搜档网
当前位置:搜档网 › 数值分析练习1-3章

数值分析练习1-3章

数值分析练习1-3章
数值分析练习1-3章

第一章 绪论

一、填空题

1、 已知 71828.2e =,求x 的近似值a 的有效数位和相对误差:

题号

精确数x

x 的近似数a

a 的有效数位

a 的相对误差

⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷

e/100

0.02718

2、 设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下:

a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430

则 ⑴ a 1+a 2+a 4= ,相对误差界为 ; ⑵ a 1a 2a 3= ,相对误差界为 ; ⑶ a 2/a 4= ,相对误差界为 。 二、为使20的近似值的相对误差小于0.01%,问应取多少位有效数字?

三、当x 接近于0时,怎样计算

x

x

sin cos 1-以及当x 充分大时,怎样计算

x x -+1,才会使其结果的有效数字不会严重损失。

四、在数值计算中,为了减小误差,应该尽量避免的问题有哪些?并举出相

应的实例.

五、对于序列

,1,0,9991

=+=?

n dx x x I n

n ,试构造两种递推算法计算

10I ,在你构造的算法中,那一种是稳定的,说明你的理由;

第二章 插值法

1、在互异的n+1个点处满足插值条件P(x i )=y i ,(i=0,1,…n)的次数不高于n 的

多项式是( )的

(A)存在且唯一 (B)存在 (C)不存在 (D)不唯一

2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( )

(A)不确定 (B)次数为n (C)f(x)自身 (D )次数超过n 3、 插值基函数的和

∑=n

j j

x l

)(= ( )

(A)0 (B)1 (C)2 (D)不确定

4、 设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( )

(A)0 (B)1 (C)2 (D)不确定

5、( )插值方法具有公式整齐、程序容易实现的优点,而( )插值方法

计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的方法

(A)构造性 (B)解方程组 (C)拉格朗日 (D)牛顿

6、一般地,内插公式比外推公式( ),高次插值比低次插值( ),但

当插值多项式的次数高于七、八次时,最好利用( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)高次

7、整体光滑度高,收敛性良好,且在外型设计、数值计算中应用广泛的分

段插值方法为( ).

(A)分段线性插值 (B)分段抛物插值 (C)分段三次埃尔米特插值 (D)三次样条插值。

8、差商与差分的关系式为

f[x 0,x 1,…,x k ]=( ),f[x n ,x n-1,…,x n-k ]=( )。

(A)k n k h k f !? (B)k k h k f !0? (C)k n k h k f !? (D)k

k h k f !0

?

二、填空题

1、插值问题是指

。通常称 为插值函数, 为插值区间, 为被插值函数, 称为插值节点。 2、讨论代数多项式插值问题的原因是 。 3、Lagrange 插值多项式为_________________ 。 4、设函数Y=F(X)在[a,b]上的n 阶导数()()X F n 连续,()()X F n 1+在(a,b )内存在,Ln(x)是F(X)在n x x x ,,,10 处的n 次Lagrange 插值多项式,则对[a,b]中每一个点x 存在依赖于x 的点[]b a x ,∈ξ,使插值余项R(x)= 。 其插值误差与 有关。 5、牛顿插值公式为 ________________。 6、埃尔米特插值问题是解决 。

7、样条插值问题的提法是 。记 称为S(x)

在节点k x 处的弯矩。 称为三弯矩法。 8、已知函数Y=F(x)的观测数据为

X 1 2 3 4 Y

-5

-6

3

则三次Lagrange 插值多项式为

三、已知函数表:

X 0.32 0.34

0.36

Y=sinX

0.314567

0.333487 0.352274

分别用拉格朗日线性插值和抛物线插值求sin0.3367的近似值,并估计截断误差。

四、已知F(x)=Shx 的函数值

X 0.4 0.55 0.65 0.80 0.90 1.05 Y

0.41075

0.57815

0.69675

0.88811

1.02652

1.25382

求()x N 3,再由()x N 3增加节点x=0.9求()x N 4,并计算F(0.596)的近似值。

五、给定f(X)=cosX 的函数值 X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F(X) 1.0 0.995 0.98006 0.95533 0.92106 0.87758 0.82533

求cos0.048及cos0.575的值,并估计余项。

六、给定函数表为

X 2.2 2.4 2.6 F(x)

0.5207843 0.5104147 0.4813306 ()x F '

-0.0014878

-0.1004889

-0.1883635

利用Hermite 插值求F(2.5)的近似值。

七、已知函数Y=F(x)的函数值

X 0.25 0.30 0.39 0.45 0.53 F(x)

0.5000

0.5477

0.6245

0.6708

0.7280

求三次样条插值函数S(x),使其满足()()053.025.0"

"

==S S 。

八、设f(x)=

2

2511

x +在[-1,1]上,取n=5,按等距节点求分段线性插值

函数()x I h ,并求各节点中间处()x I h 的值。

九、证明:n 次拉格朗日插值基函数()x L 0可写成

()()()()()

()()()()()()n n x x x x x x x x x x x x x x x x x x x x x x x x x L ------+

+----+--+

=-0201011020101010001

十、证明:n 阶差商的下列性质:

⑴若F(x)=cf(x),则F[n x x x ,,,10 ]=cf[n x x x ,,,10 ]; ⑵若F(x)=f(x)+g(x),则

F[n x x x ,,,10 ]=f[n x x x ,,,10 ]+g[n x x x ,,,10 ]。

十一、数值试验题

1、已知由MATLAB生成的一组原始数据

t=linspace(0,5,100);y=1-cos(3*t).*exp(-t),确定它们所代表的函数穿越95.0=y 线的时刻。

(1)通过图形初步判断第一个穿越时刻(利用plot 与ginput); (2)利用插值获得较准确的穿越时刻(分别利用一维插值interp1之中的nearest 、cubic 、spline 选项);

(3)利用求零点语句fzero 求穿越时刻,以便与(2)比较(可以不作)。 2、利用MATLAB 环境

(1)画出函数f(x)=cos(x)在区间[0,pi]上的图形;

(2)分别画出将上面区间等分成N=4,10,100时的分段线性插值的图形。

第三章 函数逼近与曲线拟合

一、选择题

1、函数逼近的基本问题:

(1)选定逼近函数类型,如( )、( )、( )

(2)按一定逼近目标求逼近函数,如( )、( )、( )等最佳逼近问题 (3)研究逼近函数的( )、( )及( )等理论问题 (A)三角多项式 (B)代数多项式 (C)简单函数 (D)最佳一致逼近 (E)最佳平方逼近 (F)最小二乘逼近 (G)存在唯一性 (H)收敛性 (I)误差估计 2、设f(x)∈C[a,b],m 和M 分别为f(x)在[a,b]上的最小值与最大值,则f(x)的零次最佳一致逼近多项式为( )。 (A)M (B)m (C)

)(21m M - (D))(2

1

m M + 3、)(x T n 在[-1,1]上的零点为k x =( ),(k=1,2,…,n);

极值点为k x =( ), (k=0,1,…,n),其极大极小值交替为 ( )。

(A)n k πcos

(B)πn k 21

2cos

- (C)πn k 212cos + (D)πn

k 1

cos - 4、在最高次项系数是1的一切n 次多项式中,于区间[-1,1]上与零有最小

偏差的多项式为( )。 (A))(x T n (B)

)(2

11x T n

n - (C)1

21-n (D)

)(2

1

x T n n 5、对于连续函数f(x),x ∈[a,b],常用的范数有:∞

)

(x f =( );

1)(x f =( );2)(x f =( )。

(A)2

12

))((?

b

a

dx x f (B)2

)(max x f b

x a ≤≤ (C))(max x f b

x a ≤≤

(D)

?b a

dx x f )( (E)?b

a

dx x f )(

6、在所有首项系数为1的n 次多项式中,首项系数为1的n 次( )在[-1,1]上与零的平方逼近误差最小。

(A)切比雪夫多项式 (B)勒让德多项式 (C)拉盖尔多项式 (D)埃尔米特多项式

二、填空题

1、Weierstrass 定理说明,定义在闭区间上的任何连续函数f(x)可以用________逼近到任意精确的程度。

2、对f(x)∈C[a,b]及任给的ε>0,求n 次多项式P n (x),使

ε

<-∞)()(x p x f n

则称P n (x)为[a,b]上f(x)的 ,称在无穷范数意义下的逼近为_______________________;

而称达到最小偏差的多项式为 ,该问题称为 。 3、对定义在[a,b]上的函数y=f(x),求n 次多项式P n (x),使

min )()(2=-x p x f n

则称P n (x)为 ,称在2范数意义下的逼近问题为 。 4、切比雪夫多项式为___________________________________; 多项式序列)}({x T n 关于权函数2

12)1()(-

-=x x ρ为_ 。

8、函数3

1

,,12

-

x x 在[-1,1]上的关系是__________。 9、对于超定方程组Ax=b ,用最小二乘法导出的法方程组为__________。

二、在区间[]π,0上给定函数x x f sin )(=,求其在},,1{2x x span =Φ上

的关于1)(≡x ρ的最佳平方逼近多项式,并估计其误差。

三、求a,b 使

?

-+20

2]sin [π

dx x b ax 达到最小。

四、利用勒让德多项式为基,求f(x)=x 4

在[-1,1]上的二次最佳平方逼近多项

式,并估计平方误差22

δ。

五、求解超定方程组??

?

??=+-=+-=-4

321212121x x x x x x 。

六、用最小二乘法求形如y=a+bx 2的经验公式,使它与下列数据相拟合,并估计平方误差。

x 19 25 31 38 44 y

19.0

32.3

49.0

73.3

97.8

七*、数值试验题: 1、对给定数据表 X -0.75 -0.5

-0.25 0 0.25 0.5 0.75

y 0.33 0.88 1.44 2.00 2.56 3.13 3.71 试分别用Matlab 中的函数polyfit 作一次、二次、三次多项式拟合,并比较优劣。

2、在某科研中,观察水份的渗透速度,测得时间t 与水的重量w 的数据如下: T(秒) 1 2 4 8 16 32 64 w(克)

4.22 4.02 3.85 3.59 3.44 3.02 2.59 已知t 与w 之间的关系有经验公式w=ct λ

, 试用最小二乘法(用Matlab 中的函数polyfit 或非线性拟合函数nlinfit )确定c 和λ。

3、某年美国轿车价格的调查资料如表,其中x i 表示轿车的使用年数,y i

表示相应的平均价格,试分析用什么形式的曲线来拟合表中的数据,并预测使用4.5年后轿车的平均价格大致为多少? x i 1

2

3

4

5 6 7 8 9 10 y i 2615 1943 1494 1087

765

538

484

290

226

204

数值计算第三章答案

3.1证明:如果求积公式(3.4)对函数f (x )和g (x )都准确成立,则它对于线性组合af(x)+bg(x) (a,b 均为常数)亦准确成立. 因此,求积公式(3.4)具有m 次代数精度的充分必要条件是:它对任一小于等于m 次的多项均能准确成立,但对某个m+1次多项式不能准确成立. ()()不能成立 对与题设矛盾多项式都能准确成立,次多,即对任意的线性组合亦准确成立也能准确成立,则对若对的线性组合亦准确成立对次的多项式准确成立对于任意小于等于不准确成立,对的线性组合亦准确成立对成立次的多项式于等于根据定义可知:对于小次代数精度 机械求积公式具有机械求积公式也成立 对于线性组合同理可得 机械求积公式都成立 对于证明: 1m 1321321320 000 0)1(,,,,,,1,,,,,1,,,,,1),1,0()(2)()()] ()([)()()]()([) ()() ()() ()() ()()(),(1++++=======∴+? ∴?∴==∴?+∴+=+≈+∴≈≈∴≈≈∴∑∑?∑?∑?∑? ∑?∑x m x x x x x x x x x x m x x x x x m j x x f m m x bg x af x bg x af A x bg A x af A dx x bg x af x bg A dx x bg x af A dx x af x g A dx x g x f A dx x f x g x f m m m m m m j n k k k n k k k b a n k k k b a n k k k b a n k k k b a n k k k b a n k k k 3.2直接验证中矩形公式具有一次代数精度,而Simpson 公式则具有3次代数精度。

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

数值分析复习题要答案

第一章 1、ln2=0.69314718…,精确到 10-3 的近似值是多少? 解 精确到 10-3=0.001,即绝对误差限是 e =0.05%,故至少要保留小数点后三位才可以。 ln2≈0.693。 2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x , 21x x +的绝对误差限 解:记126.1025, 80.115x x == 则有11232411 10, | 102|||2 x x x x --≤?-≤?- 所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤-- 3411 80.11610 6.10102522 0.007057-==??+≤?? 1212112243|()|||11 |10100.0005522 |x x x x x x x x --≤≤?+?=+-+-+- 3、一个园柱体的工件,直径d 为10.250.25mm,高h 为40.00 1.00mm,则它的体 积V 的近似值、误差和相对误差为多少。 解: ()() 22222222 4 314210254000000330064 221025400002510251002436444 3300624362436 0073873833006 , .....; ()()()......, ..().()..% .r d h V d h V mm d h V dh d d h V mm V V V πππππεεεεε= ≈=??===+=???+?==±====第二章: 1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ), 计算L 3(0.5)及N 3(-0.5) x -2 -1 0 1 f (x ) -1 1 2

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析第一章学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的数的相关容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于数,不明白数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等容。 2.2误差知识与算法知识 2.2.1误差来源

误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差: 绝对误差限: (2)相对误差是指绝对误差在原数中所占的比例。 相对误差: 相对误差限: 结论:凡是经过四舍五入而得到的近似值,其绝对误差不超过该近似值末位的半个单位。 (3)有效数字的定义 有效数字的第一种定义:设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即则称近似值a准确到小数点后第k位。从小数点后的第k位数字直到最左边非零数字之间的所有数字都叫有效数字。

数值分析1-4习题及答案

1、 0.1%,要取几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若* 12.30x =是经过四舍五入得到的近似数,则它有几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),…, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,…,n ),且ω(x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) ∑=n k k k y x l 0 )( (b) ∑='n k k k k x l y 0)( (c) ∑=n k k k x y 0)(ω (d) ∑='n k k k x y 0)(ω 4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式 33()6 P x x y 的 的系数是,则 等于 ( ) (a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)i x i =为互异结点,()i l x 为拉格朗日插值基函数,则 4 2 () ()i i i x x l x =-∑等于 ( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),( )(), ' () ' (),22 ()()_________________________f x C a b H x a b a b H a f a H b f b H f H a f a f x H x ∈++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式 2()P x =___2537 623x x +-__,其余项表达式 R(x)=__() (1)(1)(4) [1,4]6 f x x x ξξ'''-+-∈-_______________________ 3、 确定求积公式1 0121 ()(1)(0)'(1)f x dx A f A f A f -≈-++? 中的待定参数,使其代数精度 尽量高,则A 0=_ 29__________, A 1=__169________, A 2=_29 _______,代数精度=__2_________。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析习题

习题1 1. 填空题 (1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免 误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字. 3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差. 4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限. 95123450304051104000003346087510., ., , ., .x x x x x -==?===? 5. 证明1.2.3之定理1.1. 6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形) 7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差. 8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字. 9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有 r r xf x f x k x k f x εε'≈= () (())(),() 其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2 x π ≈时是病态问题. 11. 定义多元函数运算 1 1 1,,(),n n i i i i i i S c x c x εε====≤∑∑其中 求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值分析课程第五版课后习题答案(李庆扬等)

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析第三章作业

16. 求运动方程. 解:设运动方程为S = at + b,由给定数据得 616 1 =∑=i ,7.1461 =∑=i i x , 63.536 1 2=∑=i i x , 2806 1 =∑=i i y ,10786 1 =∑=i i i y x 得 ?? ?=+=+1078 63.537.14280 7.146a b a b 解得 b=-7.8550478,a=22.25376 运动方程为S=22.25376t-7.8550478 17.已知实验数据如下: 用最小二乘法求一个形如2bx a y +=的经验公式,并计算均方误差. 解:由题意{} 2102)(,1)(,,1x x x x span ===??φ, 所以51), (2 5 1 00==∑=i ?? 7277699),(5 1 4 11== ∑=i i x ?? 5327),(5 12 10== ∑=i i x ?? 4.271),(5 1 0== ∑=i i y y ? 5.369321),(5 1 2 1==∑=i i i y x y ? 得

?? ?=+=+5.36932172769953274 .27153275b a b a 解得:a=0.9726046,b=0.0500351 所以经验公式为 y=0.9726046+0.0500351x 2 均方误差为 : [ ] 130.0)01693.0(),(),(||||||||2 12 11022 2==--=y b y a y ??δ 18.在某化学反应中,由实验得分解物浓度与时间关系如下: 用最小二乘法求)(t f y = 解:将给定数据点画出草图,可见曲线近似指数函数,故设t b ae y =,两边取对数得 t b Ina Iny + = 记Ina A Iny y ==,,则有 t b A y 1 += 即t x x t span 1 )(,1)(},1,1{10===??φ,计算 ∑=== 11 1 2 00111),(i ??,∑=== 11 1 2 1106232136.01 ),(i i t ?? 6039755.0t 1 ),(),(11 1 i 1010∑ === =i ???? ∑=== 11 1 0639649.13),(i i y y ? ,∑=== 11 115303303.0),(i i i t y y ? 从而解得法方程为 ?? ?=+=+5303303 .0062321366.06039755.0639649 .1360397556.011b A b A

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

数值分析第一章作业

西安邮电大学2018级工硕学位课 数值分析第一章作业 1.数值计算方法设计的基本手段是( ). (A) 近似 (B) 插值 (C) 拟合 (D) 迭代 2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ). (A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差 3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ). (A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差 4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响. (A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似 5.当N 充分大时,利用下列各式计算121N N dx I x +=+?,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+ 6. 计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么? (B) 3(3- (D) 99-7.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过5110-?,则计算所得体积的相对误差限如何估计?. 8.已知近似值0.500x *=的误差限*4()510x ε-≤?,32()21f x x x x =---. ①用秦九韶算法计算()f x *. ②求(())f x ε*,并说明x *及()f x *各有几位有效数字. 9. 分析算法011111,,32,1,2,,k k k y y y y y k +-?==???=-=? 的数值稳定性.

数值分析(第五版)计算实习题第三章

数值分析计算实习题第三章 第二次作业: 题一: x=-1:0.2:1;y=1./(1+25.*x.^2); f1=polyfit(x,y,3) f=poly2sym(f1) y1=polyval(f1,x) x2=linspace(-1,1,10) y2=interp1(x,y,x2) plot(x,y,'r*-',x,y1,'b-') hold on plot(x2,y2,'k') legend('数据点','3次拟合曲线','3次多项式插值') xlabel('X'),ylabel('Y') 输出:f1 = 0.0000 -0.5752 0.0000 0.4841 f = (4591875547102675*x^3)/81129638414606681695789005144064 - (3305*x^2)/5746 + (1469057404776431*x)/20282409603651670423947251286016 + 4360609662300613/9007199254740992 y1 = -0.0911 0.1160 0.2771 0.3921 0.4611 0.4841 0.4611 0.3921 0.2771 0.1160 -0.0911

x2 = -1.0000 -0.7778 -0.5556 -0.3333 -0.1111 0.1111 0.3333 0.5556 0.7778 1.0000 y2 = 0.0385 0.0634 0.1222 0.3000 0.7222 0.7222 0.3000 0.1222 0.0634 0.0385 题二: X=[0.0 0.1 0.2 0.3 0.5 0.8 1.0]; Y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46]; p1=polyfit(X,Y,3) p2=polyfit(X,Y,4) Y1=polyval(p1,X) Y2=polyval(p2,X)

数值分析第三章函数逼近与曲线拟合习题答案

第三章 函数逼近与曲线拟合 1. ()sin 2 f x x π =,给出[0,1]上的伯恩斯坦多项式1(,)B f x 及3(,)B f x 。 解: ()sin ,2 f x π = [0,1]x ∈ 伯恩斯坦多项式为 (,)()()n n k k k B f x f P x n ==∑ 其中()(1)k n k k n P x x x k -??=- ??? 当1n =时, 01()(1)0P x x ?? =- ??? 1101()(,)(0)()(1)()1(1)sin(0)sin 022P x x B f x f P x f P x x x x ππ=∴=+??=-?+ ??? = 当3n =时, 3 022 122233 31()(1)01()(1)3(1) 03()(1)3(1) 13()3P x x P x x x x x P x x x x x P x x x ?? =- ?????=-=- ????? =-=- ????? == ???

3 3022322 33223 (,)()() 03(1)sin 3(1)sin sin 6 3 2 3(1)(1)25632221.50.4020.098k k k B f x f P x n x x x x x x x x x x x x x x x π π π =∴==+-+-+= --+-=++≈--∑ 2. 当()f x x =时,求证(,)n B f x x = 证明: 若()f x x =,则 (,)()()n n k k k B f x f P x n ==∑ 001 11(1)(1) 11(1)(1)(1)(1)!(1)[(1)(1)1](1)(1)!1(1) 11(1)1[(1)]n k n k k n k n k k n k n k k n k n k k n k n k k n n k x x k n k n n n k x x n k n n k x x k n x x k n x x x k x x x x -=-=-=-=----=-?? =- ???--+=-----+=---??=- ?-??-??=- ?-?? =+-=∑∑∑∑∑ 3.证明函数1,,,n x x 线性无关 证明: 若20120,n n a a x a x a x x R ++++=?∈ 分别取(0,1,2,,)k x k n = ,对上式两端在[0,1]上作带权()1x ρ≡的内积,得

数值分析第三版课本习题及答案

第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指出它们就是 几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增加,而相对误 差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , 1 , 2 时, f(x)= 0 , 3 , 4 ,求f(x)得二次插值多项式、 3.给出f(x)=ln x得数值表用线性插值及二次插值计算ln 0、54 得近似值、

相关主题