搜档网
当前位置:搜档网 › 压力铸造、挤压铸造及气压铸造成形技术

压力铸造、挤压铸造及气压铸造成形技术

压力铸造、挤压铸造及气压铸造成形技术
压力铸造、挤压铸造及气压铸造成形技术

压力铸造、挤压铸造及气压铸造成形技术

这三种铸造技术适用于颗粒、短纤维及晶须增强复合材料、长纤维复合材料的制作。使用这类方法时一般要按零件的形状预先制得增强物预制块。预制块可以通过非有机粘结剂粘结后预压成块,也可烧结而成。

1、压力铸造成形技术

使用压力铸造时,将预制块放入带有分型机构的半型中,合型后在200MPa压力作用下使液体迅速充型。这种方法操作简单,但由于充型速度高、凝固速度快,极易使铸件形成内部气孔缺陷。

2、挤压铸造成形技术

挤压铸造和压力铸造的不同点是:将预热后的预制块放入预热的铸型中,在重力下浇入液态金属或合金,然后在压头作用下使液体渗入预制块,液态金属在压力下凝固。有人用这种方法制取Al2O3短纤维锌基复合材料。日本有人直接将碳及玻璃颗粒放入铸型,然后压头作用在锡液上使金属体挤入铸型。

不采用预制块的另一种做法是将机械搅拌和挤压结合起来。我国有人用这种方法制取了高质量的铝/石墨复合材料及铸件。在搅拌阶段,以400~1000r/min转速搅拌金属液体,然后以10~90g/min的速度将石墨粉加入含有镁0.25~0.50wt%的铝液中。

在挤压阶段,采用10t油压机,压力为91MPa左右。田中荣一也用此法生产Al2O3颗粒增强锡基复合材料。李爱华将撑融铸造与挤压铸造结合起来,将重量比为铝合金的3%~6%的包镍铜石墨粉加入到液固合金浆液中,然后将其迅速挤压成轴承毛坯。搅拌器表面涂有耐热矾土水泥,转速为400~1500r/min。挤压设备为YA32-100型挤压机,加压速度为7mm/s。

不少人对复合材料的挤压铸造在理论上做了深入探讨。储双杰等在利用挤压铸造制造碳纤维增强A356复合材料时特别研究了合金的凝固过程。发现在浇注温度高时其凝固发生在整个浸渗过程之后。由于模具和纤维的激冷作用,初生铝固溶体相在纤维间隙开始形核并逐渐向纤维表面长大;而共晶硅相则是依附在碳纤维表面形核及长大。并发现,随凝固冷却速度的降低,共晶硅相的形态由蠕虫状向针状、块状转变。

同样有人在研究CF/Al-4.5Cu复合材料的挤压铸造时,发现初生铝固溶体也是在纤维间隙形核并向纤维表面长大;而共晶θ相则依附于碳纤维表面形核长大。由于这种材料的界面结合很强,其断裂特征为脆性断裂。LabibA还研究了冷却速度(0.1~100℃s-1)对挤压铸造G-SiC增强铝基复合材料凝固组织的影响,发现冷却速度越大,SiC颗粒的分布越均匀。

3、气压铸造及真空压渗铸造成形技术

这种方法是在气体压力作用下将金属液体压入增强材料制成的预制型间隙中。RohatgiPK用此法生产铝基SiC及Al2O3纤维增强复合材料。用长纤维绕制成预制型。液体温度在700~800℃范围,铸型预热温度为450~500℃,气体压力为1MPa左右,比挤压所用压力低得多。所制产品中纤维体积量达40%~60%。事先采用化学镀方法通过CuSO4和HCHO反应在碳纤维表层镀一层铜,然后将镀铜纤维放入石英管中,再将石英管浸入铝液中保温2min,然后通过0.49MPa的氮气作用于液态金属表面使液体充入石英管中。

我国有人采用真空压渗技术生产铝基电子封装复合材料。在真空状态下熔化金属,

浇注时撤去真空,通入气体使液体受压,将液体通过升液管压入上部铸型中的预制型内。80年代中期Dural-Al基复合材料公司提出了搅拌加气压铸造的新工艺。

其工艺要点是:整个制造过程包括合金熔化、增强剂的加入、搅拌及浇注均处于真空状态;搅拌器采用多级倾斜叶片,转速提高到2500r/min;保证足够的保压时间,以解决液体与增强物的结合问题;采用水冷工艺,使合金中的溶质偏析程度减小。这种方法适合于颗粒增强复合材料的制造

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

铸造成型工艺

名词解释 1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法 2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁) 4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢) 5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性 6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。 7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法 9.金属型铸造:以金属为铸型、在重力下的液态成形方法。 10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法 11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法 12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺 13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型 14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法 15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法 16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成 17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面 18.集渣包:横浇道上被局部加大加高的部分 19.浇口比:直浇道,横浇道,内浇道截面积之比 20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷 分型面:两半铸型相互接触的表面。分为平直和曲面。作用:便于造型、下芯和起模具。 21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块 22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头 23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 冒口=冒口区+轴线缩松区+末端区 24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块 26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法 27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。大而集中的称为锁孔,细小而分散的称为缩松 28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值 29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数 30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。它既保留原组分的主要特征,又获得了原组分不具备的优越性能 31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。 32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道 33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例 34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法 35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

重庆大学材料成型技术基础--名词解释

名词解释 一、二章(绪论+铸造成型): 1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松。 2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。3同时凝固:由顺序凝固的定义可得。 4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。 5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析。 6微观偏析:指微小范围内的化学成分不均匀现象。 7流动性:液态金属自身的流动能力称为“流动性”。 8冲型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫冲型能力。 9正偏析:当溶质的分配系数K>1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析。 10逆偏析:当溶质的分配系数K<1的合金进行凝固时,越是

后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。 11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩。 12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔。 14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。 15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。 三章(固态材料塑性成型) 1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 2加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬

材料与成形技术历年试卷1

上海大学 材料与成形技术基础(二)试卷A 2002.1 一、改错题(将下表不合适结构改为合适结构,并写出改进理 1.铸件 2.铸件 4.自由锻件

6.拉深件 7.手弧焊 8.点焊 9.手弧焊 10.焊接 合适的毛坯成形或连接方法。(每空1分,共16分)

8. 大口径管环缝对接

三、单项选择题(每题1分,共10分) 1. 今有青铜仿古铜像须按普通人尺寸的十分之一大小进行仿形 铸造,应采用() (1) 金属型铸造 (2) 压力铸造 (3) 熔模铸造 (4) 普通砂型铸造 2. 对于高熔点合金精密铸件的成批生产,常采用() (1) 压力铸造 (2) 低压铸造 (3) 熔模铸造 (4) 金属型铸造 3. 助动车发动机缸体,材料ZL202,100万件,其毛坯成形工艺为 () (1) 低压铸造 (2) 压力铸造 (3) 离心铸造 (4) 熔模铸造 4. 下列模锻设备中最适宜进行拔长工步的是() (1) 模锻锤 (2) 机械锻压机 (3) 摩擦压力机 (4) 平锻机

5. 模锻时,当要求坯料某部分横截面减少,以增加该部分的长度时 一般选用() (1) 滚压模膛 (2) 拔长模膛 (3) 弯曲模膛 (4) 切断模膛 6. 当凸模和凹模之间间隙大于板料厚度,凸模又有圆角时,此冲压模 为() (1) 冲孔模 (2) 落料模 (3) 切断模 (4) 拉深模 7. 结构钢焊接时焊条选择的主要原则是焊缝与母材在下列哪一方面 应相等() (1) 化学成份 (2) 结晶组织 (3) 强度等级 (4) 抗腐蚀性能 8. 轿车油箱生产时既经济合理又生产效率高的焊接方法是() (1) 二氧化碳焊 (2) 点焊 (3) 缝焊 (4) 埋弧焊 9. 大批生产ABS小齿轮的成形方法应是() (1) 粉末冶金 (2) 压力铸造 (3) 注塑 (4) 机械切削 10. 最便宜的快速成形方法是() (1) FDM (2) SLA (3) LOM (4) SLS 四、多项选择题(每题2分,共20分) 1.可采用金属铸型的铸造方法有:()()()()() (1) 压力铸造 (2) 离心铸造 (3) 低压铸造 (4) 机器造型 (5) 熔模铸造 2. 为提高铸铁件的强度,尽量选用:()()()()() (1) 增大壁厚 (2) 改进结构 (3) 增设加强筋 (4) 增设补缩冒口 (5) 改善结晶条件

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

材料成形技术基础试题

材料成形技术基础复习题 一、填空题 1、熔模铸造的主要生产过程有压制蜡模,结壳,脱模,造型,焙烧和浇注。 2、焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 3、接的主要缺陷有气孔,固体夹杂,裂纹,未熔合,未焊透,形状缺陷等。 4、影响陶瓷坯料成形性因素主要有胚料的可塑性,泥浆流动性,泥浆的稳定性。 5、焊条药皮由稳弧剂、造渣剂、造气剂、脱氧剂、合金剂和粘结剂组成。 6、常用的特种铸造方法有:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造和陶瓷型铸造等。 7、根据石墨的形态特征不同,可以将铸铁分为普通灰口铸铁、可锻铸铁和球墨铸铁等。 二、单项选择题 1.在机械性能指标中,δ是指( B )。 A.强度 B.塑性 C.韧性 D.硬度 2.与埋弧自动焊相比,手工电弧焊的优点在于( C )。 A.焊接后的变形小 B.适用的焊件厚 C.可焊的空间位置多 D.焊接热影响区小 3.A3钢常用来制造( D )。 A.弹簧 B.刀具 C.量块 D.容器 4.金属材料在结晶过程中发生共晶转变就是指( B )。 A.从一种液相结晶出一种固相 B.从一种液相结晶出两种不同的固相 C.从一种固相转变成另一种固相 D.从一种固相转变成另两种不同的固相 5.用T10钢制刀具其最终热处理为( C )。 A.球化退火 B.调质 C.淬火加低温回火 D.表面淬火 6.引起锻件晶粒粗大的主要原因之一是( A )。 A.过热 B.过烧 C.变形抗力大 D.塑性差 7.从灰口铁的牌号可看出它的( D )指标。 A.硬度 B.韧性 C.塑性 D.强度 8.“16Mn”是指( D )。 A.渗碳钢 B.调质钢 C.工具钢 D.结构钢 9.在铸造生产中,流动性较好的铸造合金( A )。 A.结晶温度范围较小 B.结晶温度范围较大 C.结晶温度较高 D.结晶温度较低 10.适合制造齿轮刀具的材料是( B )。 A.碳素工具钢 B.高速钢 C.硬质合金 D.陶瓷材料 11.在车床上加工细花轴时的主偏角应选( C )。 A.30° B.60° C.90° D.任意角度 12.用麻花钻加工孔时,钻头轴线应与被加工面( B )。 A.平行 B.垂直 C.相交45° D.成任意角度 三、名词解释 1、液态成型液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。 2、焊缝熔合比熔焊时,被熔化的母材金属部分在焊道金属中所占的比例,叫焊缝的熔合比。 3、自由锻造利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻 4、焊接裂纹在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面所产生的缝隙称为焊接裂纹。 5、金属型铸造用重力浇注将熔融金属浇入金属铸型(即金属型)中获得铸件的方法。 四、判断题: 1、铸造的实质使液态金属在铸型中凝固成形。(√) 2、纤维组织使金属在性能上具有了方向性。(√) 3、离心铸造铸件内孔直径尺寸不准确,内表面光滑,加工余量大。(×)

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

材料成型技术基础复习重点

材料成型技术基础复习重点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.1 1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。

材料成型技术基础复习重点资料讲解

材料成型技术基础复 习重点

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1

材料成形技术及新材料

材料成形技术及新材料 ` 一、项目定义 项目名称:材料成形技术及新材料 项目所属领域:基础产业和高新技术 涉及的主要学科:材料加工工程(国家重点学科)、材料学、材料物理化学 项目主要研究方向: ●塑性精成形及模具CAD/CAE/CAM的集成 ●铸造合金新材料及其精密成形 ●汽车现代焊接成形与控制 ●纳米材料相变及组织与性能 ●功能新材料在塑性精成型中的应用 二、项目背景 1.项目建设意义 材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。其中囊括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智 95

能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。 材料科学的基础研究为新材料、新技术提供理论基础,是现代国防、机械、汽车等支柱产业发展的共性基础。同时,材料科学基础研究揭示物质本质,促进成形新型材料,引导新型技术和行业,产生新的支柱产业。材料合成与加工新技术研究包含纳米结构材料和金属加工、聚合物加工、陶瓷加工、复合材料加工、快速凝固、超纯材料、近终型加工等各类合成与加工的基础研究。根据材料的服役效能来调整成份、组织、结构、进而对材料的制备工艺进行设计,将使材料在强韧性、抗摩擦、抗冲击、抗腐蚀等方面的性能大大提高,对材料科学的全面发展起关键促进作用。 吉林大学材料加工工程学科是国家重点学科,在师资队伍、人才培养、科学研究和设备条件等方面,居国内先进地位。以材料加工工程学科为核心,结合材料学、材料物理与化学,加强内涵建设、重视专业外延,强调团队精神,突出个性特色。力争跟住世界先进水平、缩小差距,在本学科群中的一些有相对优势的研究分支(金属塑性与超塑性、无模成形、变质铸造、纳米材料及应用和功能材料等)继续保持世界先进水平,对于我国在材料科学与工程领域实现教学和科研水平的跨越式发展有重要意义。 96

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

《材料成形技术基础》习题集答案

作业2 铸造工艺基础 专业_________班级________学号_______姓名___________ 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应

提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×) 7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

相关主题