搜档网
当前位置:搜档网 › 电磁感应中动量定理和动量守恒

电磁感应中动量定理和动量守恒

电磁感应中动量定理和动量守恒
电磁感应中动量定理和动量守恒

高考物理电磁感应中动量定理和动量守恒定律的运用

(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静

止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。

求:

(1)棒从ab到cd过程中通过棒的电量。

(2)棒在cd处的加速度。

(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈

A.完全进入磁场中时的速度大于(v0+v)/2

B.完全进入磁场中时的速度等于(v0+v)/2

C.完全进入磁场中时的速度小于(v0+v)/2

D.以上情况均有可能

(3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.

(4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:

A.1:1

B.1:2

C.2:1

D.1:1

5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;

(2)全过程中感应电流产生的焦耳热。

6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。

7、:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N 的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?

8.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab和cd,构成矩形回路。已知两根导体棒的质量均为m、电阻均为R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd静止、ab有水平向右的初速度v0,两导体棒在运动中始终不接触。求:

(1)开始时,导体棒ab中电流的大小和方向;

(2)从开始到导体棒cd达到最大速度的过程中,矩形回路产生的焦耳热;

(3)当ab 棒速度变为

4

3

v 0时,cd 棒加速度的大小。

9、如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .

(1)求:ab 到达圆弧底端时对轨道的压力大小

(2)在图中标出ab 刚进入磁场时cd 棒中的电流方向(3)若cd 离开磁场时的速度是此刻ab 速度的一半,求:cd 离开磁场瞬间,ab 受到的安培力大小

10、(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。请问:

(1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少?

(2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少?

11.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。重力加速度为g 。开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab 与棒cd 落地点到桌面边缘的水平距离

之比为3: 1。求: (1)棒ab 和棒cd 离开导轨时的速度大小;

(2)棒cd 在水平导轨上的最大加速度; (3)两棒在导轨上运动过程中产生的焦耳热。

12.(20分)如图所示,宽度为L 的平行光滑的金属轨道,左端为半径为r 1的四分之一圆弧轨道,右端为半径为r 2的半圆轨道,中部为与它们相切的水平轨道。水平轨道所在的区域有磁感应强度为B 的竖直向上的匀强磁场。一根质量为m 的金属杆a 置于水平轨道上,另一根质量为M 的金属杆b 由静止开始自左端轨道最高点滑下,当b 滑入水平轨道某位置时,a 就滑上了右端半圆轨道最高点(b 始终运动且a 、b 未相撞),并且a 在最高点对轨道的压力大小为mg ,此过程中通过a 的电荷量为q ,a 、b 棒的电阻分别为R 1、R 2,其余部分电阻不计。在b 由静止释放到a 运动到右端半圆轨道最高点过程中,求: (1)在水平轨道上运动时b 的最大加速度是多大? (2)自b 释放到a 到达右端半圆轨道最高点过程中

系统产生的焦耳热是多少?

(3)a 刚到达右端半圆轨道最低点时b 的速度是多大?

13.两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=100cm ,在左端斜轨道部分高h=1.25m 处放置一金属杆a ,斜轨道与平直轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b ,杆A .b 电阻R a =2Ω,R b =5Ω,在平直轨道区域有竖直向上的匀强磁场,磁感强度B=2T 。现杆b 以初速度v 0=5m/s 开始向左滑动,同时由静止释放杆a ,杆a 滑到水平轨道过程中,通过杆b 的平均电流为0.3A ;a 下滑到水平轨道后,以a 下滑到水平轨道时

开始计时,A .b 运动图象如图所示(a 运动方向为正),其中m a =2kg ,m b =1kg ,g=10m/s 2

,求 (1)杆a 落到水平轨道瞬间杆a 的速度v ; (2)杆a 在斜轨道上运动的时间;

(3)在整个运动过程中杆b 产生的焦耳热。

14.(12分)如图所示,两根间距为L 的金属导轨MN 和PQ ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d 、方向竖直向上的匀强磁场I ,右端有另一磁场II ,其宽度也为d ,但方向竖直向下,磁场的磁感强度大小均为B 。有两根质量均为m 、电阻均为R 的金属棒a 和b 与导轨垂直放置,b 棒置于磁场II 中点C 、D 处,导轨除C 、D 两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K 倍,a 棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即v x ?∝?。求:

(1)若a 棒释放的高度大于h 0,则a 棒进入磁场I 时会使b 棒运动,判断b 棒的运动方向并求出h 0为多少?

(2)若将a 棒从高度小于h 0的某处释放,使其以速度v 0进入磁场I ,结果a 棒以

2

v 的速度从磁场I 中穿出,求在a 棒穿过磁场I 过程中通过b 棒的电量q 和两棒即将相碰时b 棒上的电功率P b

15.(2014届海淀期末10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下。质量均为m、电阻均为R的金属棒a 和b垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处。现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运动过程中始终与导轨垂直且接触良

图21

参考答案:

1、

2、

4

S

:S2=2:1。

1

5、(1)自由下滑,机械能守恒:

由于、串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度

,故它们的磁场力为:②

在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,当

时,电路中感应电流为零(),安培力为零,、运动趋于稳定,此时有:

所以③

、受安培力作用,动量均发生变化,由动量定理得:

联立以上各式解得:,

(2)根据系统的总能量守恒可得:

6、解析(1)当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t,分别以和为研究对象,根据动量定理,则有:

代入数据可解得:

(2)在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电

流也逐渐减小,则安培力也逐渐减小。最后,两棒以共同的速度向下做加速度为g的匀加速运动。

7、解析设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势:

回路中的电流:

杆甲的运动方程:

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F 的冲量:

联立以上各式解得

代入数据得=8.15m/s

=1.85m/s

8、【解析】:(12丰台期末12分)

(1)ab 棒产生的感应电动势 0=BLv E ab ,(1分)

ab 棒中电流 R

BLv R E I ab 2=

2=

,(1分) 方向由b a → (1分)

(2)当ab 棒与cd 棒速度相同时,cd 棒的速度最大,设最大速度为v

由动量守恒定律 mv mv 2=0(1分)

∴ 01

2

v v =

(1分) 由能量守恒关系 Q =21mv 20-2

1(2m )v 2

(1 分)

∴ Q =4

1mv 2

0 (1分)

(3)设ab 棒的速度为03

4

v 时, cd 棒的速度为v ′

由动量守恒定律:v m v m mv ′+4

3

=00(1分)

041=′∴v v 。

043

=v BL E ab ;

04

1

=v BL E cd ;

I =R E E cd ab 2-=R v v BL 2)

4143(00- ∴I=R

BLv 40

(2分)

cd 棒受力为 220

4B L v F IBL R

==(1分);

此时cd 棒加速度为 220

4B L v F a m Rm

==(1分) 9、(1)设ab 到达圆弧底端时受到的支持力大小为N ,ab 下滑机械能守恒,

有:22

1

mv mgR ?=

…① 由牛顿第二定律:R

mv

mg N 2

=

-…②; 联立①②得:mg N 3=…③

由牛顿第三定律知:对轨道压力大小为mg N 3='…④(2)如图(2分)(如用文字表达,正确的照样给分。如:d 到c ,或d →c ) (3)设cd 离开磁场时ab 在磁场中的速度v ab ,则cd 此时的速度为ab v 2

1,

ab 、cd 组成的系统动量守恒,有:ab ab v m v m mv 2

13?+?=…⑤ ab 、cd 构成的闭合回路:由法拉第电磁感应定律:ab BLv E =…⑥ 闭合电路欧姆定律:r

E

I 2=

…⑦ 安培力公式:BIL F ab =…⑧联立①④⑤⑥⑦得r

gR

L B F ab 5222=

…⑨

10、10、(1)对a .b 棒水平轨道分析,动量守恒;

1v 是稳定时a .b 棒共同速度

1

0)(v M m mv += ①--3分,

解得

)(0

1M m mv v +=

②-1分,

损失的机械能为

2

1

20)(2121v M m mv E +-=?)(22

0m M Mmv += ③-4分 (2)由于b 棒在冲上又返回过程中,机械能守恒,返回时速度大小不变12v v = ④--2分 b 棒与a 棒向右运动过程中,直到稳定,动量守恒:

3

2)(v m M Mv += ⑤-3分

达到新的稳定状态a ,b 的末速度:

20

3)(m M Mmv v +=

⑥-2分

(3)整个过程中产生的内能等于系统机械能的减少量

2320)(21

21v m M mv Q +-=

⑦---3分

解得:

))(1(213

22

0m M m M mv Q +-= ⑧--2分

11(1)设ab 棒进入水平导轨的速度为1v ,ab 棒从圆弧导轨滑下机械能守恒:

2122

1

2mv mgR ?=①( 2分)

离开导轨时,设ab 棒的速度为/1v ,cd 棒的速度为/

2v ,ab 棒与cd 棒在水平导轨上运动,动量守恒,/

2/

1122mv mv mv += ② ( 2分)

依题意/

1v >/

2v ,两棒离开导轨做平抛运动的时间相等,由平抛运动水平位移vt x =可知

/1v :/

2v =x 1:x 2=3:1 ③( 2分),联立①②③解得gR v 276/1=

,gR v 27

2/

2= ( 2分)

(2)ab 棒刚进入水平导轨时,cd 棒受到的安培力最大,此时它的加速度最大,设此时回路

的感应电动势为ε,BLv =ε ④ ( 1分),r

I 2ε

=

⑤ ( 1分)

cd 棒受到的安培力为:BIL F cd = ⑥ ( 1分) 根据牛顿第二定律,cd 棒的最大加速度为:m

F a cd

=

⑦( 1分) 联立④⑤⑥⑦解得:mr

gR

L B a 2222= ( 2分)

(3)根据能量守恒,两棒在轨道上运动过程产生的焦耳热为:

)2

1221(2212

/22/121mv mv mv Q +?-?=⑧( 2分)

联立①⑧并代入/

1v 和/

2v 解得:mgR Q 49

22

= ( 2分) 12(20分)

(1)由机械能守恒定律:

1212

1Mgr Mv b = ∴112gr v b =-4分 b 刚滑到水平轨道时加速度最大,E=BLv b1,2

1R R E

I +=

由牛顿第二定律有:F 安=BIL=Ma ∴ )

(2211

22R R M gr L B a +=-4分

(2)由动量定理有: -BILt=Mv b2–Mv b1, 即:-BLq=Mv b2–Mv b1 ∴M

BLq

gr v b -

=122 根据牛顿第三定律得:N=N ?

=mg ,2

2

1r v m N mg a

=+ ∴212gr v a =

∵Q r mg mv Mv Mgr a b +++=

2212

2122

121 ∴M q L B mgr BLq gr Q 23222221--=-6分

(3)∵能量守恒有2

12222

1212a a mv mv mgr -=

∴226gr v a = 3分 ∵动量守恒定律231a b b mv Mv Mv += ∴21362gr M

m

gr v b -

=3分 13

(1

)5m/s v ==,

(2)b 棒,()20-=?v m t I Bd b ,得5t s ?= (3)共产生的焦耳热为22011161()226a b a b Q m gh m v m m v J '=+

?-+= B 棒中产生的焦耳热为5115

J 19J 256

Q Q '==≈+

14、14(12分):

(1)根据左手定则判断知b 棒向左运动。(2分)

a 棒从h 0高处释放后在弯曲导轨上滑动时机械能守恒,有2

012

mgh mv =

得:

v =(1分)

a 棒刚进入磁场I 时 E BLv = , 此时感应电流大小 2E I R

=

此时b 棒受到的安培力大小F BIL =,依题意,有F Kmg =,求得:222

044

2K m gR h B L =(3分)

(2)由于a 棒从小于进入h 0释放,因此b 棒在两棒相碰前将保持静止。流过电阻R 的电量

q I t =? ;

又因:E B S I R R t R t φ??

===??

总总总

所以在a 棒穿过磁场I 的过程中,通过电阻R 的电量:,

故:2B S BLd q R R ?==总(3分)(没有推导过程得1分) 将要相碰时a 棒的速度 0

00022

24

v v v v d v d -

=-

?=(1分) 此时电流:028BLv BLv I R R

==

(1分),此时b 棒电功率:222

2

064b B L v P I R R == 15

(1)① a 棒从h 0高处释放后在弯曲导轨上滑动时机械能守恒,有

① 解

得:

a 棒刚进入磁场I 时 ③, 此时通过a 、

b 的感应电流大小为

2E

I R

解得: ④

② a 棒刚进入磁场I 时,b 棒受到的安培力大小

为使b 棒保持静止必有 ⑥ 由④ ⑤ ⑥联立解得:

(2)由题意知当金属棒a 进入磁场I 时,由左手定则判断知a 棒向右做减速运动;b 棒向左运动加速运动。

二者产生的感应电动势相反,故当二者的感应电动势大小相等时闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时金属棒b 中产生焦耳热最大, 设此时a 、b 的速度大小分别为与,由以上分析有:BL =2BL ⑧ 对金属棒a 应用动量定理有: ⑨

对金属棒b 应用动量定理有:

联立⑧⑨⑩解得 ;

由功能关系得电路产生的总电热为:

故金属棒b 中产生焦耳热最大值为

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

电磁感应中动量定理和动量守恒

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静 止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。 求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;

高中物理典型问题分析:两道与动量结合的电磁感应问题!

高中物理典型问题分析:两道与动量结合的电磁感应问题! 与传统高考试题不同,浙江新高考选考试卷中,将电磁感应与动量结合是一种常见题型。 ?例题: 1、如图,光滑平行异形导轨ABCD 与abcd,导轨的水平部分BCD处于竖直向上的匀强磁场中,BC段导轨宽度为CD段轨道宽度的2倍,轨道足够长。金属棒P的长度刚与BC段轨道的宽度相同,金属棒Q 的长度刚好与CD段轨道宽度相同,金属棒P的电阻金属棒Q的电阻的2倍。将质量都为m 的金属棒P 和Q分别置于轨道上的AB 和CD段,将P棒距水平轨道高为h 的地方由静止释放,使其自由下滑,求: (1)P棒刚进人磁场时的速度v0 (2)P棒和Q棒的最終速度。 (3)整个过程中P棒上产生的焦耳热。 2、科研人员设计了一种磁性板材,可以在其周围产生勾强磁场,现为测试 其性能,做了如下实验。将足够长的磁性板固定 在小车A 上,产生的匀强磁场磁感应强度大小为 B,方向竖直向上,如图甲所示,磁性板上表面 光滑,与小车的总质量为M,小车静止于光滑水 平面上;小车右侧有一质量为m的绝缘光滑滑块 C,滑块上表面与磁性板处于同一水平高度上; 滑块C上有一质量也为m、匝数为n、边长为L、 总电阻为R 的正方形线框D.俯视图如图乙所示。现让线框D、滑块C一起以v0 向左匀速运动,与A 发生碰撞(不计一切摩擦)。 (1)锁定小车A,C与A 碰撞后立即停止运动,当D进人磁场瞬间,求线圈产生感应电流的大小和方向(从上往下看) (2)锁定小车A,C与A 碰撞后立即停止运动,当D刚好完全进人磁场恰好

静止,求线圈产生的焦耳热。 (3)释放小车A ,C与A 碰撞后黏在一起,当D还未完全进入磁场时已与小车保持相对静止,求线圈产生的焦耳热。 ?参考答案: 第1题:

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点 电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。本文结合例题分析应用动量定理解决电磁感应问题的思维起点。 一、 以累积公式q=It 结合动量定理为思维起点 直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。在时间△t 内安培力的冲量BLq t BLI t F =?=?,式中q 是通过导体截面的电量。利用该公式结合动量定理是解答此类问题思维起点。 例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。 析与解:当右棒运动时,产生感应电动势,两棒中有感 应电流通过,右棒受到安培力作用而减速,左棒受到安培力 作用而加速。当它们的速度相等时,它们之间的距离最大。 设它们的共同速度为v ,则据动量守恒定律可得: mv 0=2mv ,即02 1v v = 对于左棒应用动量定理可得: BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2= ? 由上述各式可得: x =220L B R mv 。 v

电磁感应中能量的转化与守恒(电动势)

电磁感应中的能量转化与守恒 能的转化与守恒定律,是自然界的普遍规律,也是物理学的重要规律。电磁感应中的能量转化与守恒问题,是高中物理的综合问题,也是高考的热点、重点和难点。在电磁感应现象中,外力克服安培力做功,消耗机械能,产生电能,产生的电能是从机械能转化而来的;当电路闭合时,感应电流做功,消耗了电能,转化为其它形式的能,如在纯电阻电路中电能全部转化为电阻的内能,即放出焦耳热,在整个过程中,总能量守恒。 在与电磁感应有关的能量转化与守恒的题目中,要明确什么力做功与什么能的转化的关系,它们是:合力做功=动能的改变; 重力做功=重力势能的改变;重力做正功,重力势能减少;重力做负功,重力势能增加; 弹力做功=弹性势能的改变;弹力做正功,弹性势能减少;弹力做负功,弹性势能增加; 电场力做功=电势能的改变;电场力做正功,电势能减少;电场力做负功,电势能增加; 安培力做功=电能的改变,安培力做正功,电能转化为其它形式的能;安培力做负功(即克服安培力做功),其它形式的能转化为电能。 以2005年高考题为例,说明与电磁感应有关的能量转化与守恒问题的解法。 例1如图1所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回路。导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻不计。在导轨平面内两导轨间有一竖直向下的匀强磁场。开始时,导体棒处于静止状态。剪断细线后,导体棒在运动过程中( )

A.回路中有感应电动势 B.两根导体棒所受安培力的方向相同 C.两根导体棒和弹簧构成的系统动量守恒,机械能守恒 D.两根导体棒和弹簧构成的系统动量守恒,机械能不守恒 解析:因回路中的磁通量发生变化(因面积增大,磁通量增大)所以有感应电动势;据楞次定律判断,感生电流的方向是a,用左手定则判断ab受安培力向左,dc受安培力向右;因平行金属导轨光滑,所以两根导体棒和弹簧构成的系统受合外力为零(重力与支持力平衡),所以动量守恒,但一部分机械能转化为电能,所以机械能不守恒,因此本题选A、D。 例2如图2所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。 图2 (1)求初始时刻导体棒受到的安培力。 (2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E p ,则这一过程中安培力所做的功W 1 和电阻R上产生的 焦耳热Q 1 分别为多少?

浙江选考版高考物理一轮复习增分突破五电磁感应与动量观点综合问题.docx

增分突破五电磁感应与动量观点综合问题 增分策略 1.应用动量定理解题的基本思路 (1)确定研究对象,在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体或能看成一个物 体的系统。 (2)对物体进行受力分析,可以先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量。 (3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号。 (4)根据动量定理列方程,如有必要还需要其他补充方程。最后代入数据求解。 2.应用动量定理的注意事项 (1)一般来说,用牛顿第二定律能解决的问题,用动量定理也能解决,如果题目不涉及加速度和位移,用动量定理求解更简单。动量定理不仅适用于恒力,也适用于变力。为变力时,动量定理中的力F应理解为变力在作用时间内的平均值。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中 的F是物体或系统所受的合力。 3.电磁感应与动量的结合主要有两个考点 (1)对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在 磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理F安Δt=ΔP,而又由于F 安Δt=BILΔt=BLq,q=NΔΦR总=NBLxR总,ΔP=mv2-mv1,由以上四式将流经杆的某一横截面积的电荷量q、杆位移x及速度变化结合一起。 (2)对于双杆模型,除受到的安培力之外,受到的其他外力之和为零时,与动量守恒结合考查较多。 典例1如图所示,一质量为m的金属杆ab,以一定的初速度v0从一光滑平行金属轨道的底端向上滑 行,轨道平面与水平面成θ角,两导轨上端用一电阻相连,磁场方向垂直轨道平面向上,轨道与金属杆ab 的电阻不计并接触良好。金属杆向上滑行到某一高度h后又返回到底端( ) A.整个过程中合外力的冲量大小为2mv0 B.上滑过程中电阻R上产生的焦耳热等于下滑过程中电阻R上产生的焦耳热

电磁感应中的动量问题

一、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导 轨左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻给导体棒一个瞬时向右的速度V0,则:(1)求从导体棒运动开始到静止时,通过电阻R的电量 (2)求导体棒从开始运动到最后,一共的位移为多少 二、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导 轨左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻开始在导体棒上施加水平向右的恒力F,使导体棒从静止开始运动,则从开始运动到稳定时,导体棒运动的位移为Xo , 则: (1)整个过程中R生热 (2)该过程共需要多长时间 三、已知正方形均匀线框,边长为a,开始时候线框右侧正好与边界磁场重合,磁感应强度为B,磁场宽度 b(a

四、如图光滑足够长导轨,电阻不计,导轨左端连接带电量为Q,电容C的电容器,开始时开关S打开, 导轨间距为L,导轨间存在匀强磁场B,一根质量为m电阻为R导体棒正好垂直放置在导轨上静止不动,则:(1)闭合开关S后,导体棒的最终速度是多少 (2)闭合开关稳定后,电容器的带电量是多少 五、平行光滑导轨M、N电阻忽略不计,长度足够,导轨间距为L,导轨间存在匀强磁场,磁感应强度B, 两根一样的光滑导体棒a、b都静止放置导轨上,两个导体棒的质量都是m,电阻都是R,两导体棒之间的距离为Xo,某时刻,给b棒一个瞬时向右的速度Vo,则: (1)从开始到系统稳定时,a棒共产生多少热量 (2)从开始到系统稳定时,安培力对b做功 (3)系统稳定时,两个导体棒a、b之间的距离为多少 六、如图所示两段光滑足够长(运动过程中一根导体棒只在一段导轨上运动)导轨,电阻不计,两边导轨 间距之比为2:1,磁感应强度一样,大小都为B,两根导体棒的质量关系为Ma=2Mb=2m,电阻关系是Ra=2Rb=2R,某时刻给a向右的速度Vo,给b瞬时向左的速度2Vo,则: (1)此后过程中导体棒b的最小速度是多少 (2)整个过程中导体棒b生成焦耳热

用能量守恒求电磁感应中的问题

用能量守恒定律求电磁感应中的焦耳热 陕西省岚皋中学物理组:陈永富 摘要:电磁感应现象中其他形式的能转化为电能,在电路中电场力做功又将 电能转化为其他形式的能,如果电路为纯电阻电路,这些电能全部转化为焦耳热,用能量守恒定律求解焦耳热是一个很好的方法。 关键词:电磁感应;能量守恒;焦耳热 正文: 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变------这就是能量守恒定律。一切物理现象都遵守能量守恒定律,电磁感应现象当然也不例外。分析电磁感应过程中的能量转化,熟练地应用能量转化与守恒定律求解较复杂的电磁感应问题有时会显得事半而功倍。 我们知道,功和能是紧密联系的,做功的过程就是能量转移或转化的过程。电磁感应的过程,总是伴随着能量的转化和守恒,安培力做功的过程就是其他形式的能和电能之间的相互转化,当安培力做负功时,就有其它形式的能转化为电能;当安培力做正功时,就有电能转化为其它形式的能,且△E电= W安。另外,在纯电阻电路中,电流通过电路时又将电能全部转化为焦耳热。在电磁感应现象中,经常涉及求焦耳热的问题,如果电路中的感应电流I不恒定,不能直接由Q=I2Rt求焦耳热,而用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解.用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。下面我们通过一个例题来体会这一思想与方法。 例:如图,两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=8Ω,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量为m=0.1kg,电阻为2Ω的金属棒ab 由静止释放,沿导轨下滑(金属棒ab 与导轨间的摩擦不计)。如图15所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大值。求此过程中金属棒达到的最大速度和电阻R中产生的热量。(g=10m/s2)

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

电磁感应中的动量问题

(2)求导体棒从开始运动到最后,一共的位移为多少 一、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导轨 左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻开始在导体棒上施加水平向右的恒力F,使导体棒从静止开始运动,则从开始运动到稳定时,导体棒运动的位移为Xo , 则: (1)整个过程中R生热 (2)该过程共需要多长时间 二、已知正方形均匀线框,边长为a,开始时候线框右侧正好与边界磁场重合,磁感应强度为B,磁场宽度 b(a

三、如图光滑足够长导轨,电阻不计,导轨左端连接带电量为Q,电容C的电容器,开始时开关S打开, 导轨间距为L,导轨间存在匀强磁场B,一根质量为m电阻为R导体棒正好垂直放置在导轨上静止不动,则:(1)闭合开关S后,导体棒的最终速度是多少 (2)闭合开关稳定后,电容器的带电量是多少 四、平行光滑导轨M、N电阻忽略不计,长度足够,导轨间距为L,导轨间存在匀强磁场,磁感应强度B,两 根一样的光滑导体棒a、b都静止放置导轨上,两个导体棒的质量都是m,电阻都是R,两导体棒之间的距离为Xo,某时刻,给b棒一个瞬时向右的速度Vo,则: (1)从开始到系统稳定时,a棒共产生多少热量 (2)从开始到系统稳定时,安培力对b做功 (3)系统稳定时,两个导体棒a、b之间的距离为多少 五、如图所示两段光滑足够长(运动过程中一根导体棒只在一段导轨上运动)导轨,电阻不计,两边导轨 间距之比为2:1,磁感应强度一样,大小都为B,两根导体棒的质量关系为Ma=2Mb=2m,电阻关系是Ra=2Rb=2R,某时刻给a向右的速度Vo,给b瞬时向左的速度2Vo,则: (1)此后过程中导体棒b的最小速度是多少 (2)整个过程中导体棒b生成焦耳热

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

电磁感应中的动力学和能量问答(教师版)

专题电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态.2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 安培力做负功电能 其他形式的能如:机械能――→ 电流做功其他形式的能如:内能 ――→ 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1如图所示,MN、PQ为足够长的平行金属导轨,间距L=0.50 m,导轨平面与水平面间夹角θ=37°,N、Q间连接一个电阻R=5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0 T.将一根质量为m=0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0 m.已知g= 10 m/s2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小;

电磁感应动量定理应用

电磁感应与动量的综合 1.安培力的冲量与电量之间的关系: 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即t F I ?=安 冲 而F =B I L (I 为电流对时间的平均值) 故有:安培力的冲量t L I B I ??=冲 而电量q =I Δt ,故有BLq I =冲 因只在安培力作用下运动 BLq =mv 2-mv 1 BL P q ?= 2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ?Φ=????Φ=??=??= 若磁感应强度是匀强磁场,R BLx R S B R q =?=?Φ= 以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。 例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分 布在宽度为L 的区域内,现有一个边长为a (a

电磁感应中的动量问题练习

电磁感应中的动量问题练习 1.如图所示,光滑的弧形金属双轨与足够长的水平光滑双轨相连,间距为L,在水平轨道空间充满竖直向上的匀强磁场,强度为B,质量为m 2、电阻为R 2的乙金属棒静止在双轨上.而质量为m 1、电阻为R 1的甲金属棒由h 高处由静止滑下.轨道电阻不计,甲棒与乙棒不会相碰.求: (1)整个过程中,乙棒受到的最大磁场力.(2)整个过程电路释放的热量. .(1)21222R R gh L B +. (2)2121m m gh m m +] 2.如图所示,金属杆a 在离地面h 处从静止开始沿弧形轨道下滑,导轨的水平部分有竖直向上的匀强磁场B,水平部分导轨上原来放有一 金属杆b,已知a 杆的质量为m a ,b 杆的质量为m b ,且m a :m b =3:4,水平导轨足够长,不计摩 擦.求: (1)a 和b 最终的速度分别是多大?gh V V b a 273== (2)整个过程回路释放的电能是多 少?gh m a 7 4 (3)若已知杆的电阻之比R a :R b =3:4,其余电阻不计,整个过程中,a 、b 上产生的热量分别是多少?gh m Q gh m Q a b a a 49164912== 、 3.在如图11-21所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B ,导轨左端的间距为L 1=4l 0,右端间距为l 2=l 0。今在导轨上放置ACDE 两根导体棒,质量分别为m 1=2m 0,m 2=m 0,电阻R 1=4R0,R 2=R 0。若AC 棒以初速度V 0向右运动,求AC 棒运动的过程中产生的总焦耳热Q AC ,以及通过它们的总电量q 。 [ ] a h b

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

(完整word版)电磁感应中的动力学和能量问题(一)

电磁感应中的动力学与能量问题(一) 制卷:田军 审卷:张多升 使用时间:第三周周一 班级: 姓 名: 考点一 电磁感应中的动力学问题分析 1.安培力的大小 由感应电动势E =Blv ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2.安培力的方向判断(如右图) 3.处理此类问题的基本方法: (1)用法拉第电磁感应定律和楞次定律求出感应电动势的大小 和方向; (2)求回路中的电流的大小和方向; (3)分析导体的受力情况(含安培力); (4)列动力学方程或平衡方程求解。 4.电磁感应现象中涉及的具有收尾速度的问题,关键要抓好受力情况和运动情况的动态分析 5.两种状态及处理方法 (1)平衡状态(静止状态或匀速直线运动状态):根据平衡条件(合外力等于零)列式分析; (2)非平衡状态(a 不为零):根据牛顿第二定律进行动态分析或结合功能关系分析。 考点二 电磁感应中的能量问题分析 1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安 培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减 少量等于产生的电能. 巩固练习 1.如上图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一定值电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A.ef 将减速向右运动,但不是匀减速 B.ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 D.ef 将做往返运动 2.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场 力总小于其重力,则它在1、2、3、4位置时的加速度关系为( ) A.a 1>a 2>a 3>a 4 B.a 1=a 2=a 3=a 4 C.a 1=a 3>a 2>a 4 D.a 4=a 2>a 3>a 1 3.如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一质量为m 的金属杆从轨道上 由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 增大,v m 将变大 D.如果m 减小,v m 将变大

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

A B R v 0 B 导轨与导体棒问题 一、单棒问题 【典例1】如图所示,AB 杆受一冲量作用后以初速度v 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止.AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2 C ,求:上述过程中 (g 取10m/s 2 )(1)AB 杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s 时,其加速度为多大? 【答案】(1) 0.1m ;(2)0.9s ;(3)12m/s 2 . (2)根据动量定理有:﹣(F 安t+μmgt )=0﹣mv 0 而F 安t=BLt=BLq ,得:BLq+μmgt=mv 0, 解得:t=0.9s (3)当杆速度为2m/s 时,由感应电动势为:E=BLv 安培力为:F=BIL ,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s 2 , 25.(20分) 如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。 如图(b),已知管道中固定着两根平行金属导轨MN 、PQ ,两导轨间距为r ;运输车的质量为m ,横截面是半径为r 的圆。运输车上固定着间距为D 、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R ,每段长度为D 的导轨的电阻也为R 。其他电阻忽略不计,重力加速度为g 。 (1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D 处接通固定在导轨上电动势为E 的直流电源,此时导体棒1、2均处于磁感应强度为B ,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B ,宽度为D 的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo 从如图(e)通过距离D 后的速度v 。 【典例3】 如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他

电磁感应中动量定理和动量守恒定律的运用

. . 高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

相关主题