数分别是(3ATP)和()H2O17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(ATP)的过程相(偶联)的作用。的过程与(ADP)磷酸化生成(ATP的主 要方式为(氧化磷酸化),其次是(底物水平磷酸化)。18、体内生成脱a-CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(19、体内脱羧)。羧)和(B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步每一次B-20、脂酰CoA )。)和比原来少2

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

生化知识点整理(特别全)

第一章 蛋白质的元素组成(克氏定氮法的基础) 碳、氢、氧、氮、硫(C、H、O、N、S ) 以及磷、铁、铜、锌、碘、硒 蛋白质平均含氮量(N%):16% ∴蛋白质含量=含氮克数×6.25(凯氏定氮法) 基本组成单位 氨基酸 熟悉氨基酸的通式与结构特点 ● 1. 20种AA中除Pro外,与羧基相连的α-碳原子上都有一个氨基,因而称α-氨 基酸。 ● 2. 不同的α-AA,其R侧链不同。氨基酸R侧链对蛋白质空间结构和理化性质有 重要影响。 ● 3. 除Gly的R侧链为H原子外,其他AA的α-碳原子都是不对称碳原子,可形成 不同的构型,因而具有旋光性。 ● 氨基酸分类P9 按侧链的结构和理化性质可分为: 非极性、疏水性氨基酸 极性、中性氨基酸 酸性氨基酸 碱性氨基酸 等电点概念 在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点(isoelectric point,pI )。 紫外吸收性质 含有共轭双键的芳香族氨基酸Trp(色氨酸), Tyr(酪氨酸)的最大吸收峰在280nm波长附近。 氨基酸成肽的连接方式 两分子脱水缩合为二肽,肽键

由10个以氨基酸相连而成的肽称为寡肽。 而更多的氨基酸相连而成的肽叫做多肽;多肽链有两端,其游离a-氨基的一端称氨基末端或N-端,游离a-羧基的一端称为羧基末端或C-端。 肽链中的氨基酸分子因脱水缩合而基团不全,被称为氨基酸残基。 蛋白质就是由许多氨基酸残基组成的多肽链。 谷胱甘肽GSH GSH是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。 (1) 体重要的还原剂保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处与活性状态。 (2) 谷胱甘肽的巯基作用可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA 或蛋白质结合,保护机体免遭毒性损害。 蛋白质1~4级结构的定义及维系这些结构稳定的作用键 蛋白质是氨基酸通过肽键相连形成的具有三维结构的生物大分子 蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序。主要化学键是肽键,有的还包含二硫键。 蛋白质二级结构是指多肽链的主链骨架中若干肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象,如α-螺旋、β-折叠、β-转角和无规卷曲等。蛋白质二级结构一般不涉及氨基酸残基侧链的构象。 二级结构的主要结构单位——肽单元(peptide unit)[肽键与相邻的两个α-C原子所组成的残基,称为肽单元、肽单位、肽平面或酰胺平面(amide plane)。它们均位于同一个平面上,且两个α-C原子呈反式排列。] 二级结构的主要化学键——氢键(hydrogen bond) 蛋白质的三级结构是指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。也就是整条多肽链中所有原子或基团在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键,包括氢键、盐键、疏水键以及德华力等。此外,某些蛋白质中二硫键也起着重要的作用。 由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象,称为蛋白质的四级结构。[亚基(subunit):由一条或几条多肽链缠绕形成的具有独立三级结构的蛋白质。] 蛋白质二级结构的基本形式?重点掌握α-螺旋、β-折叠的概念 α-螺旋(α-helix) β-折叠(β-pleated sheet) β-转角(β–turn or β-bend) 无规卷曲(random coil) α-helix ①多个肽平面通过Cα的旋转,相互之间紧密盘曲成稳固的右手螺旋。 ②主链螺旋上升,每3.6个氨基酸残基上升一圈,螺距0.54nm。肽平面和螺旋长轴平行。 ③相邻两圈螺旋之间借肽键中羰基氧(C=O)和亚氨基氢(NH)形成许多链氢键,即每一

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

生物化学重点知识归纳

生物化学重点知识归纳 酶的知识点总结 一、酶的催化作用 1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白属于单纯蛋白质的酶 2、体内结合蛋白质的酶占多数,结合蛋白质酶由酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,所以酶蛋白决定酶反应特异性。结合蛋白质酶;酶蛋白:决定酶反应特异性;辅酶:结合不牢固辅助因子辅基:结合牢固,由多种金属离子;结合后不能分离 3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构 4、酶的有效催化是降低反应的活化能实现的。 二、辅酶的种类口诀:1脚踢,2皇飞,辅酶1,NAD, 辅酶2,多个p; 三、酶促反应动力学:1 Km为反应速度一半时的[S](底物浓度),亦称米氏常数,Km增大,Vmax不变。

2、酶促反应的条件:PH值:一般为最适为7.4,但胃蛋白酶的最适PH为1.5,胰蛋白酶的为7.8;温度:37—40℃; 四、抑制剂对酶促反应的抑制作用 1、竞争性抑制:Km增大,Vmax不变;非抑制竞争性抑制:Km不变,Vmax减低 2、酶原激活:无活性的酶原变成有活性酶的过程。 (1)盐酸可激活的酶原:胃蛋白酶原 (2)肠激酶可激活的消化酶或酶原:胰蛋白酶原 (3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原 (4)其余的酶原都是胰蛋白酶结合的 3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。 LDH分5种。LDH有一手(5种),心肌损伤老4(LDH1)有问题,其他都是HM型。 脂类代谢的知识点总结 1、必需脂肪酸:亚麻酸、亚油酸、花生四烯酸(麻油花生油) 2、脂肪的能量是最多的,脂肪是禁食、饥饿是体内能量的主要来源

生物化学知识点

生物化学名词解释及基本概念整理 第一章蛋白质化学 Ⅰ基本概念 1、等电点(pI):使氨基酸离解成阳性离子和阴性离子的趋势和程度相等,总带电荷为零(呈电中性) 时的溶液pH值. A溶液pHpI,氨基酸带负电荷,在电泳时向正极运动。 2、修饰氨基酸(稀有氨基酸):蛋白质合成后,氨基酸残基的某些基团被修饰后形成的氨基酸。没有 相应的密码子,如甲基化、乙酰化、羟基化、羧基化、磷酸化等。 3、肽键(peptide bond):合成肽链时,前一个氨基酸的α-羧基与下一个氨基酸的α-氨基通过脱 水作用形成的酰胺键,具有部分双键性质。 4、肽键平面(酰胺平面):参与肽键的六个原子位于同一平面,该平面称为肽键平面。肽键平面不能 自由转动。 5、蛋白质结构: A一级结构:是指多肽链从N端到C端的氨基残基种类、 数量和顺序。主要的化学键:肽键,二硫键。 B 二级结构:是指蛋白质分子中某一段肽链的局部空间结构, 即蛋白质主链原子的局部空间排布(不涉及侧链原子的位置)。 分α-螺旋( α -helix):较重要,为右手螺旋,每圈螺旋含3.6个 氨基酸残基(13个原子),螺距为0.54nm、β-片层(β-折叠, β-pleated sheet)、β-转角(β-turn )、无规则卷曲(random coil)、π-螺旋(π -helix )。维持二级结构的化学键:氢键。 模体:蛋白质分子中,二级结构单元有规则地聚集在一起形成 混合或均有的空间构象,又称超二级结构。 C 结构域:蛋白质三级结构中,折叠紧凑、可被分割成独立的球状或纤维状,具有特定功能的 区域,称为结构域。为构成三级结构的基本单元。 D三级结构:是指整条多肽链中所有氨基酸残基的相对空间位置(肽链上所有原子的相对空间位 置).化学健:疏水键和氢键、离子键、范德华力等来维持其空间结构的相对稳定。 E 四级结构:蛋白质分子中几条各具独立三级结构的多肽链间相互结集和相互作用,排列形成 的更高层次的空间构象。作用力:亚基间以离子键、氢键、疏水力连接。此外,范德华力、二 硫键(如抗体)。 6、分子伴侣:一类在序列上没有相关性但有共同功能,在细胞中能够帮助其他多肽链(或核酸)折 叠或解折叠、组装或分解的蛋白称为分子伴侣。如热休克蛋白。 7、一级结构是形成高级结构的分子基础,蛋白质一级结构的改变,可能引起其功能的异常或丧失(“分 子病”);同功能蛋白质序列具有种属差异与保守性。 蛋白质分子的空间结构是其发挥生物学活性的基础,蛋白质分子构象的改变影响生物学功能或 导致疾病的发生,蛋白质一级结构不变,但由于折叠错误,导致蛋白质构象改变而引起的疾病, 称为蛋白质构象病(折叠病)。 8、蛋白质变性:在某些理化因素的作用下,特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失的过程。为非共价键和二硫键断裂,物理(高温、高压、紫外线),化学(强酸碱、有机溶剂、重金属盐)等因素导致。 9、20种AA名称及缩写: A 非极性疏水性AA:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、

考研备考生物化学知识点总结

考研备考:生物化学知识点总结 21世纪被称为生物世纪,可见生物学技术对人类的影响是巨大的。生物学技术渗透于社会生活的众多领域,食品生产中的转基因大豆、啤酒用于制衣的优质棉料和动物皮革,医学上疫苗、药品的生产和开发以及试管婴儿技术的应用,逐渐流行推广起来的生物能源如沼气、乙醇等,都包含生物学技术的应用。生物学的最新研究成果都会引起世人的注意,如此新兴和前景广阔的专业自然吸引了广大同学的考研兴趣。为此,针对生物学专业课基础阶段的复习,专业课考研辅导专家们对生物化学各章节知识点做了如下总结: 第一章糖类化学 学习指导:糖的概念、分类以及单糖、二糖和多糖的化学结构和性质。重点掌握典型单糖(葡萄糖和果糖)的结构与构型:链状结构、环状结构、椅适合船式构象;D-型及L-型;α-及β-型;单糖的物理和化学性质。以及二糖和多糖的结构和性质,包括淀粉、糖原、细菌多糖、复合糖等,以及多糖的提取、纯化和鉴定。 第二章脂类化学 学习指导:一、重要概念水解和皂化、氢化和卤化、氧化和酸败、乙酰化、磷脂酰胆碱二、单脂和复脂的组分、结构和性质。磷脂,糖脂和固醇彼此间的异同。 第三章蛋白质化学 学习指导:蛋白质的化学组成,20种氨基酸的简写符号、氨基酸的理化性质及化学反应、蛋白质分子的结构(一级、二级、高级结构的概念及形式)、蛋白质的理化性质及分离纯化和纯度鉴定的方法、了解氨基酸、肽的分类、掌握氨基酸与蛋白质的物理性质和化学性质、掌握蛋白质一级结构的测定方法、理解氨基酸的通式与结构、理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基、掌握肽键的特点、掌握蛋白质的变性作用、掌握蛋白质结构与功能的关系 第四章核酸化学 学习指导:核酸的基本化学组成及分类、核苷酸的结构、DNA和RNA一级结构的概念和二级结构特点;DNA的三级结构、RNA的分类及各类RNA的生物学功能、核酸的主要理化特性、核酸的研究方法;全面了解核酸的组成、结构、结构单位以及掌握核酸的性质;全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质;掌握DNA的二级结构模型和核酸杂交技术。 第五章激素化学 学习指导:激素的分类;激素的化学本质;激素的合成与分泌;常见激素的结构和功能(甲状腺素、肾上腺素、胰岛素、胰高血糖素);激素作用机理。了解激素的类型、特点;理解激素的化学本质和作用机制;理解第二信使学说。 第六章维生素化学 学习指导:维生素的分类及性质;各种维生素的活性形式、生理功能。了解水溶性维生素的结构特点、生理功能和缺乏病;了解脂溶性维生素的结构特点和功能。 第七章酶化学 学习指导:酶的作用特点;酶的作用机理;影响酶促反应的因素(米氏方程的推导);酶的提纯与活力鉴定的基本方法;熟悉酶的国际分类和命名;了解抗体酶、核酶和固定化酶的基本概念和应用。了解酶的概念;掌握酶活性调节的因素、酶的作用机制;了解酶的分离提纯基本方法;了解特殊酶,如溶菌酶、丝氨酸蛋白酶催化反应机制;掌握酶活力概念、米氏方程以及酶

生物化学期末考试知识点归纳

生物化学期末考试知识点归纳 三羧酸循环记忆方法 一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个2 2个阶段;经过2个阶段生成乳酸 2个磷酸化; 2个异构化,即可逆反应; 2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP; 产生2分子NADH 3:整个过程需要3个关键酶4:生成4分子的ATP. 二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化 4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH2 5:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-

磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释: 1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。、 2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。维持其稳定的化学键是:肽键。蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。 3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。蛋白质

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

相关主题