搜档网
当前位置:搜档网 › 2013年高考物理期末一模联考新题精选分类解析专题28动量和能量

2013年高考物理期末一模联考新题精选分类解析专题28动量和能量

2013年高考物理期末一模联考新题精选分类解析专题28动量和能量
2013年高考物理期末一模联考新题精选分类解析专题28动量和能量

2013年高考物理 期末一模联考新题精选分类解析 专题28 动量和能

1.(18分)(2013广东汕头市期末)如图,Q 为一个原来静止在光滑水平面上的物体,其DB 段为一半径为R 的光滑圆弧轨道, AD 段为一长度为L=R 的粗糙水平轨道,二者相切于D 点,D 在圆心O 的正下方,整个轨道位于同一竖直平面内. 物块P 的质量为m (可视为质点),P 与AD 间的动摩擦因数μ=0.1,物体Q 的质量为M =2m ,重力加速度为g .

(1)若Q 固定,P 以速度v 0从A 点滑上水平轨道,冲至C 点后返回A 点时恰好静止,求v 0的大小和P 刚越过D 点时对Q 的压力大小.

(2)若Q 不固定,P 仍以速度v 0从A 点滑上水平轨道,求P 在光滑圆弧轨道上所能达到的

最大高度h .

联立解得

mg F D 2.1 ⑤(2分)

2.(18分)(2013广东东莞市期末)如图所示,光滑水平面MN 的左端M 处固定有一能量补充

装置P ,使撞击它的物体弹回后动能在原来基础上增加一定值。右端N 处与水平传送带恰好平齐且靠近,传送带沿逆时针方向以恒定速率v = 6m/s 匀速转动,水平部分长度L =9m 。放在光滑水平面上的两相同小物块A 、B (均视为质点)间有一被压缩的轻质弹簧,弹性势能Ep =9J ,弹簧与A 、B 均不粘连,A 、B 与传送带间的动摩擦因数μ=0.2,物块质量m A =m B =lkg 。现将A 、B 同时由静止释放,弹簧弹开物块A 和B 后,迅速移去轻弹簧,此时,A 还未撞击P ,B 还未滑上传送带。取g = 10m/s 2

。求:

(1)A 、B 刚被弹开时的速度大小。

(2)试通过计算判断B 第一次滑上传送带后,能否从传送带右端滑离传送带。

(3)若B 从传送带上回到光滑水平面MN 上与被弹回的A 发生碰撞后粘连,一起滑上传

送带。则P 应给A 至少补充多少动能才能使二者一起滑离传送带?

解:(1) 弹簧弹开的过程中,系统机械能守恒

222

121B B A A P v m v m E += (2分)

由以上四式可得: E ≥108J 。 (1分)

3.(18分)(2013广东汕头市期末)如图所示,在光滑绝缘水平面上,不带电的绝缘小球P 2

静止在O 点.带正电的小球P 1以速度v 0从A 点进入AB 区域.随后与P 2发生正碰后反弹,反弹速度为3

2v 0. 从碰撞时刻起在AB 区域内加上一个水平向右,电场强度为E 0的匀强电场,并且区域外始终不存在电场. P 1的质量为m 1,带电量为q ,P 2的质量为m 2=5m 1,A 、O 间

距为L 0,O 、B 间距为340L L =,已知0

201034L v m qE =. (1)求碰撞后小球P 1向左运动的最大距离及所需时间.

(2)判断两球能否在OB 区间内再次发生碰撞.

设P 1、P 2碰撞后又经t ?时间在OB 区间内能再次发生碰撞,

P 1位移为s 1,P 1位移为s 2,由运动学公式,有

2012

1v 32s t a t ?+?-= ⑧(2分) t v ?=22s ⑨(1分)

21s s = ⑩(1分)

联立解得

2s 02L =<043

L L = 两球能在OB 区间内再次发生碰撞(2分) 4.(18分)(2013广东茂名高考模拟)如图所示,五块完全相同的长木板依次紧挨着放在水平地面上,每块木板的长度L=0.5m ,质量m=0.6kg 。在第一块长木板的最左端放置一质量M=0.98kg 的小物块。已知小物块与长木板间的动摩擦因数2.01=μ,长木板与地面间的动摩擦因数1.02=μ,设最大静摩擦力与滑动摩擦力相等。一颗质量为kg m 02.00=的子弹以s m /1500=υ水平速度击中小物块并立即与小物块一起在长木板表面滑行,重力加速度g 取2/10s m 。求:

(1)小物块滑至哪块长木板时,长木板才开始在地面上滑动。

(2)物块在整个运动过程中相对出发点滑行的最大距离。

即物块与木板获得s m /4

1的共同速度,之后整体向前匀减速运动2s 后静止.由动能 定理230202)(2

1)(v m m M gs m M ++=+-μ ……(1分) 解得m s 32

12= …(1分) 所以物块总共发生的位移m S S L S 27.2421≈++= ……(1分)

5(2013北京丰台期末).(10分)在光滑的水平面上,一质量为m A =0.1kg 的小球A ,以8 m/s 的初速度向右运动,与质量为m B =0.2kg 的静止小球B 发生弹性正碰。碰后小球B 滑向与水平

面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。g=10m/s2。求:

(1) 碰撞后小球B的速度大小;

(2) 小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量;

(3) 碰撞过程中系统的机械能损失。

6(2013北京西城期末)(12分)如图所示,一质量M=1.0kg的砂摆,用轻绳悬于天花板上O 点。另有一玩具枪能连续发射质量m=0.01kg,速度v=4.0m/s的小钢珠。现将砂摆拉离平衡位置,由高h=0.20m处无初速度释放,恰在砂摆向右摆到最低点时,玩具枪发射的第一颗小钢珠水平向左射入砂摆,二者在极短时间内达到共同速度。不计空气阻力,取g =10m/s2。

(1)求第一颗小钢珠射入砂摆前的瞬间,砂摆的速度大小v0;

(2)求第一颗小钢珠射入砂摆后的瞬间,砂摆的速度大小v1;

(3)第一颗小钢珠射入后,每当砂摆向左运动到最低点时,都有一颗同样的小钢珠水平

向左射入砂摆,并留在砂摆中。当第n颗小钢珠射入后,砂摆能达到初始释放的高度h,求n。

解:

第3颗小钢球打入过程,同理

7(2013北京

房山区期末) .如下图所示,平板车P 的质量为M ,小物块Q 的质量为m ,大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R ,一端悬于Q 的正上方高为R 处,另一端系一质量也为m 的小球(大小不计)。今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q 碰撞的时间极短,且无能量损失,已知Q 离开平板车时速度大小是平板车速度的两倍, Q 与P 之间的动摩擦因数为μ,M ∶m =4∶1,重力加速度为g 。求:

(1)小球到达最低点与Q 碰撞之前瞬间的速度是多大;

(2)小物块Q 离开平板车时平板车的速度为多大;

(3)平板车P 的长度为多少?

解析. (1)小球由静止摆到最低点的过程中,有:mgR (1-cos 60°)=12

mv 20, ∴v 0=gR

(2)小球与物块Q 相撞时,没有能量损失,动量守恒,机械能守恒,则:

36(2013广东汕头期末).(18分)如图所示,在光滑绝缘水平面上,不带电的绝缘小球P 2静止在O 点.带正电的小球P 1以速度v 0从A 点进入AB 区域.随后与P 2发生正碰后反弹,反弹速度为3

2v 0. 从碰撞时刻起在AB 区域内加上一个水平向右,电场强度为E 0的匀强电场,并且区域外始终不存在电场.P 1的质量为m 1,带电量为q ,P 2的质量为m 2=5m 1,A 、O 间距为L 0,O 、B 间距为340L L =,已知0

201034L v m qE =. (1)求碰撞后小球P 1向左运动的最大距离及所需时间.

(2)判断两球能否在OB 区间内再次发生碰撞.

q E 0= m 1a ③(1分)

2s 02L =<043L L = 两球能在OB 区间内再次发生碰撞(2分)

高考物理动量冲量精讲精练爆炸反冲碰撞动量能量综合练习题

爆炸反冲碰撞动量能量 1.如图所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动( ) A .它们碰撞前的总动量是18 kg·m/s,方向水平向右 B .它们碰撞后的总动量是18 kg·m/s,方向水平向左 C .它们碰撞前的总动量是2 kg·m/s,方向水平向右 D .它们碰撞后的总动量是2 kg·m/s,方向水平向左 解析:选C.它们碰撞前的总动量是2 kg·m/s,方向水平向右,A 、B 相碰过程中动量守恒,故它们碰撞后的总动量也是2 kg·m/s,方向水平向右,选项C 正确. 2. 一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( ) A .v 0-v 2 B .v 0+v 2 C .v 0-m 2 m 1 v 2 D .v 0+m 2 m 1 (v 0-v 2) 解析:选D.由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2得v 1=v 0+m 2 m 1 (v 0-v 2). 3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s,p 2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s,则二球质量m 1与m 2间的关系可能是下面的哪几种( ) A .m 1=m 2 B .2m 1=m 2 C .4m 1=m 2 D .6m 1=m 2 解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有:p 1+p 2=p 1′+p 2′,即:p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有p 2 12m 1+p 2 22m 2≥p 1′2 2m 1+p 2′2 2m 2,所以有:m 1≤2151m 2,因 为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<5 7m 2;同时还 要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1<p 2′m 2,所以m 1>1 5m 2.因此C 选项正确. 4.(多选) 如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确

2020届高考物理必考经典专题 专题06 动力学、动量和能量观点的综合应用(含解析)

2020届高考物理必考经典专题 专题6 动力学、动量和能量观点的综合应用 考点一 “子弹打木块 ”类问题的综合分析 子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动.下面从动量、能量和牛顿运动定律等多个角度来分析这一类问题. 1.动量分析 子弹和木块最后共同运动,相当于完全非弹性碰撞,子弹射入木块过程中系统动量守恒mv0=(M+m)v. 2.能量分析 该过程系统损失的动能全部转化为系统的内能.设平均阻力大小为Ff,子弹、木块的位移大小分别为s1,s2,子弹钻入深度为d,如图所示,有s1-s2=d;对子弹应用动能定理有-F f s 1=错误!未找到引用源。 mv 2-错误!未找到引用源。m 错误!未找到引用源。;对木块应用动能定理有F f s 2=错误!未找到引用源。mv2,联立解得F f d=错误!未找 到引用源。m 错误!未找到引用源。-错误!未找到引用源。(M+m)v2=2 02() Mmv M m +错误!未找到引用源。.式中F f d 恰好等于系统动能的损失量,根据能量守恒定律,系统动能的损失量应该等于系统内能的增加量,则有ΔE k =F f d =Q=2 02()Mmv M m +错误!未找到引用源。,由此可得结论:两物体由于摩擦产生的热量(机械能转化为内能),数值上等 于摩擦力大小与两物体相对滑动路程的乘积.由上面各式联立可得F f =2 02()Mmv M m d +错误!未找到引用 源。,s 2= m M m +错误!未找到引用源。d. 3.动力学分析 从牛顿运动定律和运动学公式出发,也可以得出同样的结论.由于子弹和木块都在恒力作用下做匀变速运动, 位移与平均速度成正比,有22 s d s +错误!未找到引用源。=022 v v v +错误!未找到引用源。=0v v v +错误!未找到引用

高中物理-电学中的动量和能量问题专题训练与解析

第2课时电学中的动量和能量问题 高考命题点命题轨迹情境图 电场和磁场中的动量 20183卷21 和能量问题 18(3)21题电磁感应中的动量和 能量问题 例1(2019·湖北省4月份调研)如图1,在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里.在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域做直线运动.已知重力加速度为g. 图1 (1)求小球平抛的初速度v0的大小; (2)若电场强度大小为E,求A点距该区域上边界的高度h; (3)若电场强度大小为E,令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间.

拓展训练1(2019·云南昭通市上学期期末)真空中存在电场强度为E 1的匀强电场(未知),一质量为m、带正电的油滴,电荷量为q,在该电场中竖直向下做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变,持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点,重力加速度大小为g,求: (1)电场强度E1的大小和方向; (2)油滴运动到B点时的速度大小. 拓展训练2(2019·江西上饶市重点中学六校第一次联考)如图2所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=2 T.小球1带正电,小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v1=12m/s的水平速度与小球2正碰,碰后两小球粘在一起在竖直平面内做匀速圆周运动,两小球速度水平向左时离碰撞点的距离为2m.碰后两小球的比荷为4C/kg.(取g=10m/s2) 图2 (1)电场强度E的大小是多少? (2)两小球的质量之比m2 m1是多少?

2019高考物理动量与能量专题测试题及答案及解析

2019高考物理动量与能量专题测试题及答案及解析 一、单选题 1.【河北省衡水中学2019届高考模拟】如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同 一高度同时出发,其中A球有水平向右的初速度,B、C由静止释放。三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为() A.1次 B.2次 C.3次 D.4次 2.【河北省武邑中学2018-2019学年高考模拟】如图所示,有一条捕鱼小船停靠在湖边码头,一位同学想用一个卷尺粗略测定它的质量。他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船。他用卷尺测出船后退的距离为d,然后用卷尺测出船长L,已知他自身的质量为m,则船的质量为( ) A.B.C.D. 3.【全国百强校山西大学附属中学2018-2019学年高考模拟】如图所示,倾角θ = 30°的光滑斜面固定在水平地面上,斜面长度为60m。质量为3kg的滑块A由斜面底端以初速度v0 = 15 m/s沿斜面向上运动,与此同时,一质量为2kg的物块B从静止由斜面顶端沿斜面向下运动,物块A、B在斜而上某处发生碰撞,碰后A、B粘在一起。已知重力加速度大小为g =10 m/s2。则

A.A、B运动2 s后相遇 B.A、B相遇的位置距离斜面底端为22.5 m C.A、B碰撞后瞬间,二者速度方向沿斜而向下,且速度大小为1m/s D.A、B碰撞过程损失的机械能为135J 4.【湖北省宜昌市英杰学校2018-2019学年高考模拟】光滑水平地面上,A,B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩到最短时 A.A、B系统总动量为2mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 5.【陕西省西安市远东第一中学2018-2019学年高考模拟】如图所示,质量为0.5kg的小球在距离车底面高20m处以一定的初速度向左平抛,落在以7.5m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4kg,设小球在落到车底前瞬间速度是25m/s,则当小球与小车相对静止时,小车的速度是() A.5m/s B.4m/s C.8.5m/s D.9.5m/s 二、多选题 6.【山东省烟台二中2019届高三上学期10月月考物理试题】如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练 1.(19分)如图所示,光滑水平面上有一质量M =4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的 4 1 光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向 左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。小物块恰能到达圆弧 轨道的最高点A 。取g =10m /2 ,求: (1)小物块滑上平板车的初速度v0的大小。 (2)小物块与车最终相对静止时,它距O ′点的距离。 (3)若要使小物块最终能到达小车的最右端,则v0要增大到多大? 2.(19分)质量m A=3.0kg.长度L=0.70m.电量q=+4.0×10-5 C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105 N /C的匀强电场,此时A的右端到竖直绝缘挡板的距离为S =2m,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦 力均可认为等于其滑动摩擦力,g 取10m/s 2 (不计空气的阻力)求: (1)刚施加匀强电场时,物块B 的加速度的大小? (2)导体板A 刚离开挡板时,A 的速度大小? (3)B 能否离开A ,若能,求B刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。 v 0 O / O M m

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

(完整版)动量-动量守恒定律专题练习(含答案)

动量 动量守恒定律 一、动量和冲量 1、关于物体的动量和动能,下列说法中正确的是: A 、一物体的动量不变,其动能一定不变 B 、一物体的动能不变,其动量一定不变 C 、两物体的动量相等,其动能一定相等 D 、两物体的动能相等,其动量一定相等 2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则: A 、 B 的动能较大 B 、A 的动能较大 C 、动能相等 D 、不能确定 3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是: A 、拉力F 对物体的冲量大小为零; B 、拉力F 对物体的冲量大小为Ft ; C 、拉力F 对物体的冲量大小是Ftcosθ; D 、合力对物体的冲量大小为零。 4、如图所示,PQS 是固定于竖直平面内的光滑的14 圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等 B 、a 与b 同时到达S ,它们在S 点的动量不相等 C 、a 比b 先到达S ,它们在S 点的动量相等 D 、b 比a 先到达S ,它们在S 点的动量不相等 二、动量守恒定律 1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。 A 、'0()Mv M m v mv =-+ B 、'00()()Mv M m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+ 2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。根据测速仪的测定,长途客车碰前以20m/s 的速度行驶,由此可判断卡车碰前的行驶速率为: A 、小于10 m/s B 、大于10 m/s 小于20 m/s C 、大于20 m/s 小于30 m/s D 、大于30 m/s 小于40 m/s 3、质量相同的物体A 、B 静止在光滑的水平面上,用质量和水平速度相同的子弹a 、b 分别射击A 、B ,最终a 子弹留在A 物体内,b 子弹穿过B ,A 、B 速度大小分别为v A 和v B ,则: A 、v A >v B B 、v A <v B C 、v A =v B D 、条件不足,无法判定 4、质量为3m ,速度为v 的小车, 与质量为2m 的静止小车碰撞后连在一起运动,则两车碰撞后的总动量是 O P S Q F

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

动量与能量练习题

动量与能量练习题 1.三块完全相同的木块固定在水平地面上,设速度为v0子弹穿过木块时受到的阻力一样,子弹可视为质点,子弹射出木块C时速度变为v0/ 2.求: (1) 子弹穿过A和穿过B 时的速度v1=? v2=? (2)子弹穿过三木块的时间之比t1∶t2∶t3 =? 2.光滑水平桌面上有两个相同的静止木块,枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。假设子弹穿过两个木块时受到的阻力大小相同,忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( ) (A)子弹两次损失的动能相同(B)每个木块增加的动能相同 (C)因摩擦而产生的热量相同(D)每个木块移动的距离不相同 3.如图所示,质量为M的木板静止在光滑的水平面上,其上表面的左端有一质量为m的物体以初速度v0,开始在木板上向右滑动,那么:( ) (A)若M固定,则m对M的摩擦力做正功,M对m的摩擦力做负功; (B)若M固定,则m对M的摩擦力不做功,M对m的摩擦力做负功; (C)若M自由移动,则m和M组成的系统中摩擦力做功的代数和为零; (D)若M自由移动,则m克服摩擦力做的功等于M增加的动能和转化为系统的内能之和。 4.如图所示,质量为M的火箭,不断向下喷出气体,使它在空中保持静止,火箭质量可以认为不变。如果喷出气的速度为v,则火箭发动机的功率为() 5.如图示:质量为M的滑槽静止在光滑的水平面滑槽的AB部分是半径为R的1/4的光滑圆弧,BC部分是水平面,将质量为m 的小滑块从滑槽的A点静止释放,沿圆弧面滑下,并最终停在水平部分BC之间的D点,则( ) A.滑块m从A滑到B的过程,物体与滑块组成的系统动量守恒、机械能守恒 B. 滑块滑到B点时,速度大小等于 C. 滑块从B运动到D的过程,系统的动量和机械能都不守恒 D. 滑块滑到D点时,物体的速度等于0 6.质量为M=4.0kg的平板小车静止在光滑的水平面上,如图所示,当t=0时,两个质量分别为m A=2kg、m B=1kg 的小物体A、B都以大小为v0=7m/s。方向相反的水平速度,同时从小车板面上的左右两端相向滑动。到它们在小车上停止滑动时,没有相碰,A、B与车间的动摩擦因素μ=0.2,取g=10m/s2,求: (1)A在车上刚停止滑动时,A和车的速度大小 (2)A、B在车上都停止滑动时车的速度及此时车运动了多长时间。 (3)画出小车运动的速度—时间图象。 7.如图所示,光滑水平面上质量为m1=2kg的小球以v0=2m/s的初速冲向质量为m2=6kg静止的足够高的光滑的斜劈体,斜劈体与水平面接触处有一小段光滑圆弧。 (1)小球m1滑到的最大高度 (2)小球m1从斜面滑下后,二者速度 (3)若m1= m2小球m1从斜面滑下后,二者速度 8.如图所示,质量为m的有孔物体A套在光滑的水平杆上,在A下面用足够长的细绳挂一质量为M的物体B。一个质量为m0的子弹C以v0速度射入B并留在B中,求B上升的最大高度。 9.质量为m=20Kg的物体,以水平速度v0=5m/s的速度滑上静止在光滑水平面上的小车,小车质量为M=80Kg,物体在小车上滑行L=4m后相对小车静止。求: (1)物体与小车间的滑动摩擦系数。(2)物体相对小车滑行的时间内,小车在地面上运动的距离。

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

高一物理-动量和能量综合试题例析培优

动量和能量综合试题例析 导言 处理力学问题的基本思路有三种:一是牛顿定律,二是动量关系,三是能量关系.若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同处理问题的难易、繁简程度可能有很大区别.若研究对象为一个系统应优先考虑两大守恒定律, 若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理, 特别涉及力和位移问题时应优先考虑动能定理,而涉及摩擦生热是要联系能量守恒定律,有时对问题的过程不予细究,这正是它们的方便之处. 物理学家在研究打击和碰撞这类问题时引入了动量的概念。研究与动量有关的规律确立了动量守恒定律,应用有关动量的知识,系统在相互作用过程中,同时也会伴随着不同形式的能量的相互转化。动量守恒和能量相结合的综合计算题,要求较高,值得注意。如果一个系统所受外力的矢量和为零,则该系统为动量守恒系统。而系统内部的物体由于彼此间的相互作用,动量会有显著的变化,这里涉及到一个内力做功和系统内物体动能变化的问题,即动量守恒系统的功能问题。我们常把动量守恒系统中物体间的相互作用过程仍视为“碰撞”问题来处理,亦即广义的碰撞问题。如弹性碰撞可以涉及到动能和弹性势能的相互转化;非弹性碰撞可以涉及到动能和内能的相互转化,等等。那么,通过动量守恒和能量关系,就可以顺利达到解题目的。这一节课我们就来学习这方面的知识。 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)由于子弹射入滑块A的过程极短,可以认为弹簧的长度尚未发生变 化,滑块A不受弹力作用。取子弹和滑块A为系统,因子弹射入的过程为完全非弹性碰撞,子弹射入A前后物体系统动量守恒,设子弹射入后A的速度为V , 1有: mV0=(m+m1)V1(1) 得:(1) 取子弹、两滑块A、B和弹簧为物体系统,在子弹进入A后的运动过程中,系统动量守恒,注意这里有弹力做功,系统的部分动能将转化为弹性势能,设弹簧的最大压缩长度为x,此时两滑块具有的相同速度为V,依前文中提到的解题策略有:

2020年高考物理考点题型归纳与训练专题十四 动量守恒定律及其应用(含解析)

2020高考物理二轮复习题型归纳与训练 专题十四 动量守恒定律及其应用 题型一、动量定理的理解与应用 【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( ) A .2.7 m/s B .5.4 m/s C .7.6 m/s D .10.8 m/s 【答案】 C 【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt =2mv ,m =ρv Δt ·πd 24 ,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。 题型二、动量守恒定律的应用 【规律方法】动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); 3.规定正方向,确定初、末状态动量; 4.由动量守恒定律列出方程; 5.代入数据,求出结果,必要时讨论说明.

【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞? 【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2. 对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1① 对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2② 甲与乙刚好不相撞的条件是v1=v2③ 联立①②③解得v=5.2 m/s,方向与甲和箱子初速度方向一致. 【答案】 5.2 m/s 题型三、碰撞模型的规律及应用 【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s -t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则() A.m b=1 kg B.m b=2 kg

高三物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 河南省新县高级中学吴国富 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个 重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下 几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应 作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时 这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过 程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原 则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练 1.(19分)如图所示,光滑水平面上有一质 量M=4.0kg 的带有圆弧轨道的平板车,车的上表面 是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧 连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。现将一质量m=1.0kg 的 小物块(可视为质点)从平板车的右端以水平向左 的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。小物块恰能到达圆弧轨 道的最高点A 。取g=10m/2,求: (1)小物块滑上平板车的初速度v 0的大小。 (2)小物块与车最终相对静止时,它距O ′点的距离。 (3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大? 2.(19分)质量m A = 3.0kg .长度L =0.70m .电量q =+ 4.0×10-5C 的导体板A 在足够大的 绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105 N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于 其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求: (1)刚施加匀强电场时,物块B 的加速度的大小? (2)导体板A 刚离开挡板时,A 的速度大小? (3)B 能否离开A ,若能,求B 刚离开A 时,B 的 速度大小;若不能,求B 距A 左端的最大距离。

2017年高考物理动量能量压轴题练习1

2017年高考物理动量能量压轴题练习 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m =,半圆形轨道的底端放置一个质量为0.1m kg =的小球B ,水平面上有一个质量为0.3M kg =的小球A 以初速度0 4.0/s v m =开始向着木块B 滑动, 经过时间0.80t s =与B 发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌 面间的动摩擦因数0.25μ=,求: (1)两小球碰前A 的速度; (2)小球B 运动到最高点C 时对轨道的压力 (3)确定小球A 所停的位置距圆轨道最低点的距离。

2.如图所示,一质量为m B=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。一质量也为m A=2kg的物块A由斜面轨道上距轨道底端x0=8m处静止释放,物块A刚好没有从木板B的左端滑出。已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。请问: (1)物块A刚滑上木板B时的速度为多大? (2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间? (3)木板B有多长?

3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求: (1)小物块Q离开平板车时速度为多大? (2)平板车P的长度为多少?

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

相关主题