搜档网
当前位置:搜档网 › 结构化学课后答案第四章

结构化学课后答案第四章

结构化学课后答案第四章
结构化学课后答案第四章

04分子的对称性

【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞

【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ

【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为:

1133h S C σ=,2233S C =,

33h S σ= 4133S C =,52

33h S C σ=,63S E =

依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3

3I i =

4133I C =,5233I iC =,63I E =

【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为:

1121334

4442444,,,h h S C S C S C S E σσ====

依据4I 进行的全部对称操作为:

11213344442444,,,I iC I C I iC I E ====

【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。

解:

100010001xz σ????=-??????, ()1

2100010001x C ??

??=-??

??-??

【4.6】用对称操作的表示矩阵证明: (a )

()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ=

解:

(a )

()()11

2

2xy z z x x x C y C y y z z z σ-??????

??????==-??????

??????--??????, x x i y y z z -????????=-????????-????

()1

2

xy z C i σ=

推广之,有,

()()1122xy xy n z n z C C i σσ== 即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

(b )

()1

2

z x x C y y z z -????????=-???????????? 这说明,若分子中存在两个互相垂直的C 2轴,则其交点上必定出现垂直于这两个C 2轴的第三个C 2轴。推广之,交角为2/2n π的两个轴组合,在其交点上必定出现一个垂直于这两个C 2轴n C 轴,在垂直于n C 轴且过交点的平面内必有n 个C 2 轴。进而可推得,一个n C 轴与垂直于它的C 2 轴组合,在垂直于n C 的平面内有n 个C 2 轴,相邻两轴的夹角为2/2n π。

(c )

yz xz yz x x x y y y z z z σσσ-????????????=-=-?????????????????? ()1

2z x x C y y z z -????????=-????

???????? ()1

2

yz xz x C σσ=

这说明,两个互相垂直的镜面组合,可得一个2C 轴,此2C 轴正是两镜面的交线。推而广之,若两个镜面相交且交角为2/2n π,则其交线必为一个n 次旋转轴。同理,n C 轴和通过该轴的镜面组合,可得n 个镜面,相邻镜面之交角为2/2n π。

【4.7】写出ClHC CHCl =(反式)分子全部对称操作及其乘法表。 解:反式C 2H 2C l2分子的全部对称操作为:

1

2,,,h E C i σ

对称操作群的乘法为:

【4.8】写出下列分子所归属的点群:HCN ,3SO ,氯苯(

)65C H Cl ,苯()66C H ,萘()

108C H 。

【4.9】判断下列结论是否正确,说明理由。 (a ) 凡直线型分子一定有C ∞轴;

(b ) 甲烷分子有对称中心;

(c ) 分子中最高轴次()n 与点群记号中的n 相同(例如3h C 中最高轴次为3C 轴); (d ) 分子本身有镜面,它的镜像和它本身相同。 解:

(a ) 正确。直线形分子可能具有对称中心(h D ∞点群),也可能不具有对称中心(v C ∞点

群)。但无论是否具有对称中心,当将它们绕着连接个原子的直线转动任意角度时,都能复原。因此,所有直线形分子都有C ∞轴,该轴与连接个原子的直线重合。

(b ) 不正确。因为,若分子有对称中心,则必可在从任一原子至对称中心连线的延长线

上等距离处找到另一相当原子。甲烷分子(d T 点群)呈正四面体构型,显然不符合此条件。因此,它无对称中心。按分子中的四重反轴进行旋转-反演操作时,反演所依据的“反轴上的一个点”是分子的中心,但不是对称中心。事实上,属于d T 点群的分子皆无对称中心。

(c ) 就具体情况而言,应该说(c )不全错,但作为一个命题,它就错了。

这里的对称轴包括旋转轴和反轴(或映轴)。在某些情况中,分子最高对称轴的轴次(n )与点群记号中的n 相同,而在另一些情况中,两者不同。这两种情况可以在属于nh C ,nh D 和nd D 等点群的分子中找到。

在nh C 点群的分子中,当n 为偶数时,最高对称轴是n C 轴或n I 轴。其轴次与点群记号中的n 相同。例如,反式C 2H 2Cl 2分子属2h C 点群,其最高对称轴为2C 轴,轴次与点群记号的n 相同。当n 为基数时,最高对称轴为2h I ,即最高对称轴的轴次是分子点群记号中的n 的2倍。例如,H 3BO 3分子属2h C 点群,而最高对称轴为6I 。

在nh D 点群的分子中,当n 为基数时,最高对称轴为n C 轴或n I 轴,其轴次(n )与点群记号中的n 相同。例如,C 6H 6分子属6h D 点群,在最高对称轴为6C 或6I ,轴次与点群记号中的n 相同。而当n 为奇数时,最高对称轴为2n I ,轴次为点群记号中的n 的2倍。例如,CO 3-

属3h D 点群,最高对称轴为6I ,轴次是点群记号中的n 的2倍。

在nd D 点群的分子中,当n 为奇数时,最高对称轴为n C 轴或n I 轴,其轴次与分子点群记号中的n 相同。例如,椅式环己烷分子属3d D 点群,其最高对称轴为3C 或3I ,轴次与点群记号中的n 相同。当n 为偶数时,最高对称轴为2n I ,其轴次是点群记号中n 的2倍。例如,丙二烯分子属2d D 点群,最高对称轴为4I 。轴次是点群记号中的n 的2倍。

(d )正确。可以证明,若一个分子具有反轴对称性,即拥有对称中心,镜面或4m (m 为正整数)次反轴,则它就能被任何第二类对称操作(反演,反映,旋转-反演或旋转-反映)复原。若一个分子能被任何第二类对称操作复原,则它就一定和它的镜像叠合,即全同。因此,分子本身有镜面时,其镜像与它本身全同。

【4.10】联苯6565C H C H -有三种不同构象,两苯环的二面角(

)α分别为:

(a )0α=,(b )

090α=,(c )0

090α<<,试判断这三种构象的点群。

解:

【4.11】5SF Cl 分子的形状和6SF 相似,试指出它的点群。

解:SF 6分子呈正八面体构型,属h O 点群。当其中一个F 原子被Cl 原子取代后,所得分子SF 5Cl 的形状与SF 6 分子的形状相似(见图4.11),但对称性降低了。SF 5Cl 分子的点群为4v C 。

图4.11 SF 5Cl 的结构

【4.12】画一立方体,在8个顶角上放8个相同的球,写明编号。若:(a )去掉2个球,(b )去掉3个球。分别列表指出所去掉的球的号数,指出剩余的球的构成的图形属于什么点群? 解:图4.12示出8个相同求的位置及其编号。 (a ) 去掉2个球:

3

7

3

3

A B C

3

7

3

3

D E F

【4.13】判断一个分子有无永久偶极矩和有无旋光性的标准分别是什么?

解:凡是属于n

C和

n

C

υ点群的分子都具有永久偶极距,而其他点群的分子无永久的偶极距。由于11h s

C C C

υ

≡≡,因而

s

C点群也包括在

n

C

υ点群之中。

凡是具有反轴对称性的分子一定无旋光性,而不具有反轴对称性的分子则可能出现旋光性。“可能”二字的含义是:在理论上,单个分子肯定具有旋光性,但有时由于某种原因(如消旋或仪器灵敏度太低等)在实验上测不出来。

反轴的对称操作是一联合的对称操作。一重反轴等于对称中心,二重反轴等于镜面,只有4m次反轴是独立的。因此,判断分子是否有旋光性,可归结为分子中是否有对称中心,镜面和4m次反轴的对称性。具有这三种对称性的分子(只要存在三种对称元素中的一种)皆无旋光性,而不具有这三种对称性的分子都可能有旋光性。

【4.14】作图给出

()()

32

2

Ni en NH Cl

可能的异构体及其旋光性。

解:见图4.14

图4.14

【4.15】由下列分子的偶极矩数据,推测分子立体构型及其点群。 (a ) 32C O

()0μ=

(b ) 2SO ()30

5.4010C m μ-=??

(c ) N C C N ≡-≡ ()0μ=

(d ) H O O H --- (

)

30

6.910

C m μ-=??

(e ) 22O N NO -

()0μ=

(f ) 22H N NH - ()30

6.1410C m μ-=??

(g ) NH 2

N

H 2 (

)

3

05.3410C m μ-=??

解:

注:由于N 原子中有孤对电子存在,使它和相邻3个原子形成的化学键呈三角锥形分布。

【4.16】指出下列分子的点群、旋光性和偶极矩情况:

(a ) 33H C O CH -- (b ) 32H C CH CH -= (c ) 5IF (d ) 8S (环形) (e ) 22ClH C CH Cl -(交叉式)

(f )Br

N (g )

3

3

【4.17】请阐明表4.4.3中4对化学式相似的化合物,偶极矩不同,分子构型主要差异是什么?

解:在C 2H 2分子中,C 原子以sp 杂化轨道分别与另一C 原子的sp 杂化轨道和H 原子的1s 轨道重叠形成的两个σ键;两个C 原子的x p 轨道相互重叠形成x π键,y p 轨道相互重叠形成y π键,分子呈直线形,属h D ∞点群,因而偶极距为0。而在H 2O 2分子中,O 原子以3

sp 杂

化轨道(也有人认为以纯p 轨道)分别与另一个O 原子的3sp 杂化轨道和H 原子的1s 轨道

重叠形成的两个夹角为9652'

的σ键;两O H -键分布在以过氧键O O ---为交线、交角

为9351'

的两个平面内,分子呈弯曲形(见4.15题答案附图),属2C 点群,因而有偶极距。

在C 2H 4分子中,C 原子以2sp 杂化轨道分别与另一C 原子的2

sp 杂化轨道及两个H 原子的1s 轨道重叠形成共面的3个σ键;两C 原子剩余的p 轨道互相重叠形成π键,分子呈平面构型,属2h D 点群(121.3,117.4C C H H C H ∠--=∠--=

)。对于N 2H 4分子,

既然偶极距不为0 ,则其几何构型既不可能是平面的:

N N

H

H H

H

也不可能是反式的:

N

N H

H

H H

它应是顺式构型:

N N

H

H H H

属2n C 点群[见4.15题(f )],或介于顺式和反式构型之间,属2C 点群。

反式-C 2H 2Cl 2和顺式-C 2H 2Cl 2 化学式相同,分子内成键情况相似,皆为平面构型。但两者对称性不同,前者属2h C 点群,后者属2C υ点群。因此,前者偶极距为0,后者偶极距不为0。

分子的偶极距为0 ,表明它呈平面构型,N 原子以2

sp 杂化轨道与C

原子成键,分子属2h C 点群。

分子的偶极距不为0,表明S 原子连接的两苯环不共面。可以推测,S 原子以3

sp 杂化轨道成键,分子沿着S S 连线折叠成蝴蝶形,具有2C υ点群的对称性。

【4.18】已知连接苯环上C Cl -键矩为30

5.1510C m -??,3C CH -键矩为

301.3410C m --??。试推算邻位、间位和对位的643C H ClCH 的偶极矩,并与实验值4.15,

5.94,30

6.3410

C m -??相比较。

解:若忽略分子中键和键之间的各种相互作用(共轭效应、空间阻碍效应和诱导效应等),则整个分子的偶极距近似等于个键距的矢量和。按矢量加和规则,C 6H 4ClCH 3三种异构体的偶极距推算如下:

Cl

CH 3

()3

3

1222

2cos60C Cl C CH C Cl C CH o μμμμμ----??=++??

()()2

2

3030

5.1710 1.3410C m C m --?=?+-???

()12

303012 5.1710 1.34102C m C m --?

+???-???

?

304.6510C m -=?

Cl

CH 3

()3

31

2

2

2

2cos60C Cl

C CH C Cl C CH m μμ

μ

μμ-----??=+-??

()()2230305.1710 1.3410C m C m --?=?+-???

()12

303012 5.1710 1.34102C m C m --?

-???-???

?

305.9510C m -=?

Cl

CH 3

()3

C Cl C CH p μμμ---=-

30305.1710 1.3410C m C m --=?+?

306.5110C m -=?

由结果可见,C 6H 4ClCH 3 间位异构体偶极距的推算值和实验值很吻合,而对位异构体和邻

S

S N

N

位异构体,特别是邻位异构体两者差别较大。这既与共轭效应有关,更与紧邻的Cl 原子和-CH 3之间的空间阻碍效应有关。事实上,两基团夹角大于60

【4.19】水分子的偶极矩为30

6.1810

C m -??,而2F O 只有300.9010C m -??,它们的键角

值很近,试说明为什么2F O 的偶极矩要比2H O 小很多。

解:2H O 分子和2F O 均属于2v C 点群。前者的键角为104.5

,后者的键角为103.2

由于O 和H 两元素的电负性差()1.24χP ?=远大于O 和F 两元素的电负性差

()0.54χP ?=,因而键矩O H μ-大于键矩O F μ-。多原子分子的偶极矩近似等于各键矩的矢

量和,H 2O 分子和F 2O 分子的偶极距可分别表达为:

22104.52cos

2103.22cos

2H O O H F O O F μμμμ--==

因为两分子键角很接近,而O H μ-远大于O F μ-,所以H 2O 分子的F 2O 分子的偶极距比F 2O 分子的偶极距大很多。不过,两分子的偶极距的方向相反,如图4.19所示。

图4.19

【4.20】八面体配位的

()3

243Fe C O -有哪些异构体?属什么点群?旋光性情况如何?

解:()3243Fe C O -

有如下两种异构体,它们互为对应体,具有旋光性,属3D 点群,如图4.20

所示。

图4.20

3243

()

Fe C H -

配位结构式意图

【4.21】利用表4.4.5所列有关键的折射度数据,求算3CH COOH 分子的摩尔折射度R 值。实验测定醋酸折射率 1.3718n =,密度为3

1.046g cm -?,根据实验数据计算出R 实验值并进行比较。

解:摩尔折射率是反映分子极化率(主要是电子极化率)大小的物理量。它是在用折射法测定分子的偶极距时定义的。在高频光的作用下,测定物质的折光率n ,代入Lorenz-Lorentz

方程:

()()22

12n M R n d -=

+

即可求得分子的摩尔折射度。常用高频光为可见光或紫外光,例如钠的D 线。

摩尔折射率具有加和性。一个分子的摩尔折射度等于该分子中所有化学键摩尔折射度的和。据此,可由化学键的摩尔折射度数据计算分子的摩尔折射度。将用此法得到的计算值与通过测定n ,d 等参数代入Lorenz-Lorentz 方程计算得到的实验值进行比较,互相验证。

利用表中数据,将醋酸分子中各化学键的摩尔折射度加和,得到醋酸分子的摩尔折射度:

R 计 3C H C C C O C O O H R R R R R --=--=++++

313133 1.67

6 1.296 3.32c m m o l c m m o l c m m o l ---

=?++

31311.54 1.80cm mol cm mol --++ 3

112.98cm mol -=

将n ,d 等实验数据代入Lorenz-Lorentz 方程得到醋酸分子的摩尔折射度:

R 实

()()2

1

31

2

1

1.3718160.0513.041.3718

2 1.046g mol cm mol g mol ----?=

=+?

结果表明,计算值和实验值非常接近。

【4.22】用2v C 群的元进行相似变换,证明4个对称操作分四类。[提示:选群中任意一个操

作为S ,逆操作为1

S -,对群中某一个元(例如12C )进行相似变换,若11122S C S C -=,则1

2

C 自成一类。]

解:一个对称操作群中各对称操作间可以互相交换,这犹如对称操作的“搬家”。若将群中某一对称操作X 借助于另一对称操作S 变换成对称操作Y ,即:

1Y S XS -=

则称Y 与X 共轭。与X 共轭的全部对称操作称为该群中以X 为代表的一个级或一类级。级的阶次是群的阶次的一个因子。

若对称操作S 和X 满足:SX XS =

则称S 和X 这两个操作为互换操作。互换操作一定能分别使相互的对称元素复原。例如,

反式-C 2H 2Cl 2中h σ和1

2C 可使2C 和h σ复原。若一个群中每两个操作都是互换的,则这样

的群称为互换群。可以证明,任何一个四阶的群必为互换群(读者可以用22,h C C υ和2D 等点群为例自行验证)。在任何一个互换群中,每个对称操作必自成一个级或类。这一结论可证明如下:

设X 为互换群中的任一操作,S 为群中X 以外的任一操作,根据互换群的性质,有: SX XS =

将上式两边左乘1S -,得: 1

X S X S -=

这就证明了X 按S 变换成的对称操作仍为X 。即X 自成一类。

2C υ点群为4阶互换群,它的4个对称操作是:()12,,,xz yx z E C σσ。选()1

2z C 以外的任一

对称操作(例如xz σ)对()1

2z C 进行相似变换:

()()()11111222xz xz xz xz z z z C C C σσσσ--== 或

()1

11

2100100100010010010001001001xz xz x C σσ---????????????=---??????

???????????? ()1

2100100100010010010001001001z C --??????

??????=-=-=??????????????????

(因为1

σσ-=,故可以将第一个表示矩阵右上角的-1去掉)

根据上述说明,

()

12

z C 自成一类。同理,其它3个对称操作也各自成一类。这就证明了2C υ点

群的4个对称操作分4类。

【4.23】用3v C 群的元进行相似变换,证明6个对称操作分三类。 证明:3C υ点群是6阶群,其乘法表如下:

3C υ

E 13

C 23C a σ b σ c σ E

E

13

C

23C

a σ

b σ

c σ 13

C

13

C

23C

E

c σ a σ b σ 23C 23C

E

13

C

b σ

c σ

a σ

a σ a σ

b σ

c σ E

13

C

23C

b σ b σ

c σ a σ 23C

E

13

C

c σ

c σ

a σ

b σ

13

C

23C

E

相应的对称图像和对称元素系表示于图4.23。

y

图4.23

(1) 根据乘法表可得:

11a a a E E E σσσ--==

11a a a a a E σσσσσ--==(反映操作与其逆操作相等)

111

31123111333222333b a b b c

c a c c b

a b c

a c

b C C C C C C C C σσσσσσσσσσσσσσσσ--------========

由上题的说明可知,,,a b c σσσ是相互共轭的对称操作,它们形成以a σ为代表的一类。当

然,亦可借助于b σ以外的任一对称操作对b σ进行相似交换,或借助于c σ以外的任一对称操作对c σ进行相似变换,结果相同。 (2)根据乘法表得:

11111111121

3333333332122111123333333111211123333,,,a a a c b b b a c c c b E C E E C C C C C C C C C C C C E C C C C C C C σσσσσσσσσσσσ------------============

根据(1)相同的理由,13C 和23C 共轭,形成一类。借助于23C 以外的任一对称元素对2

3C 进

行相似变换,结果相同。

(3)在任何群中,1

X EX E -=,即主操作自成一类。

综上所述,3C υ群的6个对称操作分成三类,即3个反映操作形成一类,两个旋转操作也形成一类,主操作自成一类。

【4.24】试述红外活性的判据。

解:严格意义上的红外光谱包括处在近红外区和中红外区的振动光谱及在远红外或微波区的转动光谱。但通常所说的红外光谱是指前者,而把后者称作远红外光谱。

分子在一定条件下产生红外光谱,则称该分子具有红外活性。判断分子是否具有红外活性的依据是选择定则或称选律。具体的说:

非极性双原子分子,0,0J υ?=?=,不产生振动-转动光谱,即无红外活性。极性双原子分子,1,2,3υ?=±±±……,1J ?=±,产生振动-转动光谱,即有红外活性。

在多原子分子中,每一种振动方式都有一特征频率,但并非所有的振动频率都能产生红外吸收从而得到红外光谱。这是因为分子的红外光谱起源于分子在振(转)动基态a ψ和振(转)动激发态b ψ之间的跃迁。可以证明,只有在跃迁过程中有偶极距变化的振(转)动(

a

b d ψ

μψτ≠?)才会产生红外光谱。偶极距改变大者,红外吸收带就强;偶极距变

化小者,吸收带弱;偶极距不变者,不出现红外吸收,即为非红外活性。

【4.25】试述Raman 活性的判据。

解:Raman 光谱的选律是:具有各向异性的极化率的分子会产生Raman 光谱。例如H -H 分子,当其电子在电场作用下沿轴方向变形大于垂直于键轴方向时,就会产生诱导偶极距,出现Raman 光谱活性。

利用群论可很方便地判断分子的哪些振动具有红外活性,哪些振动具有Raman 活性。

判断的标准是:

(1)

若一个振动隶属的对称类型和偶极距的一个分量隶属的对称类型相同,即和

x (或y ,或z )隶属的对称类型相同,则它具有红外活性。

(2)

若一个振动隶属的对称类型和极化率的一个分量隶属的对称类型相同,即一

个振动隶属于

222,,,,,x y z xy xz yz 这样的二元乘积中的某一个,或者隶属于22x y -这样的一个乘积的组合,则它就具有Raman 活性。

【4.26】将分子或离子:()33Co en +

,2

NO +,FHC C CHF ==,()22NH CO ,60C ,丁

三烯,33H BO ,()426N CH 等按下列条件进行归类: (a ) 既有极性又有旋光性; (b ) 既无极性又无旋光性; (c ) 无极性但有旋光性; (d ) 有极性但无旋光性。 解:

(a ) FHC=C=CHF (C 2)

(b ) ()()260,,h h NO D C I +∞丁三烯(2h D ),()3BO

H (3h C ),()426N NH (d T )

(c )

()()333

Co en D +

(d ) ()()22NH CO C υ

【4.27】写出3CH +

,55C H N ,(

)434Li CH ,22H C C C CH ===,椅式环己烷,4XeOF 等分子所属的点群。 解: 分子

点群

3CH + 3h D 55C H N

2C υ

()#

434Li CH

d T 22H C C C CH ===

2h D 椅式环己烷

3d D ##4XeOF

4C υ

Li

CH 3

*

【4.28】正八面体6个顶点的原子有3个被另一个原子取代,有几种可能的方式?取代产物各属于什么点群?取代后所得产物是否具有旋光性和偶极矩?

解:只有下列两种取代方式,产物a 属于3C υ点群,产物b 属于2C υ点群。两产物皆无旋光性,而皆有偶极距。

(b)

结构化学课后答案第四章

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3 3I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

结构化学答案 chapter1

第一章 量子理论 1. 说明??????-=) (2cos ),(0t x a t x a νλπ及??? ???-=) (2sin ),(0t x a t x a νλπ都是波动方程 2 22 22) ,(1),(t t x a c x t x a ??=??的解。 提示:将),(t x a 代入方程式两端,经过运算后,视其是否相同。 解:利用三角函数的微分公式 )cos()sin(ax a ax x =??和)sin()cos(ax a ax x -=?? ,将 ?? ????-=) (2c o s ),(0t x a t x a νλπ代入方程: ? ?? ???-??? ??-=??? ? ????????--??=??? ?????????-????=??????-??=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 2 00 0022t x a t x x a t x x x a t x a x νλπλπνλπλπνλπνλπ左边 ()??????--=???? ????????-??= ?? ? ?????????-????=??????-??=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 122020200222t x c a t x x c a t x t t c a t x a t c νλππννλππννλπνλπ右边 对于电磁波νλ=c ,所以?? ? ???-=) (2cos ),(0t x a t x a νλπ是波动方程的一个解。 对于?? ? ???-=) (2sin ),(0t x a t x a νλπ,可以通过类似的计算而加以证明: ?? ? ???-??? ??-=??????-??=) (2sin 2) (2sin 2 0022t x a t x a x νλπλπνλπ左边 ()?? ? ???--=??????-??=) (2sin 2) (2sin 12200222t x c a t x a t c νλππννλπ右边 2. 试根据Planck 黑体辐射公式,推证Stefan 定律:4 T I σ=,给出σ的表示式,并计算它的数值。 提示:?∞ =0)(ννd E E , I =cE /4 解:将ννπνννd e c h d E kT h ? ?? ???-= 118)(3 3 代入上式,?∞? ?? ???-=033118ννπνd e c h E kT h 作变量代换kT h x /ν=后,上式变为,

结构化学课后答案第二章

02 原子的结构和性质 【】氢原子光谱可见波段相邻4条谱线的波长分别为、、和,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2 21211 ( )R n n ν=- 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

结构化学第一章习题

第一章习题 一、选择题 1. 任一自由的实物粒子,其波长为λ,今欲求其能量,须用下列哪个公式---------------( ) (A) λc h E = (B) 22 2λm h E = (C) 2) 25.12 (λe E = (D) A ,B ,C 都可以 2. 下列哪些算符是线性算符---------------------------------------------------------------- ( ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 一个在一维势箱中运动的粒子, (1) 其能量随着量子数n 的增大:------------------------ ( ) (A) 越来越小 (B) 越来越大 (C) 不变 (2) 其能级差 E n +1-E n 随着势箱长度的增大:-------------------( ) (A) 越来越小 (B) 越来越大 (C) 不变 4. 关于光电效应,下列叙述正确的是:(可多选) ---------------------------------( ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 5. 下列哪几点是属于量子力学的基本假设(多重选择):-------------------------( ) (A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理 6. 描述微观粒子体系运动的薛定谔方程是:--------------------------------------( ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得 (C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设 二、填空题 1. 光波粒二象性的关系式为_______________________________________。 2. 在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 3. 质量为 m 的一个粒子在长为l 的一维势箱中运动, (1) 体系哈密顿算符的本征函数集为_______________________________ ; (2) 体系的本征值谱为____________________,最低能量为____________ ; (3) 体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ; (4) 势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________; 三、问答题 1. 写出一个合格的波函数所应具有的条件。 2. 指出下列论述是哪个科学家的功绩: (1)证明了光具有波粒二象性; (2)提出了实物微粒具有波粒二象性; (3)提出了微观粒子受测不准关系的限制; (4)提出了实物微粒的运动规律-Schr?dinger 方程; (5)提出实物微粒波是物质波、概率波。 四、计算题 1. 一子弹运动速率为300 m·s -1,假设其位置的不确定度为 4.4×10-31 m ,速率不确定度为 0.01%×300 m·s -1 ,根据测不准关系式,求该子弹的质量。 2. 计算德布罗意波长为70.8 pm 的电子所具有的动量。

(完整版)结构化学课后答案第二章

02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2212 11 ( )R n n ν=-% 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

结构化学第一章习题教学文案

结构化学第一章习题

《结构化学》第一章习题 1001 首先提出能量量子化假定的科学家是:---------------------------( ) (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 1002 光波粒二象性的关系式为_______________________________________。 1003 德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。 1004 在电子衍射实验中,│ψ│2 对一个电子来说,代表___________________。 1005 求德布罗意波长为0.1 nm 的电子的动量和动能。 1006 波长λ=400 nm 的光照射到金属铯上,计算金属铯所放出的光电子的速率。已知铯的临阈波长为600 nm 。 1007 光电池阴极钾表面的功函数是2.26 eV 。当波长为350 nm 的光照到电池时,发射的电子最大速率是多 少? (1 eV=1.602×10-19J , 电子质量m e =9.109×10-31 kg) 1008 计算电子在10 kV 电压加速下运动的波长。 1009 任一自由的实物粒子,其波长为λ,今欲求其能量,须用下列哪个公式---------------( ) (A) λc h E = (B) 2 2 2λm h E = (C) 2) 25.12 (λ e E = (D) A ,B ,C 都可以 1010 对一个运动速率v<

结构化学第一章习题

《结构化学》第一章习题 1001 首先提出能量量子化假定得科学家就是:---------------------------( ) (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 1002 光波粒二象性得关系式为_______________________________________。 1003 德布罗意关系式为____________________;宏观物体得λ值比微观物体得λ值_______________。 1004 在电子衍射实验中,││2对一个电子来说,代表___________________。 1005 求德布罗意波长为0、1 nm得电子得动量与动能。 1006 波长λ=400 nm得光照射到金属铯上,计算金属铯所放出得光电子得速率。已知铯得临阈波长为600 nm。1007 光电池阴极钾表面得功函数就是2、26 eV。当波长为350 nm得光照到电池时,发射得电子最大速率就是多少? (1 eV=1、602×10-19J, 电子质量m e=9、109×10-31 kg) 1008 计算电子在10 kV电压加速下运动得波长。 1009 任一自由得实物粒子,其波长为λ,今欲求其能量,须用下列哪个公式---------------( ) (A) (B) (C) (D) A,B,C都可以 1010 对一个运动速率v<

结构化学基础习题及答案(结构化学总复习)

结构化学基础习题和答案 01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 71 1 1.49110cm 670.810cm νλ --= = =?? 3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν 0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10 -19 J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式

0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-? 图中直线与横坐标的交点所代表的v 即金属的临界频率0v ,由图可知, 141 0 4.3610v s -=?。因此,金属钠的脱出功为: 341410196.6010 4.36102.8810W hv J s s J ---==???=? 【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 018 1 2 341419 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=? ??? ???????-??? ?????? =?????? ? 1 34 141 2 31512 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1)3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??===???

结构化学练习题带答案

结构化学复习题 一、选择填空题 第一章量子力学基础知识 1.实物微粒和光一样,既有性,又有性,这种性质称为性。 2.光的微粒性由实验证实,电子波动性由实验证实。 3.电子具有波动性,其波长与下列哪种电磁波同数量级? ( A)X 射线(B)紫外线(C)可见光(D)红外线 4.电子自旋的假设是被下列何人的实验证明的? ( A) Zeeman ( B) Gouy(C)Stark(D)Stern-Gerlach 5. 如果 f 和 g 是算符,则(f+g)(f-g)等于下列的哪一个? (A)f 2-g 2;(B)f2-g2-fg+gf;(C)f2+g2;(D)(f-g)(f+g) 6.在能量的本征态下,下列哪种说法是正确的? ( A)只有能量有确定值;(B)所有力学量都有确定值; ( C)动量一定有确定值;(D)几个力学量可同时有确定值; 7. 试将指数函数e±ix表示成三角函数的形式------ 8.微观粒子的任何一个状态都可以用 概率密度。 9.Planck常数h的值为下列的哪一个? ( A) 1.38 × 10-30 J/s(B)1.38× 10-16J/s 10.一维势箱中粒子的零点能是 答案 : 1.略. 2.略. 3.A 4.D 5.B 6.D 7. 来描述;表示粒子出现的(C) 6.02 × 10-27J· s(D)6.62×10-34J· s 略8.略9.D10.略 第二章原子的结构性质 1. 用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的? (A)2 ,1, -1,-1/2;(B)0 , 0,0, 1/2 ;(C)3 ,1, 2, 1/2 ;(D)2 , 1, 0, 0。 2.若氢原子中的电子处于主量子数n=100 的能级上,其能量是下列的哪一个: (A)13.6Ev ;(B)13.6/10000eV;(C)-13.6/100eV;(D)-13.6/10000eV; 3.氢原子的 p x状态,其磁量子数为下列的哪一个? (A)m=+1;(B)m=-1;(C)|m|=1;(D)m=0; 4.若将 N 原子的基电子组态写成 1s 22s22p x22p y1违背了下列哪一条? (A)Pauli 原理;( B) Hund 规则;(C)对称性一致的原则;( D)Bohr 理论 5.B 原子的基态为1s22s2p1, 其光谱项为下列的哪一个? (A) 2 P;(B)1S;(C)2D;(D)3P; 6.p 2组态的光谱基项是下列的哪一个? ( A)3F;(B)1D;(C)3P;(D)1S; 7.p 电子的角动量大小为下列的哪一个? ( A) h/2 π;( B) 31/2 h/4 π;( C) 21/2 h/2 π;( D) 2h/2 π;

结构化学第一章题目

《结构化学》第一章习题 1、设原子中电子的速度为1×106 m·s -1,试计算电子波的波长。若设子弹的质量为0.02g,速度为500 m·s-1,子弹波的波长为多少?从上述计算中,可得出何种结论? 2、设子弹的m =50g,v =300m/s, Δv =0.01%, 求子弹位置的测不准值Δx为多少?如电子的m =9.1x10-28g,v =300m/s, Δv =0.01%, 试求电子的Δx。从上述计算中,可得出何种结论? 3、原子中运动的电子,其速度约为106m/s,设Δv =0.1%,试计算Δx值,并可得出何种结论? 4、若氢原子基态到第一激发态跃迁时,吸收光的波数为8.22×104 cm-1,求跃迁时所需能量。 5、一质量为m的粒子,在长为l的一维势箱中运动,根据其几率密度分布图,当粒子处于Ψ4时(),出现在l/8≤x≤3l/8内的概率是多少? 7、对于一个在特定的一维势箱中的电子,观察到的最低跃迁频率为4.0×1014s-1, 求箱子的长度。 8、一维势箱中电子两运动状态分别为:和,证明它们为薛定谔方程的独立解。 9、质量为m的粒子在边长为a的立方势箱中运动,当分别等于12、14、27时,试写出其对应的简并轨道、简并态和简并度。 10、质量为m的粒子在边长为l的立方势箱中运动,计算其第四个能级和第六个能级的能量和简并度。 11、如图所示的直链共轭多烯中,π电子可 视为在一维势箱中运动的粒子,实际测得π电子由最高填充能级向最低空能级跃迁时吸收光谱波长为30.16×104 pm,试求该一维势箱的长度。 12、维生素A的结构如图所示,已知它在332nm处有一强吸收峰,这也是长波方向的第一个峰,试估计一维势箱的长度l。 13、2、下列函数中(A) cos kx (B) e -bx (C) e-ikx (D) ,问(1)哪些是的本征函数;(2)哪些是的本征函数;(3) 哪些是和的共同本征函数。 14、下列函数中:⑴sinx cosx ;⑵cos2x;⑶sin2x-cos2x,哪些是d/dx的本征函数,本征值是多少,哪些是d2/dx2的本征函数,本征值是多少? 15、请写出“定核近似”条件下单电子原子的薛定谔方程,需说明算符化过程并需注明方程中各项含义。 16、试写出角动量的算符表示式。 17、证明是方程()的解[l = 1,m =±1,k =l(l+1)]。 18、证明是算符的本征函数,并求其本征值。 19、证明在三维空间中运动的粒子,当处于本征态时,角动量大小具有确定值,并求角动量。已知角动量平方算符为: 。 20、为什么只有5个d轨道?试写出5个d轨道实数解的角度部分?以n=3为例写出5个d 轨道实数解与复数解间的关系。 21、氢原子中电子的一个状态函数为: Ψ2Pz = 1/4(z3/2πa03)1/2(zr/ a0)exp(-zr /2 a0)cosθ 求:(1)它的能量是多少(ev)?(2)角动量是多少? (3)角动量在Z方向的分量是多少?(4)电子云的节面数?

《结构化学》第三章习题答案

《结构化学》第三章习题答案 3001 ( A, C ) 3002 H ab =∫ψa [-21?2- a r 1 - b r 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ = E H S ab + K 因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。 所以 H ab 为负值。 3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψ b s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ = (4 - 4S 2)-1/2 [ 1 - 1 ] = 0 故相互正交。 3004 ( C ) 3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。 两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 ) (2) 单电子近似 (定态) 3007 单个电子 3008 (B) 3009 (1) 能级高低相近 (2) 对称性匹配 (3) 轨道最大重叠 3010 不正确 3011 (B) 3012 ψ= (0.8)1/2φA + (0.2)1/2φB 3013 能量相近, 对称性匹配, 最大重叠 > , < 或 < , > 3014 正确 3015 不正确 3016 σ π π δ 3017 3018 z

3019 (C) 3020 π 3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d , π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xz δ轨道:d xy -d xy , d 22y x -- d 22y x - 3022 σ δ π 不能 不能 3023 (B) 3024 原子轨道对 分子轨道 p z -d xy × p x -d xz π d 22y x -- d 22y x - δ 2z d -2z d σ p x –p x π 3025 1σ22σ21π43σ2 , 3 , 反磁 3026 d xy , δ 3027 p y , d xy 3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著. 因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间. 3029 N 2: (1σg )2(1σu )2(1πu )4(2σg )2 O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1 或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )2 3030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )2 的三重键为 1 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3 ( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对 孤对电子,可记为 :N ≡N: 。因此N 2的键长特别短,键能特别大, 是惰性较大的分子。 3031 O 2[KK (σg s 2) 2 (σu s 2*) 2 (σg2p *)2 (πu s 2)4 (πg2x p *)1 (πg2y p *)1 ] 顺磁性 C 2 [KK (σg s 2) 2 (σu s 2*) 2(πg2x p )2 (πg2y p )2] 反磁性 3032 KK ( 1σg )2(1σu )2 (1πu )3 约 3/2 [1σ22σ23σ21π44σ2]5σ22π4 1 3033 (1) 1σ22σ23σ21π4 1 反 (2) σ1s 2σ1s 2 σ2s 2σ2s 2σ2pz 2π2py 2π2pz 2π2py *2π2px *1 1.5 顺 3034 π3py , π3pz ; π3px 3035 CN -( 1σ)2(2σ) 2(1π)2+2(3σ)2 键级: 3 3036 CF KK -( 1σ)2(2σ) 2(3σ)2 (1π)4(2π)1 不论 s -p 混杂是否明显, 最高占据的 MO 为(2π)1 , 它是反键轨道。故(C-F)+键强些, 短些。 3037 Cl 2: σ3s 2σ3s *σ3px 2π3py 2π3pz 2π3py *2π2pz *2 反磁性

结构化学第一章答案

一、填空题 1.量子力学用Ψ(r,t)来描述 ,它在数学上要满足三个条件,分别是 ,∣Ψ∣2表示 。 2. 测不准关系是 ,它说明 3. 汤姆逊实验证明了 。 4. 一维势箱中的粒子的活动范围扩大时, 相应的能量值会 。 5. 导致“量子”概念引入的三个著名试验分别为 、 和 。 6. 方程?φ=a φ中,a 称为力学量算符?的 。 7. 如果某一个微观体系有多种可能状态,则由他们线性组合所得的状态也是体系的可能状态,这叫做 。 二、选择题 1. 几率密度不随时间改变的状态被称为( B ) A. 物质波 B. 定态 C. 本征态 D. 基态 2. 函数()x e x f =(0x -≤≤∞) 的归一化常数是( B ) A. 1/2 B. 1 C. 0 D. 2 3. 对于任意实物粒子,物质波波长为λ,欲求其动能可用( A ) A. hc/λ B. h 2/2m λ2 C. eV D. mc 2 4. 公式0*=? τψψd n m (n m ≠) 称为波函数的( D ) A. 单值性 B. 连续性 C. 归一性 D. 正交性 5. 下列算符为线性算符的是 ( D ) A. log B. d/dx C. D. ln 6. 下列算符为线性算符的是( B ) A. sinex B. d 2/dx 2 C. D. cos2x 7. 下列算符中,哪些不是线性算符( C ) A. ?2 B. d dx C. 3 D. xy 8. 下列函数中不是22 dx d 的本征函数的是( B ) A. x e B.2x C.x cos 3 D.x x cos sin + 9. 算符22 dx d 作用于函数x cos 5上,则本征值为( C ) A. –5 B. 5 C. – 1 D. 1

(完整版)结构化学课后答案第一章

01.量子力学基础知识 1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm,这是Li 原子由电子组态(1s)2(2p)1 →(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以 1 4 1 7 1.491 104cm 1 670.8 10 7cm h N A6.626 10 34 J s 4.469 1014s 1 6.6023 1023mol-1 178.4kJ mol 波长λ /nm312.5365.0404.7546.1 光电子最大动能E k/10-19J 3.41 2.56 1.950.75 作“动能-频率” ,从图的斜率和截距计算出Plank 常数(h) 值、 钠的脱出功(W) 和临阈频率(ν 0)。 解:将各照射光波长换算成频率v,并将各频率与对应的光电子的最大动能E k 列于下表:λ/nm312.5365.0404.7546.1 v /1014s-19.598.217.41 5.49 E k/10 -19J 3.41 2.56 1.950.75 由表中数据作图,示于图中 由式 hv hv0 E k 推知 h E k E k v v0 v 即Planck 常数等于E k v图的斜率。选取两合适点,将E k 和v值带入上式,即可求出h。 2.70 1.05 10 19 J 34 h 14 16.60 1034 Jgs 8.50 600 1014 s 1 kJ· mol-1为单位的能量。 解: 8 2.998 108m s 670.8m 14 1 4.469 1014s 1 图 1.2 金属的E k 图

31 9.109 10 31 kg 1 2 6.626 10 34 Jgs 4.529 1014s 1 2 9.109 10 31kg 8.12 105mgs 1 1.4】计算下列粒子的德布罗意波的波长: -1 a) 质量为 10-10kg ,运动速度为 0.01m · s 的尘埃; b) 动能为 0.1eV 的中子; c) 动能为 300eV 的自由电子。 解:根据关系式: h 6.626 10 34 J s mv 10 10 kg 0.01m s 6.626 10 34 J s 2 1.675 10 27kg 0.1eV 1.602 10 19J eV 9.40 3 10-11m (3) h h p 2meV 6.626 10 34 J s 2 9.109 10 31kg 1.602 10 19C 300V 7.08 10 11m 【1.5】用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为 加速后运动时的波长。 图中直线与横坐标的交点所代表的 v 即金属的临界频率 v 0 ,由图可知, v 0 4.36 因此,金属钠的脱出功为: W hv 0 6.60 10 34Jgs 4.36 1014s 1 19 2.88 10 19 J 14 1 1014s 1 1.3】金属钾的临阈频率为 5.464×10-14 s -1,如用它作为光电极的阴极当用波长为 300nm 的 紫外光照射该电池时,发射光电子的最大速度是多少? hv hv 0 解: 1 2h v v 0 2 m 12 mv 2 34 2 6.626 10 34 Jgs 2.998 108 mgs 300 10 9m 14 1 5.464 1014 s 1 (1) (2) 22 6.626 10 22 m 200kV ,计算电子

结构化学-第五章习题及答案

习 题 1. 用VSEPR 理论简要说明下列分子和离子中价电子空间分布情况以及分子和离子的几何构型。 (1) AsH 3; (2)ClF 3; (3) SO 3; (4) SO 32-; (5) CH 3+ ; (6) CH 3- 2. 用VSEPR 理论推测下列分子或离子的形状。 (1) AlF 63-; (2) TaI 4-; (3) CaBr 4; (4) NO 3-; (5) NCO -; (6) ClNO 3. 指出下列每种分子的中心原子价轨道的杂化类型和分子构型。 (1) CS 2; (2) NO 2+ ; (3) SO 3; (4) BF 3; (5) CBr 4; (6) SiH 4; (7) MnO 4-; (8) SeF 6; (9) AlF 63-; (10) PF 4+ ; (11) IF 6+ ; (12) (CH 3)2SnF 2 4. 根据图示的各轨道的位向关系,遵循杂化原则求出dsp 2 等性杂化轨道的表达式。 5. 写出下列分子的休克尔行列式: CH CH 2 123 4 56781 2 34 6. 某富烯的久期行列式如下,试画出分子骨架,并给碳原子编号。 0100001100101100001100 001101001 x x x x x x 7. 用HMO 法计算烯丙基自由基的正离子和负离子的π能级和π分子轨道,讨论它们的稳定性,并与烯丙基自由基相比较。

8. 用HMO法讨论环丙烯基自由基C3H3·的离域π分子轨道并画出图形,观察轨道节面数目和分布特点;计算各碳原子的π电荷密度,键级和自由价,画出分子图。 9. 判断下列分子中的离域π键类型: (1) CO2 (2) BF3 (3) C6H6 (4) CH2=CH-CH=O (5) NO3- (6) C6H5COO- (7) O3 (8) C6H5NO2 (9) CH2=CH-O-CH=CH2 (10) CH2=C=CH2 10. 比较CO2, CO和丙酮中C—O键的相对长度,并说明理由。 11. 试分析下列分子中的成键情况,比较氯的活泼性并说明理由: CH3CH2Cl, CH2=CHCl, CH2=CH-CH2Cl, C6H5Cl, C6H5CH2Cl, (C6H5)2CHCl, (C6H5)3CCl 12. 苯胺的紫外可见光谱和苯差别很大,但其盐酸盐的光谱却和苯很接近,试解释此现象。 13. 试分析下列分子中的成键情况,比较其碱性的强弱,说明理由。 NH3, N(CH3)2, C6H5NH2, CH3CONH2 14. 用前线分子轨道理论乙烯环加成变为环丁烷的反应条件及轨道叠加情况。 15. 分别用前线分子轨道理论和分子轨道对称性守恒原理讨论己三烯衍生物的电环化反应 在加热或者光照的条件下的环合方式,以及产物的立体构型。 参考文献: 1. 周公度,段连运. 结构化学基础(第三版). 北京:北京大学出版社,2002 2. 张季爽,申成. 基础结构化学(第二版). 北京:科学出版社,2006 3. 李炳瑞.结构化学(多媒体版).北京:高等教育出版社,2004 4. 林梦海,林银中. 结构化学. 北京:科学出版社,2004 5. 邓存,刘怡春. 结构化学基础(第二版). 北京:高等教育出版社,1995 6.王荣顺. 结构化学(第二版). 北京:高等教育出版社,2003 7. 夏少武. 简明结构化学教程(第二版). 北京:化学工业出版社,2001 8. 麦松威,周公度,李伟基. 高等无机结构化学. 北京:北京大学出版社,2001 9. 潘道皑. 物质结构(第二版). 北京:高等教育出版社,1989 10. 谢有畅,邵美成. 结构化学. 北京:高等教育出版社,1979 11. 周公度,段连运. 结构化学基础习题解析(第三版). 北京:北京大学出版社,2002 12. 倪行,高剑南. 物质结构学习指导. 北京:科学出版社,1999 13. 夏树伟,夏少武. 简明结构化学学习指导. 北京:化学工业出版社,2004 14. 徐光宪,王祥云. 物质结构(第二版). 北京:科学出版社, 1987 15. 周公度. 结构和物性:化学原理的应用(第二版). 北京:高等教育出版社, 2000 16. 曹阳. 结构与材料. 北京:高等教育出版社, 2003 17. 江元生. 结构化学. 北京:高等教育出版社, 1997 18. 马树人. 结构化学. 北京:化学工业出版社, 2001 19. 孙墨珑. 结构化学. 哈尔滨:东北林业大学出版社, 2003

结构化学习题答案

《结构化学》第三章习题 3001 H 2+的H ?= 212 - a r 1 - b r 1 +R 1, 此种形式已采用了下列哪几种方法: ------------------------------ ( ) (A) 波恩-奥本海默近似 (B) 单电子近似 (C) 原子单位制 (D) 中心力场近似 3002 分析 H 2+的交换积分(积分) H ab 为负值的根据。 3003 证明波函数 ()()() ()b a b a ψψψψψψS S s 1s 121u s 1s 121g 221221--=++= 是相互正交的。 3004 通过变分法计算得到的微观体系的能量总是:----------------- ( ) (A) 等于真实基态能量 (B) 大于真实基态能量 (C) 不小于真实基态能量 (D) 小于真实基态能量 3006 什么叫分子轨道?按量子力学基本原理做了哪些近似以后才有分子轨道的概念? 这些近似的根据是什么? 3007 描述分子中 _______________ 空间运动状态的波函数称为分子轨道。 3008 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( ) (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动) (D) 原子轨道线性组合成的新轨道 3009 试述由原子轨道有效地形成分子轨道的条件。 3010 在 LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。这种说法是否 正确? 3011 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定: ----------------- ( ) (A) 组合系数 c ij (B) (c ij )2

结构化学 第三章习题及答案

习题 1. CO 是一个极性较小的分子还是极性较大的分子?其偶极矩的方向如何?为什么? 2. 下列AB型分子:N2,NO,O2,C2,F2,CN,CO,XeF中,哪几个是得电子变为AB–后比原来中性分子键能大?哪几个是失电子变为AB+ 后比原来中性分子键能大? 3. 按分子轨道理论说明Cl2的键比Cl2+ 的键强还是弱?为什么? 4. 下列分子中,键能比其正离子的键能小的是____________________ 。键能比其负离子的键能小的是________________________ 。 O2,NO,CN,C2,F2 5. 比较下列各对分子和离子的键能大小: N2,N2+( ) O2,O2+( ) OF,OF–( ) CF,CF+( ) Cl2,Cl2+( ) 6. 写出O2+,O2,O2–和O22–的键级、键长长短次序及磁性。 7. 按分子轨道理论写出NF,NF+ 和NF–基态时的电子组态,说明它们的键级、不成对电子数和磁性。 8. 判断NO 和CO 哪一个的第一电离能小,原因是什么? 9. HF分子以何种键结合?写出这个键的完全波函数。 10.试用分子轨道理论讨论SO分子的电子结构,说明基态时有几个不成对电子。 11.下列AB型分子:N2,NO,O2,C2,F2,CN,CO,XeF中,哪几个是得电子变为AB–后比原来中性分子键能大?哪几个是失电子变为AB+ 后比原来中性分子键能大? 12.OH分子于1964年在星际空间被发现。 (a)试按分子轨道理论只用O原子的2 p轨道和H原子的1 s轨道叠加,写出其电子组态。 (b)在哪个分子轨道中有不成对电子? (c)此轨道是由O和H的原子轨道叠加形成,还是基本上定域于某个原子上? (d)已知OH的第一电离能为13.2eV,HF的第一电离能为16.05eV,它们的差值几乎与O原子和F原子的第一电离能(15.8eV和18.6eV)的差值相同,为什么? (e)写出它的基态光谱项。 13.试写出在价键理论中描述H2运动状态的、符合Pauli 原理的波函数,并区分其单态和三重态。

相关主题