搜档网
当前位置:搜档网 › 数字地面模型(2015-2016)

数字地面模型(2015-2016)

数字地面模型(2015-2016)
数字地面模型(2015-2016)

2015~2016学年第二学期《数字地面模型》研究生试题

一、 DEMs的内插方法主要分为哪几类?请论述每类内插方法的适

用范围与特点。实际使用中应考虑那些因素合理使用这些内插

方法。

答:(1)DEMs的内插方法主要分为整体内插、分块内插、单点内插及剖分内插。

(2)整体函数内插法的优点是:易于理解,简单地形特征因为参考点比较少,选择低次多项式来描述就可以了。但当地貌复杂时,需要增加参考点的个数。

缺点是虽然选择高次多项式固然能使数学面与实际地面有更多的重合点,但由于多项式是自变量幂函数的和式,参考点的增减或移位都需对多项式的所有参数做全面调整,从而参考点间会出现难以控制的振荡现象,使函数极不稳定。因此在DEM内插中通常不采用整体内插法。

(3)分块内插是把参考空间分成若干分块,对各分块使用不同的函数。这时的问题是要考虑各相邻分块函数间的连续性问题。相对于整体内插,分块内插能够较好地保留地物细节,并通过块间重叠保持了内插面的连续性,是应用中较常选用的策略。分块内插方法的一个主要问题是分块的大小的确定。典型的局部内插有:线性内插、局部多项式内插、双线性多项式内插、样条函数内插等、多面叠加内插法、有限元法和最小二乘配置法等。

(4)逐点内插法是以待插点为中心,定义一个局部函数去拟合周围的数据点,数据点的范围随待插点位置的变化而移动,因此又称移动曲面法。具体有移动拟合法、加权平均法和Voronoi图法。逐点内插应用简便,但计算量较大。其关键问题在于内插窗口域的确定。这不仅影响到内插的精度,还关系到内插速度。Voronoi图的点内插算法,这被认为是目前较好的一类逐点内插法。

(5)各种内插方法在不同的地貌地区和不同采点方式下有不同的误差。应用时要根据各方法的特点,结合应用的不同侧重,从内插精度、速度等方面选取合理的最优的方法。

二、简述利用DEM计算挖填土方量的计算方法。

方格网法

将场地划分为边长10 m~50 m的正方形方格网,方格网的一边与场地坐标网平行,方格网的边长与地形和土方精度要求有关。用水准仪或全站仪测量出方格网各个角点的原地面标高。根据每个格网节点的原地面标高和设计标高得到该节点的施工填挖高度,然后分别计算每一方格的填挖土方量。

V = S*(HA HB HC HD)/4(1)

式中,S为格网面积;HA,HB,HC,HD为格网节点的填挖高度。

格网法

将挖方区或填方区所有方格计算的土方量汇总,即得场地挖方量和填方量的总土方量。为了解整个场地的挖填区域状态,计算前应先确定“零线”位置。零线即挖方区与填方区的分界线,在该线上的施工高度为零。零线的确定方法是:在相邻角点施工高度为一挖一填的方格边线上,用插入法求出零点位置,将各相邻的零点连接起来即为零线。零线确定后,便可进行土方量计算。

方格中土方的计算有以下几种方法,即四角棱柱体法、四方棱柱体法、平均高度法和三角棱柱体法。方格网法计算土方量比较复杂,一般通过相关软件辅助计算。

断面法

将场地按一定的距离间隔划分为若干个相互平行的横断面并测量各个断面的地面线,将设计的标准断面与原地面断面组成的断面图,如图3,计算每条断面线所围成的面积;以相邻两断面的填挖面积的平均值乘以间距,得出每相邻两断面间的体积;将各相邻断面的体积加起来,求出总体积,这种计算土方量的方法称为断面法。

等高线法

场地地面起伏较大,且计算挖方时,可用等高线法估算土石方量,在地形图精度较高时更为合适。

等高线法的工作内容与步骤和方格网法大致相同,不同之处在于计算场地平均高程的方法,该方法是从场地设计高程的等高线开始,算出各等高线所包围的面积,分别将相邻两条等高线所围面积的平均值乘以等高距,就是此两等高线平面间的土方量,再求和即得总挖方量。

三、试设计某一算法实现从DEM中提取坡面变率因子的过程与方法。1)用原始DEM数据的最大高程值减去原始DEM数据,得到与原来地

形相反的DEM数据,即反地形DEM数据。 2)基于反地形DEM数据求算坡向值; 3)利用SOA方法求算反地形的坡向变率,记为SOA2,由原始DEM数据求算出的坡向变率值为SOA1; 4)将两次求算的坡向变率值套入下面公式即可得到的经过误差校正的SOA数据。

四、什么是误差?什么是不确定性?二者有何区别和联系。

误差(error):通常被定义为观测数据与其真值之间的差异。从性质上可分为系统误差、随机误差和粗差。DEM误差一般是随机误差。

不确定性(uncertainty):指对真值的认知或肯定的程度,是更广

泛意义上的误差,包含系统误差、偶然误差、粗差、可度量和不可度量误差、数据的不完整性、概念的模糊性等。

五、简要叙述实现不同结构DEM间的相互转换的技术路线和方法。等高线生成不规则三角网(TIN)

(1)逐点插入法

Lawson(1977)最早提出逐点插入法建立D-TIN的基本思想。此后,Lee,Watson,Floriani和Puppo等众多学者先后完善和改进了这—算法。该算法的基本思想是:在—个包含所有数据点的初始多边形中,将未处理的点逐次加入到已经存在的D-TIN中,每次插入—个点后,将D-TIN重新定义①首先定义一个包含所有数据点的初始四边形;

②从数据集中任取一点A,插人到初始多边形中建立初始四个三角网:

③然后按以下步骤进行迭代计算,直至将所有的数据点都被处理:a.从数据集中取出一点P;

b.找出P所在的三角形,将P与三角形的三个顶点相连,得到三个新的三角形;

c.用局部优化方法从里到外优化三角网。

三角网生长法

国l逐点插入法

本文中的三角网生长法是以角度最大为条件搜索新三角形顶点,进而构建三角网,因此又可称为角度判断法建立TIN,三角网生长算法的基本步骤是:

①在数据中取出任意一点A,查找距离此点最近的点B,相连后作为初始基线a;

②以初始基线a为扩展边,搜索扩展边右侧的数据点,找出使扩展边张角0最大的点P作为三角形的第三点,从而构建初始三角形;

③以新生成的三角形的边为扩展边,按照张角最大

原则搜寻第三点,建立新的三角形。在搜索第三点时还要避免新生三角形与以生成的三角形的重复和交叉的情况。因此。在搜索第三点时,规定新生三角形的三边不能与已经生成的三角形的边出现交叉,而且不允许出现重复三角形。

④重复步骤(3),直至不会再有新三角形生成为止。此时即将整个区域的数据点生成三角网。

(3)将等高线作为特征线

前面两个章节所述方法都是等高线离散点生成TIN的方法。这两种方法只是独立的考虑等高线上的各数据点,并未考虑到等高线数据结构的特殊性,所以会出现三角形穿越等高线和三个顶点都在同一条等高线上(即所谓的“平三角形”)的情况。这些三角形会降低三角网与地表的逼近程度,从而降低建模精度。对于三角形跨越等高线的情况,可以将等高线作为约束线参与三角网的生成,规定所有三角形不能跨越等高线。将约束线插入三角网中,可以有两种形式:一种是首先以约束数据集建立非约束delaunay三角网(初始三角网),然后引入约束线段以嵌入之(调整过程);另一种是在生成每个三角形的同时即检查生成的三角形是否跨越等高线,规定跨越等高线的三角形为无效三角形。

高线生成规则格网

(1)等高线离散化法

等高线离散化法是将等高线数据视为离散的数据点,利用这些离散数据内插得到各格网点的高程值。本设计中应用移动平均法内插格网点高程值。移动平均法是一种简化的逐点插入法。其计算方法是:首先内插点为中心确定一个取样窗口,通过窗口获得一定数量的采样点;然后以距离倒数为权,计算采样点的加权平均值。此方法的插值结果往往会出现一些许多不令人满意的结果,而且数字化等高线时越小心,采样点越多,问题越严重。问题不在于计算插值权重系数的理论假设,也不在于平滑等高线是否真实反映地形,而在于估计未知格网点的高程要在一定范围内搜索落在其中的已知点数据,再计算它的加权平均值。如果搜索到的点都具有相同的高程,那待插值点的高程也是此高程值。结果导致在每条等高线周围的狭长区域内具有与等高线相同的

高程。出现了“阶梯”地形。

(2)等高线直接内插法

等高线直接内插法是针对等高线数据的格网点内插方法,可以避免出现“阶梯”地形的问题。实际应用中通常使用两种方法。一种方法是沿预定轴方向搜寻与等高线的交点,然后利用这些交点坐标内插出格网点高程。本次设计中采用的“八剖面临近点加权平均法”就属于此类方法。如图4所示,格网点P的高程为8个点的加权平均数。另一种方法是沿内插点最陡坡度的内插,它与人工内插过程相似。本文中所采用的“最陡方向线性内插”实际是一种近似最陡方向线性内插法。,该方法是比较得出四个方向上坡度最陡方向,再用线形内插的方法得出内插点的高程。此方法实际是对人工内插过程的近似模拟。

(3)等高线生成TIN法

利用等高线建立TIN后,可以由TIN解求该区域内任意一点的高程。TIN的内插与矩形格网的内插有不同的特点,其用于内插的点的检索比网格的检索要复杂。一般情况下仅用线性内插,即三角形三点确定的斜平面作为地表面,因而仅能保证地面连续而不能保证光滑。

六、简述基于航空影像建立三维景观的步骤和方法。

(1)在获取区域内的地形数据(通常是DEM)的基础上,在数字化航摄图像上按一定的点位分布要求选取一定数量(通常大于6个)的明显特征点,量测其坐标的精确值以及在地面的精确位置,据此按航摄像片的成像原理和有关公式(如直线线性交换、空间后方交会等)确定纹理图像(数字航摄图像)与相应地面之间的映射关系,解算出变换参数。

(2)利用生成三维地形图的透视变换原理,确定纹理图像与地形立体图之间的映射关系。

(3)于是,DEM数据递归细分后的每一地面点可依透视变换参数确定其在遥感图像中的位置,经重采样后获得其影响灰度,最后经透视分析、消隐、灰度转换等处理,将结果显示在计算机屏幕上,生成一幅以真实影像纹理构成的三维地形实景图。

第一章 通信系统概论

第一章通信系统概论 1.1 绪论 1.2 通信系统的组成 1.3 通信系统的分类与通信方式1.4 通信系统的质量指标 1.5 通信技术的发展

1.1 绪论 通信 广义上说用任何方法通过任何媒介跨时/空传递信息,均称为通信。

1.1 绪论 ◆通信的定义: 是指由一地向另一地进行消息的有效传递。 ◆通信的目的: 就是传递消息。 ◆本课程对通信的定义: 利用电子等技术手段,借助电信号(含光信号) 实现从一地向另一地进行消息的有效传递称为通信。

1.2 通信系统的组成 1.2.1 通信系统模型 信 源信宿噪声源 信道发送设备 接收设备产生或发出将信源产生的消息信号 变换成便于传送的形式从带有干扰的接收信号中正 确恢复出原始 信号 接受消息 的人或机 信号传输的通道各处噪声的集中表现

1.2 通信系统的组成 ◆信源:把待传输的消息转换成原始电信号,如电话 系统中电话机可看成是信源。 ◆发送设备:将信源和信道匹配起来,即将信源产生的 原始电信号变换成适合在信道中传输的信号。 ◆信道:信号传输的通道,可以是有线的,也可以是无 线的。 ◆接收设备:任务是从带有干扰的接收信号中恢复出相 应的原始电信号来。 ◆信宿:将复原的原始电信号转换成相应的消息。

1.2 通信系统的组成 1.2.2 模拟通信系统和数字通信系统1.信源消息分为两大类 连续消息离散消息 消息的载体是电信号,电信号的变化体现在某一参量的变化上(如连续波的幅度、频率或相位;脉冲波的幅度、宽度或位置)。 消息的状态连续变化或是不可数的。如语音、活动图片等消息的状态是离散的或是可数的。 如符号、数据等

数字高程模型

1、数字高程模型:它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(简称DTM)的一个分支,是表示区域D上的三维向量有限序列。 2、DTM:数字地形模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。地形表面形态的属性信息一般包括高程、坡度、坡向等。 3、TIN:不规则三角网,通过从不规则分布的数据点生成的连续三角面来逼近地形表面。 4、测绘4D产品(即DLG数字线划图、DRG数字栅格影像、DEM、DOM数字正射影像): DLG:现有地形图上基础地理要素分层存储的矢量数据集。数字线划图既包括空间信息也包括属性信息。DRG:数字栅格地图是纸制地形图的栅格形式的数字化产品。DEM:数字高程模型是以高程表达地面起伏形态的数字集合。DOM:数字正射影像利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像。 5、连续不光滑DEM:指每个数据点代表的只是连续表面上的一个采样值,而表面的一阶导数或更高阶导数不连续的情况。 6、数字地貌模型:是地貌形体及其空间组合的数字形式,是一维、二维、三维、四维空间地貌的可视描述和模拟。 7、DEM误差:DEM高程值与真实值的差异 9、插值:根据不同数据集的不同方式,DEM建模可以使用一个或多个数学函数对地表进行表示。根据若干相邻参考点的高程求出待定点上的高程值。(内插) 14、不规则镶嵌数据模型:用相互关联的不规则形状与边界的小面块集合来逼近不规则分布的地形表面 15、行程编码结构:对于一幅栅格图像,常常有行或列方向上相邻的若干点具有相同的属性代码,因而可采取某种方法压缩那些重复的记录内容,即只在各行或列数据的代码发生变化时依次记录该代码以及相同代码重复的个数,从而实现压缩 16、细节层次模型:对同一个区域或区域中的局部使用具有不同细节的描述方法得到的一组模型。 17、DEM元数据:描述DEM一般特征的数据,如名称、边界、测量单位、投影参数等。 18、数字高程模型的主要研究内容 (1)地形数据采集,地形高程数据获取是数字高程的首要环节。地形高程数据的分布、密度和精度对数字高程模型的质量有着非常重要的影响,数据采样策略、高精度快速数据采样技术等一直是DEM数据采样的主要研究内容之一。 (2)地形建模与内插,DEM是对地形表面的数字化表示,实际上是一种数学建模过程,如果需要该数学表面上其他位置处的高程值,可应用内插方法来进行处理。高度逼真、多尺度地形建模技术和快速高效的内插算法是数字高程模型永恒的主题。 (3)数据组织与管理,DEM是按一定结构组织在一起的地形数据,数据结构的好坏直接影响DEM 对地形的重建精度。地形表面具有多尺度特征,多尺度地形的表达与组织是DEM面临的主要课题之一。 (4)地形分析与地学应用,主要包括两个部分,即基本应用和地形分析应用,基本应用主要是在DEM上实现等高线地形图上的地形分析功能,如高程内插,坡度坡向计算,土方计算,地形结构识别等;地学分析应用与具体学科相联系,主要研究基于DEM的地学模型,地学过程模拟等内容。 (5)DEM可视化,实现以多种方式如等高线,晕渲图,线框透视,动画等在不同层面上对地形进行表达,观察和浏览。 (6)不确定性分析和表达,数字高程模型的精度对DEM的生产者和使用者都有重要的意义。DEM 精度研究包括DEM数据源精度、数据内插精度、数据模型精度、各种误差在DEM数据操作过程中的传播问题以及DEM数据生产中的质量控制策略等。

数字通信的系统的几种模型

数字通信系统的各部分作用 1、信源:把原始信息变换成原始电信号。 2、信源编码: ①实现模拟信号的数字化传输即完成A/D变化。 ②提高信号传输的有效性。即在保证一定传输质量的情况下,用竟可能少的数字脉冲来表示信源产生的信息。信源编码也称作频带压缩编码或数据压缩编码。 3、信道编码: ①信源编码的目的:信道编码主要解决数字通信的可靠性问题。 ②信道编码的原理:对传输的信息码元按一定的规则加入一些冗余码(监督码),形成新的码字,接收端按照约定好的规律进行检错甚至纠错。 ③信道编码又称为差错控制编码、抗干扰编码、纠错编码。 4、数字调制 ①数字调制技术的概念:把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的频带信号。 ②数字调制的主要作用:提高信号在信道上传输的效率,达到信号远距离传输的目的。 ③基本的数字调制方式:振幅键控ASK、频移键控FSK、相移键控PSK。 5、同步 ①同步的概念:指通信系统的收、发双方具有统一的时间标准,使它们的工作“步调一致”。 ②同步的作用:对于数字通信时是至关重要的。如果同步存在误差或失去同步,通信过程中就会出现大量的误码,导致整个通信系统失效。 6、信道: 信道是信号传输媒介的总称,传输信道的类型有无线信道(如电缆、光纤)和有线信道(如自由空间)两种。 7、噪声源: 通信系统中各种设备以及信道中所固有的,为了分析方便,把噪声源视为各处噪声的集中表现而抽象加入到信道。

数字通信系统的优缺点 ?一、数字通信系统的优点 1、抗干扰能力强 数字通信抗噪声性能好,还表现在微波中继通信时,它可以消除噪声积累。 这是因为数字信号在每次再生后,只要不发生错码,它仍然像信源中发出的信号一样,没有噪声叠加在上面。因此中继站再多,数字通信仍具有良好的通信质量。 而模拟通信中继时,只能增加信号能量(对信号放大),而不能消除噪声。 2、差错可控 数字信号在传输过程中出现的错误(差错),可通过纠错编码技术来控制,以提高传输的可靠性。 3、易加密 数字信号与模拟信号相比,它容易加密和解密。因此,数字通信保密性好。 4、易于与现代技术相结合 由于计算机技术、数字存贮技术、数字交换技术以及数字处理技术等现代技术飞速发展,许多设备、终端接口均是数字信号,因此极易与数字通信系统相连接。 二、数字通信系统的缺点 1、频带利用率不高 系统的频带利用率,可用系统允许最大传输带宽(信道的带宽)与每路信号的有效带宽之比来数字通信中,数字信号占用的频带宽。 2、系统设备比较复杂 数字通信中,要准确地恢复信号,接收端需要严格的同步系统,以保持收端和发端严格的节拍一致、编组一致。因此,数字通信系统及设备一般都比较复杂,体积较大。

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:

数字通信系统的模型

数字通信系统的模型 ? 数字通信系统的分类 ?数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。 1. 数字频带传输通信系统 数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。 另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。 综上所述,点对点的数字通信系统模型一般可用图1-3 所示。

需要说明的是,图中调制器/ 解调器、加密器/ 解密器、编码器/ 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制/ 加密/ 编码,则收端必须有解调/ 解密/ 译码。通常把有调制器/ 解调器的数字通信系统称为数字频带传输通信系统。 2. 数字基带传输通信系统 与频带传输系统相对应,我们把没有调制器/ 解调器的数字通信系统称为数字基带传输通信系统,如图1-4 所示。 图中基带信号形成器可能包括编码器、加密器以及波形变换等,接收滤波器亦可能包括译码器、解密器等。 3. 模拟信号数字化传输通信系统 上面论述的数字通信系统中,信源输出的信号均为数字基带信号,实际上,在日常生活中大部分信号(如语音信号)为连续变化的模拟信号。那么要实现模拟信号在数字系统中的传输,则必须在发端将模拟信号数字化,即进行A/D 转换;在接收端需进行相反的转换,即D/A 转换。实现模拟信号数字化传输的系统如图1-5 所示。

数字高程模型(DEM)考试题目答案

1、什么是数字高程模型,它有什么特点?答:广义:地形表面形态的数字化表达狭义:有限的离散高程采样数据对地表形态的数字化模拟特点1)精度的恒定性2)表达的多样性3)更新的实时性4)尺度的综合性 2、简述数字高程模型的主要研究内容。答:1)地形数据采集;2)数据组织与地表建模,主要分为不规则格网DEM(TIN)和规则格网DEM (GRID);3)精度分析与质量控制;4)可视化表达;5)应用与分析 3、试分析数字高程模型数据源及其特点 1)地面本身通过气压测高法、航空和测高仪等可获得精度要求不高的高程数据,以用于大范围高程要求不高的科学研究2)既有模拟/数字地形图a地形图现势性:纸质地形图制作工艺复杂、更新周期长,一般不能反映局部地形地貌的变化情况。b地形图存储介质:多为纸质存储介质导致地形图幅不同程度的变形。c地形图精度:不同的精度对应的等高线等高距、对地形的综合程度、成图方法各不同。3)航空/航天遥感影象航空/航天遥感影象的更新速度快,一直是地形图测绘和更新最有效、也是最主要的手段特点:遥感的几何畸变;遥感数据的增强处理;遥感数据的空间分辨率;遥感影像数据的解译与判读4)既有DEM数据4、简述数字高程模型数据采样中的基本布点方式及采样数据的属性。 基本布点方式:选择性采样、沿等高线采样、剖面法、规则格网采样、渐近采样、混合采样采样数据的三大属性:点的分布、密度、数据精度 5、目前主流的DEM数据采集方法有哪些?并对各方法进行对比分析。 1)从地面直接采集的方法全站仪数字采集、GPS采集(RTK方式);精度非常高(cm)、效率低、成本高、适用于小范围区域(特别是工程应用)2)地形图数据采集方法精度与底图有关(图上0.1~0.3mm)、效率高、成本低、适用于国家范围内的中低精度DEM的数据采集3)摄影测量数据采集方法精度比较高(cm~dm)、效率高、成本比较高、适用于国家范围内的较高精度DEM的数据采集 6、DEM数据获取中的新技术和方法有哪些?答:1)合成孔径雷达干涉测量数据采集方法; 2)机载激光扫描数据采集;3)基于声波、超声波的DEM数据采集 7、简述GRID的结构特点与数据组织形式。 答:1)基本数据结构数据头——角点坐标、格网间距、行列数、坐标系统、高程基准、无数据区值、高程放大系数、高程平移系数、最小高程、最大高程、数据存储类型、方位角数据体——按行列顺序排列的格网点高程阵列2)数据压缩a二进制存储b高程放大系数、高程平移系数c数字图象压缩算法3)DEM金字塔 8、如何GRID数据进行压缩?答:1)行程编码结构:对于一幅DEM,常常在行或列方向上相邻若干个具有相同的高程值,因而从第一列开始在格网单元数值发生变化时该值以及重复个数。2)块状编码结构:采用方形区域作为记录单元,每个记录单元的初始值(行号、列号)、格网单元高程值和方形区域半径所组成的单元组。3)四叉树数据结构:首先把一个图幅等分成四个部分,逐块检查起栅格值若每个子区所有的栅格都含有相同值时,该块不在往下分,否则,该去在分成四个区域,如此递归下去,直到子区都含有相同值为止 9、简述TIN的存储结构和特点。答:在TIN模型中的基本元素有三角形顶点、边和面 基本元素间的拓扑关系:存在点与线、点与面、线与面、面与面的拓扑关系 基本数据结构:三角形顶点坐标文件和组成三角形三顶点文件 10、DEM表面建模中常用的函数模型有哪些?各适用于哪种类型的表面模型? 线性内插:连续而不光滑双线性内插;局部光滑连续,整体不光滑 三次样条函数线性内插、双线性内插、三次样条函数是适合规则分布采样点的内插函数。

第三章 空间数据采集与处理练习资料

一、单选题 1、对于离散空间最佳的内插方法 是: A.整体内插法 B.局部内插法 C.移动拟合法 D.邻近元法 2、下列能进行地图数字化的设备 是: A.打印机 B.手扶跟踪数字化仪 C.主 机 D.硬盘 3、有关数据处理的叙述错误的 是: A.数据处理是实现空间数据有序化的必要过程 B.数据处理是检验数据质量的关键环节 C.数据处理是实现数据共享的关键步骤 D.数据处理是对地图数字化前的预处理 4、邻近元法 是: A.离散空间数据内插的方法 B.连续空间内插的方法 C.生成DEM的一种方法 D.生成DTM的一种方法 5、一般用于模拟大范围内变化的内插技术是: A.邻近元法 B.整体拟合技术 C.局部拟合技术 D.移动拟合法 6、在地理数据采集中,手工方式主要是用于录入: A.属性数据 B.地图数据 C.影象数 据 D.DTM数据

7、要保证GIS中数据的现势性必须实时进行: A.数据编辑 B.数据变换 C.数据更 新 D.数据匹配 8、下列属于地图投影变换方法的 是: A.正解变换 B.平移变换 C.空间变 换 D.旋转变换 9、以信息损失为代价换取空间数据容量的压缩方法是: A.压缩软件 B.消冗处理 C.特征点筛选 法 D.压缩编码技术 10、表达现实世界空间变化的三个基本要素是。 A. 空间位置、专题特征、时间 B. 空间位置、专题特征、属性 C. 空间特点、变化趋势、属性 D. 空间特点、变化趋势、时间 11、以下哪种不属于数据采集的方式: A. 手工方式 B.扫描方式 C.投影方 式 D.数据通讯方式 12、以下不属于地图投影变换方法的是: A. 正解变换 B.平移变换 C.数值变 换 D.反解变换 13、以下不属于按照空间数据元数据描述对象分类的是: A. 实体元数据 B.属性元数据 C.数据层元数据 D. 应用层元数据 14、以下按照空间数据元数据的作用分类的是: A. 实体元数据 B.属性元数据 C. 说明元数据 D. 分类元数据 15、以下不属于遥感数据误差的是: A. 数字化误差 B.数据预处理误差 C. 数据转换误差 D. 人工判读误差

数字高程模型 试题

数字高程模型试题 Zzh整理 一、名词解释 1、数字高程模型(DEM):通过有限的地形高程数据实现对地形曲面的数字化模拟,或者说,地形表面的数字化表示。Digital Elevation Model,缩写DEM.。 二、填空(选择、判断) 1、地形表达的历史演进过程,经历了象形绘图法、写景法、等高线地形图、地貌晕渲图、航空摄影图像、遥感图像、数字地形表达等7个阶段。 2、DEM按结构分类包括:基于面元的DEM、基于线单元的DEM、基于点的DEM;按连续性分类,包括:不连续DEM、连续但不光滑DEM(逐点内插的格网DEM、TIN)、光滑DEM(样条函数内差的格网DEM);按范围分类,局部DEM、区域DEM、全局DEM。 三、问答题 1、DEM的特点。 (1)容易用多种形式显示地形信息。地形数据经计算机处理后能产生不同比例尺的纵横断面图与立体图,而常规地图一旦制作形成,比例尺不容易改变,绘制其他的地形图需要人工处理; (2)精度不会损失,没有载体变形的问题; (3)容易实现自动化、实时化。将修改信息直接输入计算机,软件处理后生成各种地形图。 (4)快速计算、获取DEM分辨率范围内的高程数据。 2、在ArcGIS中,如何通过纸质等高线地形图生成不同形式的DEM。 (1)纸质等高线地形图扫描; (2)在ArcMap中配准(选取投影和坐标系); (3)等高线地形图矢量化并给每条等高线赋以属性值(高程); (4)运用Arctoolbox—Convertiontools—features to raster工具将矢量线转化为栅格线(每个栅格的值为高程); (5)在ArcScence中,运用convert—raster to feature将栅格线转化为矢量点数据文件; (6)在ArcScence中,运用3Danalyst—inpolate to raster—Idw进行差值;(7)三维显示(在属性表中设置高程); (8)在ArcScence中,运用3Dannlyst—convert—raster to Tin 转化为TIN。 第2讲数据获取

通信系统的组成

通信系统的组成 1.2.1 通信系统的一般模型 实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。以基本的点对点通信为例,通信系统的组成(通常也称为一般模型)如图 1-1 所示。 图 1-1 通信系统的一 般模型 图中,信源(信息 源,也称发终端)的作 用是把待传输的消息转 换成原始电信号,如电 话系统中电话机可看成是信源。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式,。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。 发送设备的基本功能是将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式;对传输数字信号来说,发送设备又常常包含信源编码和信道编码等。 信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。 在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。 信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。 图 1-1 给出的是通信系统的一般模型,按照信道中所传信号的形式不同,可进一步具体化为模拟通信系统和数字通信系统。 1.2.2 模拟通信系统 我们把信道中传输模拟信号的系统称为模拟通信系统。模拟通信系统的组成可由一般通信系统模型略加改变而成,如图 l-2 所示。这里,一般通信系统模型中的发送设备和接收设备分别为调制器、解调器所代替。 对于模拟通信系统,它主要 包含两种重要变换。一是把连续 消息变换成电信号(发端信息源 完成)和把电信号恢复成最初的 连续消息(收端信宿完成)。由 信源输出的电信号(基带信号) 由于它具有频率较低的频谱分 量,一般不能直接作为传输信号而送到信道中去。因此,模拟通信系统里常有第二种变换,即将基带信号转换成其适合信道传输的信号,这一变换由调制器完成;在收端同样需经相反的变换,它由解调器完成。经过调制后的信号通常称为已调信号。已调信号有三个基本特性:一是携带有消息,二是适合在信道中传输,三是频谱具有带通形式,且中心频率远离零频。因而已调信号又常称为频带信号。 必须指出,从消息的发送到消息的恢复,事实上并非仅有以上两种变换,通常在一个通信系统里可能还有滤波、放大、天线辐射与接收、控制等过程。对信号传输而言,由于上面

(完整word版)空间内插方法比较

一、空间数据的插值 用各种方法采集的空间数据往往是按用户自己的要求获取的采样观测值,亦既数据集合是由感兴趣的区域内的随机点或规则网点上的观测值组成的。但有时用户却需要获取未观测点上的数据,而已观测点上的数据的空间分布使我们有可能从已知点的数据推算出未知点的数据值。 在已观测点的区域内估算未观测点的数据的过程称为内插;在已观测点的区域外估算未观测点的数据的过程称为外推。 空间数据的内插和外推在GIS中使用十分普遍。一般情况下,空间位置越靠近的点越有可能获得与实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。下面介绍一些常用的内插方法。 1、边界内插 使用边界内插法时,首先要假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。 边界内插的方法之一是泰森多边形法。泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。如图4-6-1所示。 泰森多边形的生成算法见§5.7。 2、趋势面分析 趋势面分析是一种多项式回归分析技术。多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合,拟合时假定数据点的空间坐标X、Y为独立变量,而表示特征值的Z坐标为因变量。 当数据为一维时,可用回归线近似表示为: 其中,a0、a1为多项式的系数。当n个采样点方差和为最小时,则认为线性回归方程与被拟合曲线达到了最佳配准,如图4-6-2左图所示,即: 当数据以更为复杂的方式变化时,如图4-6-2右图所示。在这种情况下,需要用到二次或高次多项式: (二次曲线) 在GIS中,数据往往是二维的,在这种情况下,需要用到二元二次或高次多项式:

空间内插方法比较

第15卷第3期2000年6月 地球科学进展 ADV ANCE IN EARTH SCIEN CES V ol.15 No.3 Jun., 2000 学术论文 空间内插方法比较 李 新,程国栋,卢 玲 (中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000) 摘 要:空间内插可以分为几何方法、统计方法、空间统计方法、函数方法、随机模拟方法、物理模型模拟方法和综合方法。介绍了每一种方法的适用范围、算法和优缺点。指出没有绝对最优的空间内插方法,必须对数据进行空间探索分析,根据数据的特点,选择最优方法;同时,应对内插结果做严格的检验。开发通用空间内插软件、智能化内插以及加强相关基础研究将是空间内插研究的重点。 关 键 词:空间内插;空间数据探索分析;地理信息系统 中图分类号:P208 文献标识码:A 文章编号:1001—8166(2000)03-0260-06 1 空间内插 根据已知地理空间的特性探索未知地理空间的特性是许多地理研究的第一步,也是地理学的基本问题。常规方法无法对空间中所有点进行观测,但是我们可以获得一定数量的空间样本,这些样本反映了空间分布的全部或部分特征,并可以据此预测未知地理空间的特征。在这一意义上,空间内插可以被定义为根据已知的空间数据估计(预测)未知空间的数据值。其目标可以归纳为:①缺值估计:估计某一点缺失的观测数据,以提高数据密度;②内插等值线:以等值线的形式直观地显示数据的空间分布;③数据格网化:把无规则分布的空间数据内插为规则分布的空间数据集,如规则矩形格网、三角网等。 空间内插对于观测台站十分稀少,而台站分布又非常不合理的地区具有十分重要的实际意义。这些地区的常规观测常常不能满足要求,在这种情况下,利用有限的常规观测估计合理的空间分布,或尽可能地提高数据密度就成为迫切要求。在这些方面,缺值估计和数据格网化将发挥重要的作用。 (1)缺值估计。各种科学考察中形式多样的短期观测是提高数据观测密度的重要方式,无形中起到了加密台站的作用;而且由于这些考察常常到达人迹罕至的高海拔和极地等区域,有助于了解区域内观测变量的完整空间分布。但是,这些观测序列往往很短,短则数十天,长不过几年。如何利用周围台站的长序列观测资料和短期观测本身的信息,将观测变量插补到长序列是一个重要问题。 (2)数据格网化。规则格网能够更好地反映连续分布的空间现象,并对他们的变化作出模拟。现代地球科学模型和气候模型,如GCM(一般环流模型),都要求与GIS数据模型和遥感数据高度兼容的空间数据集。格网化的数据,尤其是规则矩形格网,已成为目前地学模型的主要数据形式。因此,对已知观测台站的观测数据进行空间内插,得到格网化数据是模型的第一步。 空间内插一般包括这样几个过程〔1〕:①内插方法(模型)的选择;②空间数据的探索分析,包括对数据的均值、方差、协方差、独立性和变异函数的估计等;③内插方法评价;④重新选择内插方法,直到合理;⑤内插。 因此,通过比较而选择一个合用的、适合于数据空间分布特点的内插方法是空间内插的关键。本文将空间内插分类为几何方法、统计方法、空间统计方 中国科学院特别经费支持领域项目“冰冻圈基础研究”(编号:KJ-B-2-102)资助。 第一作者简介:李新,男,1969年10月生于甘肃酒泉,副研究员,主要从事地理信息系统和遥感在冰冻圈和水资源研究中的应用。收稿日期:1999-08-19;修回日期:1999-11-03。

数字高程模型期末考试题

1.什么是DEM,DEM的特点 DEM定义: 简单来讲,DEM是通过有限的地形高程数据实现对地形曲面的数字化模拟,或者说是地形表面形态的数字化表示。 ①从狭义角度定义:DEM是区域地表面海拔的数字化表达。 ②从广义角度定义:DEM四地理空间中地理对象表面海拔的数字化表达。 ③数字定义:区域的采样点或内插点按某种规则连接成的面片的集合。 DEM特点: ①精度的恒定性DEM采用数字媒介,从而能保持原有精度,另外通过DEM进行生产,输出图件的精度可得到控制。 ②表达的多样性可产生多种比例尺的地形图、剖面图、立体图、明暗等高线图;通过纹理映射、与遥感影像数据叠加,还可逼真的再现三维地形景观。 ③更新的实时性DEM由于是数字的,增加或修改的信息只在局部进行,并且由计算机自动完成,可保证地图信息的实时性。 ④尺度的综合性较大比例尺、较高分辨率的DEM自动覆盖较小比例尺、较低分辨率的DEM所包含的内容。 2.DEM研究内容 ①地形数据采样 ②地形建模与内插 ③数据组织与管理 ④地形分析与地学应用 ⑤DEM可视化 ⑥不确定性分析和表达 3.格网DEM结构特点和数据组织形式 ①基本数据结构 数据头——定义DEM西南角起点坐标、坐标类型、格网间距、行列数、最底高程以及高程方法系数等内容 数据体——按行或列分布记录的高程数字阵列 ②数据压缩:二进制存储高程放大系数、高程平移系数数字图象压缩算法 ③DEM金字塔

4.DEM组成部分,简述每部分的内容。 ①DEM建立 地形高程数据通过地形图数字化、影像数据、野外(地面测量)等方式获取。 实现地形表面的重建,主要的地形表达有三类:数学描述、图形表达、图像表达。 ②DEM操作:DEM操作内容包括编辑处理、滤波、合并、拼接、叠加以及不同格式DEM 之间的相互转换。 ③DEM分析:基本地形信息主要包括坡度、坡向、地表粗糙度、地形起伏度、剖面曲率、平面曲率等地形描述因子;复杂地形分析包括可视区域分析、地形特征提取、水系特征分析等。 ④DEM可视化 从内容上讲,DEM可视化包括二维和三维地形可视化。 从技术角度,地形可视化有静态可视化和交互是动态可视化两种。 ⑤DEM应用 高程内插、拟合曲面内插、剖面线计算、等高线内插、可视区域分析、面积体积计算、坡度坡向曲率计算、晕渲图 5.对比分析格网DEM和TIN优缺点 规则格网DEM 不规则三角网TIN 优点:简单的数据存储结构 与遥感影像数据的相合性 良好的表面分析功能优点:较少的点可获取较高的精度可变分辨率 良好的拓扑结构 缺点:计算效率较低 数据同于 格网结构规则缺点:表面分析能力较差 构建比较费时 算法设计比较复杂

格网数字高程模型

格网数字高程模型 武汉大学测绘学院 潘正风 一.格网DEM (Digital Elevation Model )生成 1.由离散点求格网点高程 若网格点的坐标为 0x ,0y ,在搜索圆内某数据点的坐标为 i x ,i y ,该点到网格点的距离为: ()()2020y y x x D i i i -+-= 则网格点的高程为 ()()∑∑=i i i D D z z 1 或 ()()∑ ∑=22 /1/i i i D D z z 2.由三角网转换成格网DEM 按线性插值计算格网点高程: ()()()() 21 3131212131312112131312111y x y x x z x z y y z y z y x x z z ---+--- = 式中,1221x x x -=,1331x x x -=,1221y y y -=,1331y y y -=,1221z z z -=,1331z z z -=。 3.等高线内插法

二.数字高程模型的应用 1.计算单点高程 D C B A P z L y L x z L y L x z L y L x z L y L x z ??? ?? -+?+??? ??-+??? ??-??? ??-=1111 2.计算地表面积 地表面积的计算即为各网格的表面积之和。引入一个高程点,构成4个表面空间三角形,三角形面积为: ()()()321S P S P S P P A ---= 式中,()3212 1 S S S P ++= ,222z y x S i ?+?+?=。 3.计算体积 按四棱柱或三棱柱体积计算

数字高程模型复习题

数字高程模型复习题 1、什么是数字高程模型,它有什么特点? 广义:地形表面形态的数字化表达,狭义:有限的离散高程采样数据对地表形态的数字化模拟 1)精度的恒定性;2)表达的多样性;3)更新的实时性;4)尺度的综合性。 2、简述数字高程模型的主要研究内容。 1)地形数据采样;2)地形建模与内插;3)数据组织与管理;4)地形分析与地学应用;5)DEM可视化;6)不确定分析和表达。 3、试分析数字高程模型数据源及其特点。 DEM数据源及其特点:1)地形图.主要通过等高线来表达地物高度和地形起伏。由于地形图数据覆盖范围广、比例尺系列齐全、获取较为经济等特点成为目前DEM的主要数据源。但目前地形图存在以下3大问题:地形图现势性、地形图存储介质、地形图精度。2)摄影测量/遥感影像数据.遥感影像更新速度快可达到实时性要求,精度高,范围大,应注意解决以下4个问题:遥感影像的几何畸变、遥感数据的增强处理、遥感影像数据的空间分辨率、遥感影像数据的解译和判读。3)地面测量数据.获取的数据精度高,但其工作量大,周期长、效率低、更新困难,费用较高,一般不适合大规模的数据采集。4)既有DEM数据.在应用时要考虑自身的研究目的以及DEM分辨率、存储格式、数据精度和可信度等因素。2、简述数字高程模型数据采样中的基本布点方式及采样数据的属性。 4、目前主流的DEM数据采集方法有哪些?并对各方法进行对比分析。 地形图数据采集方法、摄影测量数据采集方法、野外测量数据采集方法 1)野外测量数据采集方法全站仪数字采集、GPS采集(RTK方式);精度非常高(cm)、效率低、成本高、适用于小范围区域(特别是工程应用) 2)地形图数据采集方法精度与底图有关(图上0.1~0.3mm)、效率高、成本低、适用于国家范围内的中低精度DEM的数据采集 3)摄影测量数据采集方法精度比较高(cm~dm)、效率高、成本比较高、适用于国家范围内的较高精度DEM的数据采集 5、DEM数据获取中的新技术和方法有哪些? 合成孔径雷达干涉测量数据采集方法、机载激光扫描数据采集、基于声波、超声波的DEM 数据采集 6、试述基于数字摄影测量的DEM数据采集方法的生产工艺流程。

《摄影测量学》数字高程模型及其应用(可编辑)

《摄影测量学》7数字高程模型及其应用 常用的地貌表示方法 常用的地貌表示方法 等高线图 第七章数字高程模型及其应用 §7-1 概述 数字地面模型的发展过程 1956年由Miller教授提出概念 60年代至70年代对DTM内插问题进行了大量的研 究 70年代中、后期对采样方法进行了研究 80年代以后,对DTM的研究已涉及到DTM系统的 个环节,其中包括用DTM表示地形的精度、地形 分类、数据采集、DTM的粗差探测、质量控制、 数据压缩、DTM应用以及不规则三角网的建立与 应用数字地面模型DTM的概念 数字地面模型DTM(Digital Elevation Model):是地形表面形 态等多种信息的一个数字表示. DTM是定义在某一区域D上的m 维向量有限序列: V ,i1,2,…,n

i 其向量V (V ,V ,…,V )的分量为地形X,Y,Z i i1 i2 in i i i ((X,Y)∈ D)、资源、环境、土地利用、人口分布等多种 i i 信息的定量或定性描述。 数字高程模型DEM的概念 数字高程模型DEM(Digital Elevation Model):是表示区域D 上地形的三维向量有限序列 {Vi(Xi,Yi,Zi),i1,2,…n} 其中(Xi,Yi)∈D是平面坐标,Zi是(Xi,Yi)对应的高程DEM是DTM的一个子集,是对地球表面地形地貌的一种离散 的数字表达,是DTM的地形分量。地面信息的不同表达方 地形图:优点:直观,便于人工使用 缺点:计算机不能直接利用,不能满足自动化要求,管理不 DTM:地表信息的数字表达形 优点:直接输入计算机,计算机辅助设计,便于修改、更新、 管理,便于转换成其它形式的产品 数字高程模型DEM 表示形式 规则矩形格网(Grid 利用一系列在X,Y方向上等间 隔排列的地形点的高程Z表示地

数字通信系统的建模仿真

实验二数字通信系统的建模仿真 一、实验目的 1.了解数字通信系统的建模过程 2.了解数字通信系统的仿真过程,并掌握对建模的好坏进行分析 二、实验内容 设计框图: 框图解析: 实验中要求用仿真模块来产生二进制数据源,得到数据源后和本地伪随机码相乘来实现对源信号的扩频,完成之后对信号进行极性变换,然后通过BPsk调制经过信道加入噪声之后,再和本地的载波信号相乘实现对信号的解扩之后进行解调得到一个新的信号,并且可以和原始信号进行比较,计算调制解调过程中产生的误码。 实验结果: 1)建立一个直接序列扩频体制(默认M序列) 观察收发数据波形;并用频谱仪观察原信号、直接序列扩频后的信号频谱、加噪声的信号频谱、解扩后的信号频谱;测试误码率

系统设计 参数设置: 本地二进制产生码源频率设置为100hz,本地M序列产生器设置为2000hz,极性转换设置为2,经过相乘器扩频后到达调制信道,Bpsk每一个码源采样个数设置为400,因为此处的频率是2000.经过高斯白噪声信道加入噪声,SNR可以自由设置(此处设置为20)。和本地一个频率为300hz,采样时间为2000的单频正弦波相加后进入解调信道之后得到解调后的信号与原信号相比,计算误码率。 实验中各个测量点的图谱如下所示: 图一扩频前图二扩频后 图三加入噪声

图四解扩后图五解调后 图六误码率 从上面刘附图可以看出,原始信号经过扩频后频率范围增加,再加入信道噪声和干扰后,在图像波形中出现脉冲干扰,因为这里的SNR设置的比较大(20),所以这里的误码率接近为零,当减小SNR的时候,信道噪声增加,误码率就会增加,除此之外,信道时延的大小对误码率的影响也很大。 2)对比以Gold序列、m序列(已做)以及随机整数发生器Random Integer Generator作为直接序列扩频码源的传输性能,观察波形、频谱(扩频后、加噪声后、解扩后、解调后)、误码率,比较分析传输性能 这里系统设计大致与1)中的系统相同,只是将本地载波序列的产生模块作调整,m序列已经完成,首先介绍GOLD序列 2.1)GOLD序列 Gold Sequence Generator用于产生gold的序列,其他参数与M序列时相同,只要将Gold模块的采样时间改为1/2000就好了。得到结果如下: 扩频前扩频后

通信系统的基本组成

通信系统的基本组成 1.2.1 通信系统的一般模型 实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。以基本的点对点通信为例,通信系统的组成(通常也称为一般模型)如图 1-1 所示。 图 1-1 通信系统的一 般模型 图中,信源(信息 源,也称发终端)的作 用是把待传输的消息转 换成原始电信号,如电 话系统中电话机可看成是信源。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式,。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。 发送设备的基本功能是将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式;对传输数字信号来说,发送设备又常常包含信源编码和信道编码等。 信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。 在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。 信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。 图 1-1 给出的是通信系统的一般模型,按照信道中所传信号的形式不同,可进一步具体化为模拟通信系统和数字通信系统。 1.2.2 模拟通信系统 我们把信道中传输模拟信号的系统称为模拟通信系统。模拟通信系统的组成可由一般通信系统模型略加改变而成,如图 l-2 所示。这里,一般通信系统模型中的发送设备和接收设备分别为调制器、解调器所代替。 对于模拟通信系统,它主要 包含两种重要变换。一是把连续 消息变换成电信号(发端信息源 完成)和把电信号恢复成最初的 连续消息(收端信宿完成)。由 信源输出的电信号(基带信号) 由于它具有频率较低的频谱分 量,一般不能直接作为传输信号而送到信道中去。因此,模拟通信系统里常有第二种变换,即将基带信号转换成其适合信道传输的信号,这一变换由调制器完成;在收端同样需经相反的变换,它由解调器完成。经过调制后的信号通常称为已调信号。已调信号有三个基本特性:一是携带有消息,二是适合在信道中传输,三是频谱具有带通形式,且中心频率远离零频。因而已调信号又常称为频带信号。

数字通信系统模型

数字通信系统模型 图3 1.信源编码与译码 信源编码有两个基本功能:一是提高信息传输的有效性,而是完成模/数(A/D)转换,信源编码是信源译码的逆过程. 2.信道编码与译码 信道编码的目的是增强数字信号的抗干扰能力.接收端的信道译码器按相应的逆规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性。 3.加密与解密 在需要事先保密通信的场合,为了保证所传信息的拿权,人为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字学列进行解密,恢复原来的信息. 4.数字调制与解调 数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中那个传输的带通信号.在接收端可以利用相干解调或非相干解调还原数字基带信号. 数字调制的主要目的是将二进制信息序列映射成信号波形,是对编码信号进行处理,使其变成适合传输的过程。即把基带信号转变为一个相对基带信号而言频率非常高的带通信号,易于发送。数字调制一般是指调制信号是离散的,而载波是连续的调制方式。 主要的数字调制方式有:1.ASK ,又称幅移键控法。这种调制方式是根据信号的不同调节正弦波波幅度。2.PSK ,相移键控法,载波相位受数字基带信号控制。如基带信号为1时相位为π,基带信号为0时相位为0。3.FSK ,频移键控法,即用数字信号去调节载波频率。4.QAM ,正交幅度调制法,根据数字信号的不同,载波相位和幅度都发生变化。 5.同步 信息源 信源编码 加密 信道编码 数字调制 数 字解调 信道译码 解码 信源译码 受信者 信道 噪声源

同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序/准确/可靠工作的前提条件. 6.信道 信道是通信传输信号的通道,是通信系统的重要组成部分。其基本特点是发送信号随机地受到各种可能机理的恶化。 在通信系统的设计中,人们往往根据信道的数学模型来设计信道编码,以获得更好的通信性能。常用的信道数学模型有:加性噪声信道,线性滤波信道,线性时变滤波信道。 (1)加性噪声信道: 加性噪声信道是最简单的一种信道数学模型,噪声对信号的影响是加性的。如图4所示,输入信号为s(t) ,噪声为n(t) ,输出为 r(t) = s(t)+ n(t) + s(t) n(t)r(t) 信道 图4加性噪声数学模型 若加上衰减函数α,则r(t) = αs(t)+ n(t)。 (2)线性滤波信道: 实际信道中,带宽均有所限制,所以为了确保信号不超出带宽一般会加上线性滤波器。这样的信道便称为线性滤波信道,图5所示。 输入信号为s(t) ,噪声为n(t) ,输出为r(t) : + s(t) n(t)r(t) 信道线性滤波器 c(t) 图5 r(t) = s(t)*c(t) + n(t)

相关主题