搜档网
当前位置:搜档网 › 立体几何小题强化

立体几何小题强化

高三数学立体几何小题强化

1、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,M 为AB 中点,P 为平面ABCD 内的动点,且点P 到直线MB 1,的距离为3,则APB ∠的最大值为 ( )

A 、3π

B 、6π

C 、2

π D 、32π 2、如图,正方体1111D C B A ABCD -的棱长为1,点A 在平面α内,点E 是底面ABCD 的中心,若⊥E C 1 平面α,则AB C 1?在平面α内的射影的面积为 ( )

A 、66

B 、126

C 、63

D 、12

3 3、如图,正方形ABCD 所在平面与正方形ABEF 所在平面垂直,P 为AE

的中点,N 是平面ABCD 内的动点,且PN 与平面PBC 线面所成角为4

π,那么,动点N 在平面ABCD 内的轨迹是 ( )

A. 一线段

B. 一段圆弧

C. 一个椭圆

D.一段抛物线

4、在二面角βα--l 中,,,,,βα??∈∈BD AC l B l A 且,,l BD l AC ⊥⊥已知,1=AB 2==BD AC ,

则二面角βα--l 的余弦值为

5、已知直线AB ,CD 是异面直线,CD AC ⊥,CD BD ⊥,且2=AB ,1=CD ,则异面直线AB 与CD 所成角的大小为 ( )

A 、?30

B 、?45

C 、?60

D 、?75

6、已知正方体1111D C B A ABCD -的棱长为1,N M ,是对角线1AC 上的两点,动点P 在正方体表面上且满足||||PN PM =,则动点P 的轨迹长度的最大值为 ( )

A .3

B .23

C .33

D .6

7.在三棱锥P ABC -中,PA 垂直于底面ABC ,090ACB ∠=AE PB ⊥于E ,AF PC ⊥于F ,若

2PA AB ==,BPC θ∠=,则当AEF ?的面积最大时,tan θ的值为 ( )

A .2

B .12

C .2

8、四面体ABCD 中,AD 与BC 互相垂直,24AD BC ==,且AB BD AC CD +=+=则四面体ABCD 的体积的最大值是

( )

A 、4

B 、

C 、5

D 9、在空间中,若射线OA 、OB 、OC 两两所成角都为

3

π,且2OA =,1OB =,则直线AB 与平面OBC 所成角的余弦大小为

10、已知等边ABC ?的顶点A 在平面α上,,B C 在α的同侧,D 为BC 中点,ABC ?在α上的射影是以A

为直角顶点的直角三角形,则直线AD 与平面α所成角的正弦值的取值范围是 ( )

A .)23,21[

B .]36,21(

C .)1,36[

D .)2

3,36[ 11、将一个半径为5cm 的水晶球放在如图所示的工艺支架上,支架是由三根细

金属杆,,PA PB PC 组成,它们两两成60°角,则水晶球的球心到支架顶点P

的距离是 cm .

12、底面边长为4的正四棱柱(高h >6)形的容器,先放入一个半径为2的球,然后再放入一个半径为1的小球,则小球的最高点距棱柱底面的距离为

13、在ABC ?中,?=∠45ABC ,?=∠60ACB ,ABC ?绕BC 旋转一周,

记以AB 为母线的圆锥为1M ,记以AC 为母线的圆锥为2M ,m 是圆锥1

M 任一母线,则圆锥2M 的母线中与m 垂直的直线有 条。

14、如图,在正方形ABCD 中,F E ,分别为线段AD 、BC 上的点,?=∠20ABE ,

?=∠30CDF ,将ABE ?绕直线BE 、CDF ?绕直线CD 各自独立旋转一周,

则在所有旋转过程中,直线AB 与直线DF 所成角的最大值 ;

15、在棱长为1的正方体1111ABCD A B C D -中,112

AE AB =,在面ABCD 中取一点F ,使1EF FC +最小,则最小值为 .

16、设动点P 在棱长为1的正方体1111D C B A ABCD -的对角线1BD 上,记

λ=B D P D 11,当APC ∠为钝角时,λ的取值范围是 。

17.在三棱柱111C B A ABC -中,各棱长都等于2,下底面ABC 在水平面上保持不动,在侧棱与底面所成的角保持为 60的情况下,上底面111C B A 还是可以移动的,则111C B A ?在下底面ABC 所在平面上的竖直投影所扫过的区域的面积为

18、如图1,正三棱柱111C B A ABC -的各棱长都是1,M 是棱C C 1的中点,

求截面BM A 1与底面ABC 所成二面角的大小 。

19、矩形ABCD(AB ≤BC)中,AC=22,沿对角线AC 把它折成直二面角B -AC -D

后,BD=5,则AB= 。

A B C

D O

立体几何小题强化参考答案

1、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,M 为AB 中点,P 为平面ABCD 内的动点,且点P 到直线MB 1,的距离为3,则APB ∠的最大值为 ( A )

A 、3π

B 、6π

C 、2

π D 、32π 2、如图,正方体1111D C B A ABCD -的棱长为1,点A 在平面α内,点E 是底面ABCD 的中心,若⊥E C 1 平面α,则AB C 1?在平面α内的射影的面积为 ( B )

A 、66

B 、126

C 、63

D 、12

3 解:法一:

cos 'S S ==θ 法二:在截面ACA 1C 1中AE EF ⊥,31

=EF , 所以1262

23121=??=S 。

3、如图,正方形ABCD 所在平面与正方形ABEF 所在平面垂直,P 为

AE 的中点,N 是平面ABCD 内的动点,且PN 与平面PBC 线面所成角为4

π,那么,动点N 在平面ABCD 内的轨迹是 ( D ) A. 一线段 B. 一段圆弧 C. 一个椭圆 D.一段抛物线

4、在二面角βα--l 中,,,,,βα??∈∈BD AC l B l A 且,,l BD l AC ⊥⊥已知,1=AB 2==BD AC ,

则二面角βα--l 的余弦值为5、已知直线AB ,CD 是异面直线,AC ⊥,且2=AB ,1=CD ,则异面直线AB 与CD 所成角的大小为 ( C )

A 、?30

B 、?45

C 、?60

D 、?75 解:2

1|

|||||||),cos(=?=?=CD AB CD AB 6、已知正方体1111D C B A ABCD -的棱长为1,N M ,是对角线1AC 上的两点,动点P 在正方体表面上且满足||||PN PM =,则动点P 的轨迹长度的最大值为 ( B )

A .3

B .23

C .33

D .6

解:在AC 1垂直的面上投影,中间一段是一样长的,两端小一点而已。

7.在三棱锥P ABC -中,PA 垂直于底面ABC ,090ACB ∠=AE PB ⊥于E ,AF PC ⊥于F ,若2PA AB ==,BPC θ∠=,则当AEF ?的面积最大时,tan θ的值为 ( D )

A .2

B .12 C

.2

解:利用截面直角边为2,只有当其他两边为1,1时面积最大。

8、四面体ABCD 中,AD 与BC 互相垂直,24AD BC ==,

且AB BD AC CD +=+=则四面体ABCD 的体积的最大值是

( A ) A 、4 B 、

C 、5 D

9、在空间中,若射线OA 、OB 、OC 两两所成角都为

3π,且2OA =,1OB =,则直线AB 与平面OBC 所成角的余弦大小为 31 解:联想正四面体中的二面角大小即可。

10、已知等边ABC ?的顶点A 在平面α上,,B C 在α的同侧,D 为BC 中点,ABC ?在α上的射影是以A

为直角顶点的直角三角形,则直线AD 与平面α所成角的正弦值的取值范围是 ( D )

A .)23,21[

B .]36,21(

C .)1,36[

D .)2

3,36[ 解:联想直角坐标系,A 为原点,B (11,0,z x ),C (22,,0z y );由于214cos 21==

z z A ,所以221=z z ,又)2,1(1∈z ,3

2132cos 1121z z z z +=+=θ。

11、将一个半径为5cm 的水晶球放在如图所示的工艺支架上,支架是由三根细金属杆,,PA PB PC 组成,它们两两成60°角,则水晶球的球心到支架顶点P 的距离是_____35____cm .

解:放入正方体棱切球来做

12、底面边长为4的正四棱柱(高h >6)形的容器,先放入一个半径为2的球,然后再放入一个半径为1的小球,则小球的最高点距棱柱底面的距离为

3+解:建系设点

13、在A

B C ?中,?=∠45ABC ,?=∠60ACB ,ABC ?绕BC 旋转一周,记以AB 为母线的圆锥为1M ,记以AC 为母线的圆锥为2M ,m 是圆锥1M 任一母线,

则圆锥2M 的母线中与m 垂直的直线有 2 条。

14、如图,在正方形ABCD 中,F E ,分别为线段AD 、BC 上的点,?=∠20ABE ,

?=∠30CDF ,将ABE ?绕直线BE 、CDF ?绕直线CD 各自独立旋转一周,

则在所有旋转过程中,直线AB 与直线DF 所成角的最大值 ?70 ;

15、在棱长为1的正方体1111ABCD A B C D -中,112AE AB =,在面ABCD 中取一点F ,使1EF FC +最小,则最小值为 2

14 . 16、设动点P 在棱长为1的正方体1111D C B A ABCD -的对角线1BD 上,记

λ=B D P D 11,当APC ∠为钝角时,λ的取值范围是 。)1,3

1

( 解:设D D 11λ=,则)1,,1(---=λλλ,)1,1,(---=λλλ,所以有0

18、如图1,正三棱柱111C B A ABC -的各棱长都是1,M 是棱C C 1的中点,求截面BM A 1与底面ABC 所成二面角的大小

4π 。

3、矩形ABCD(AB ≤BC)中,AC=22,沿对角线AC 把它折成直二面角B -AC -D 后,BD=5,则

解:令θ=∠DAC ,由222BO DO BD +=得:232sin =θ。

A

B C D O

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

空间向量与立体几何(三)同步练习

空间向量与立体几何(三)同步练习 巧用向量法处理平行、垂直问题同步练习 (答题时间:40分钟) 一、选择题 1. 已知平面内的两个向量a=(2,3,1),b=(5,6,4),则该平面的一个法向量为() A. (1,-1,1) B. (2,-1,1) C. (-2,1,1) D. (-1,1,-1) 2. 设直线l1的方向向量为a=(2,1,-2),直线l2的方向向量为b=(2,2,m),若l1⊥l2,则m=() A. 1 B. -2 C. -3 D. 3 3. 如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等。给出下列结论: ①A1M∥D1P; ②A1M∥B1Q; ③A1M∥平面DCC1D1; ④A1M∥平面D1PQB1。 这四个结论中正确的个数为() A. 1 B. 2 C. 3 D. 4 二、填空题 4. 已知直线l的方向向量为u=(2,0,-1),平面α的一个法向量为v=(-2,1,-4),则l与α的位置关系为________。 5. 在空间直角坐标系Oxyz中,已知点P(2cos x+1,2cos x,0)和点Q(cos x,-1,3),其中x∈[0,π]。若直线OP与直线OQ垂直,则x的值为________。 6. 已知点P是平行四边形ABCD所在的平面外一点,且有AB=(2,-1,-4),AD =(4,2,0),AP=(-1,2,-1)。给出结论:①AP⊥AB;②AP⊥AD;③AP是平面ABCD的法向量;④AP∥BD。其中正确的是________。

三、解答题 7. 如图,在正方体AC1中,O为底面ABCD的中心,P是DD1的中点。设Q是CC1上的点。当点Q在什么位置时,平面D1BQ∥平面P AO? 8. 如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD。

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何中的最值与动态问题

2 5 立体几何中的最值问题 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在 试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. 5 5 C. 2 D. 1 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当 OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当P 运动 5 到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平面α 于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥ 3 。 2 5 2 5 2 5 3

图 2 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是() A. 2a B. 2b C. 2c D. a+b+c 图3-1 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD, AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D' ,AB // CD' ,A、C、A’共 线,D、B、D’共线,AA'=DD' = 2BD 。又四边形PQRS 在展开图中变为折线S’PQRS,S’与S 在四面体中是同一点。因而当P、Q、R 在S’S 上时,S ' P +PQ +QR +RS 最小,也就是四边形PQRS 周长最小。又S ' A =SA',所以最小值L =SS '=DD' = 2BD = 2b 。故选B。 图3-2 四、利用向量求最值 例4. 在棱长为1 的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的最小值为。 解析:以A 为坐标原点,分别以AB、AD、AE 所在直线为x,y,z 轴,建立如图 4 所示的空间直角坐标 →→ 系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP=(x-1,0,x),GP=(x-1,-1,x-1),那么

立体几何同步练习一(必修2)

立体几何同步练习 二是一个平面,则a 、b 在:?上的射影有可能是 ②两条互相垂直的直线 ④一条直线及其外一点 (写出所有正确结论的编号) 2?多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一 个顶点A 在 平面内,其余顶点在:-的同侧,正方体上与顶点 A 相邻的 三个顶点到:-的距离分别 为1,2和4, P 是正方体的其余四个顶点中的一 个,则P 到平面的距离可能是: ①3; ②4; ③5; ④6; ⑤7 以上结论正确的为 ____________ 。(写出所有正确结论的编号 ) 3.—个长方体的长、宽、高分别为 9cm 、6cm 、5cm ,先从这个长方体上尽可能 大地切下一 个正方体,再从剩下部分上尽可能大地切下一个正方体, 最后再从第二次剩下 部分上尽可能 大地切下一个正方体,那么,经过三次切割后剩余部分的体积为 cm 3 4?在正三棱柱 AB^A 1B 1C 1中,AB =d .若二面角C-AB-C^!的大小 为60 ',则点C 到平面ABC i 的距离为 ________________ . 5.正四面体 ABCD 的棱长为1,棱AB //平面a ,则正四面体上的所有点在平面 a 内的射 影构成的图形面积的取值范围是 ________ . 1已知a 、b 为不垂直的异面直线, ①两条平行直线 ③同一条直线 在上面结论中,正确结论的编号是

6有一个各棱长均为a的正四棱锥,现用一张正方形包装纸将其完全包住,不能裁剪,可以 折叠,那么包装纸的最小边长为____________________ .

积为V i ,若将同样的正方形纸片按照如图( 2)中虚线所示的方法 剪开后拼接成一正四棱锥,设其体积为 V 2,则V 1和V 2的大小关系 是( ) A . V 1 V 2B . V 1 : V 2C . y =V 2D . V 1

立体几何大二轮深刻复习的策略

立体几何的解题思路 四川省成都第七中学 张世永 巢中俊 周建波 《高中数学课程标准》建议:立体几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言.教师可以使用具体的长方体的点、线、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的点、线、面之间的位置关系;通过对图形的观察、实验和说明,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用问题。 理科学生不仅要掌握必修2《立体几何初步》,还要掌握选修2-1《空间中的向量与立体几何》.文科学生要求掌握必修2《立体几何初步》,为了更好地解答立体几何问题,建议教师补充讲授选修2-1《空间中的向量与立体几何》中的坐标法,让文科学生能熟练地使用坐标法,而对空间中的向量的其它知识不做介绍,以免加重文科学生的负担。另外,文科学生不要求掌握求二面角的问题。 一.求解空间三类角:两直线所成角、直线与平面所成角、二面角,关键是转化为空间两直线所成角,常常要借助于平面的法向量.要善于一题多变. 例1.(1)已知直线b a ,所成角为o 60,经过空间中一点P 作直线l ,使直线l 与a 、b 所成角均为o 60,则这样的直线l 有几条? 解:经过点P 作直线m//a, n//b, 则直线n m ,所成角为o 60或 120, 点P 作直线n m ,的两条角平分线,其中有一条与n m ,所成角均为o 60,另一条与n m ,所成角均为 30,把这条角平分线沿着点P 旋转可以得到两条直线与n m ,所成角均为o 60,从而与a 、b 所成角均为o 60的直线有三条. 问题的推广:已知直线b a ,所成角为o 60,经过空间中一点P 作直线l ,使直线l 与a 、 b 所成角均为θ,这样的直线l 有四条,则角θ应满足什么条件?有两条呢?有一条呢?有 零条呢? 答案:有四条时,o o 9060<<θ;有两条时,o o 6030<<θ;有一条时,o o 90,30=θ;有零条时, 300<<θ. 变式:(1)已知直线a 与平面α所成角的大小为o 60,经过空间中一点P 作直线l ,使直线l 与直线a 和平面α所成角均为o 45,则这样的直线l 有几条? (2)已知平面α与平面β所成锐二面角的大小为o 60,经过空间中一点P 作直线l ,使直线l 与平面α和平面β所成角均为o 60,则这样的直线l 有几条? (3)正三棱锥P —ABC 中,CM=2PM ,CN=2NB ,对于以下结论: ①二面角B —PA —C 大小的取值范围是( 3 π ,π);

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

高考数学第二轮复习 立体几何教学案

2011年高考第二轮专题复习(教学案):立体几何 第1课时 直线、平面、空间几何体 考纲指要: 立体几何在高考中占据重要的地位,考察的重点及难点是直线与直线、直线与平面、平面与平面平行的性质和判定,而查空间线面的位置关系问题,又常以空间几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式。 考点扫描: 1.空间两条直线的位置关系:(1)相交直线;(2)平行直线;(3)异面直线。 2.直线和平面的位置关系:(1)直线在平面内;(2)直线和平面相交;(3)直线和平面平行。 3.两个平面的位置关系有两种:(1)两平面相交;(2)两平面平行。 4.多面体的面积和体积公式,旋转体的面积和体积公式。 考题先知: 例1.在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。请你类比写出在立体几何中,有关四面体的相似性质,并证之。 解:通过类比,得命题:过四面体的内切球的球心作一截面,将四 面体分成的两部分的表面积比等于其体积比。 证明:如图,设四面体P-ABC 的内切球的球心为O ,过O 作截面DEF 交三条棱于点E 、D 、F ,记内切圆半径为r,则r 也表示点O 到各面的距 离,利用体积的“割补法”知: PDF O PEF O PDE O DEF P V V V V ----++== r S r S r S PDF PEF PDE ?+?+?3 1 3131 BCFD O DEF O ACFE O ABC O ABDE O ABC DEF V V V V V V ------++++= =r S r S r S r S r S BCFD DEF ACFE ABC ABDE ?+?+?+?+?31 31313131,从而2 1表表S S V V ABC DEF DEF P =--。 例2.(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角? (2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC 中,2,6== AC AB , 13-=BC ,以∠BAC 为例。 解:(1)记Rt △ABC ,∠BAC=900 ,,,b AC c AB ==记直角顶点A 在平面上的正投影为A 1,,且AA 1=h ,则因为0)()()(2 2 2 2 2 2 2 2 12 1<+--+-=-+b c h b h c BC C A B A ,所以∠

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学复习提升专题05 立体几何中最值问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题05 立体几何中最值问题 类型 对应典例 利用侧面展开图求最值 典例1 利用目标函数求最值 典例2 利用基本不等式求最值 典例3 【典例1】【河南省非凡吉创联盟2020届调研】 如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,33PA =,点C 是圆柱底面圆周上的点. (1)求三棱锥P ABC -体积的最大值; (2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2 π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【典例3】【北京市昌平区2020届模拟】

如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G . (I )证明:AD ∥平面EFGH ; (II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值. 【针对训练】 1. 【广东省佛山市第一中学2020届月考】 如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==. (1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 2.【安徽省安庆市2020届模拟】 如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB == (1)求证:DE ⊥平面ADC ; (2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.

立体几何同步训练14多面体及欧拉公式.

立体几何同步训练14 多面体及欧拉公式 班级_______ 姓名___________ 一、选择题 1、关于正多面体的概念,下列叙述正确的是() (A)每个面都是正多边形的多面体 (B)每个面都是有相同边数正多边形的多面体 (C)每个面都是相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的多面体 (D)每个面都是具有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体 2、一个凸n面体共有8条棱,5个顶点,则n等于() (A) 4 (B) 5 (C)6 (D) 7 3、一个凸多面体的棱数为30,面数为12,则它的各面多边形内角和为() (A)54000 (B)64800 (C)72000 (D)79200 4、一个简单多面体的各面都是三角形,且有6个顶点,则这个简单多面体的面数是() (A)4 (B)6 (C)8 (D)10 5、一个凸多面体的面都是四边形,则它的顶点数与面数的差为() (A) 0 (B) 1 (C) 2 (D) 4 6、已知一个简单多面体的每个面均是五边形,且它共有30条棱,则此多面体的面数F 和顶点数V分别等于() (A) F=6 V=26 (B) F=20 V=12 (C) F=12 V=26 (D) F=12 V=20 二、填空题 7、一个简单多面体每个顶点处都有3条棱,则它的顶点数V和面数F的关系是___________。 8、每个面都是三角形的正多面体有_________个。 9、正四面体的外接球的球心到底面的距离与此正四面体高的比为_________。 10、命题(1)底面是正多边形,且侧棱章与底面边长相等的棱锥为正多面体。 (2)正多面体的面不是三角形就是正方形。(3)若长方体的各个侧面都是正方形时,这就是正多面体。(4)正三棱锥就是正四面体。其中正确的序号是_________。

立体几何-高三二轮复习(2)

高三二轮复习-立体几何 题型一三视图与直观图 考查形式:选填题 【例1】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A . 20 n B. 24 n C. 28 n D. 32 n 例2】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )

【过关练习】 1. 一个几何体的三视图如图所示,则该几何体的直观图可以是( )

2. 一几何体的直观图如图,下列给出的四个俯视图中正确的是( ) 题型二几何体的表面积与体积 考查形式:选填题 空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧. 【例1】(1)三棱锥的三视图如图所示,则该三棱锥的体积为() 1 1 1 A.6 B.3 C.2 D - 1 【例2】如图,在棱长为6的正方体ABCD —A1B1C1D1中,点E, F分别在C1D1与C1B1上,且GE= 4, C1F =3,连接EF , FB , DE , BD,则几何体EFC1 —DBC的体积为() 【过关练习】

1. _____________________________________________________ 某几何体的三视图如图所示,则这个几何体的体积为_________________________________________________________ 题型三多面体与球 考查形式:选填题 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置, 确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正 方体的棱长等于球的直径?球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直 径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心 (或 “切点”“接点”)作出截面图. 【例1】已知三棱锥S—ABC的所有顶点都在球0的球面上,SA丄平面ABC, SA= 2.3, AB = 1, AC= 2, / BAC

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

(完整版)非常好高考立体几何专题复习

立体几何综合习题 一、考点分析 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ①? ? ??????→?? ?????→? ? ?? L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 ★ 底面为矩形 底面为正方形侧棱与底面边长相等 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3 .球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r(其中,球心到截面的距离为 d、球的半径为R、截面的半径为r) ★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切. 注:球的有关问题转化为圆的问题解决. B

1.求异面直线所成的角(]0,90θ∈??: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角[]0,90θ∈??:关键找“两足”:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。 3求二面角的平面角[]0,θπ∈ 解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

立体几何中的最值问题答案

立体几何中的最值问题 一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10 (2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =??-+120cos 222AN AM AN AM =2 1 312)3(122???++= 34+ ∵34+<10 ∴min MN =34+. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1, ∴2==BF AC , 21,21a BQ a CP = =, 即2 a BQ CP ==, ∴= +-==22)1(BQ CP PQ MN )20(2 1 )22()2 ( )2 1(222<<+- =+- a a a a (2)由(1)知: 2 2 22= = MN a 时,当,的中点时,分别移动到即BF AC N M ,, 2 2的长最小,最小值为 MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN , ∴∠AGB 即为二面角α的平面角。又 4 6 ==BG AG ,所以由余弦定理有 314 6 4621 )46 ()46( cos 22-=? ?-+= α。故所求二面角)3 1 arccos(-=α。 例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)2 0(π θθ<<。点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求 证:MN//面BCE ; (2)求证:MN ⊥AB; A

立体几何初步时直线与平面垂直同步练习必修

立体几何初步时直线与平面垂直同步练习必修 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

第11课时 直线与平面垂直 分层训练 1.已知a ⊥平面α, b α, 则a 与b 的位置关系是 ( ) A. a a ⊥b C. a 与b 垂直相交 D. a 与b 垂直且异面 2.下列命题中正确的是(其中a 、b 、c 为不相重合的直线, α为平面) ( ) ①若b ① ② ③ ④ B. ① ④ C. ① D. ④ 3.已知直线l ⊥平面α,直线 m 平面β,有下列四个命题 (1)若α(2)和(4) D(1)和(3) 3.已知直线a 4.在四棱锥P-ABCD 中, 底面ABCD 是矩形, PA ⊥平面ABCD, 则这个多面体面是直角三角形的为______________ . 5.如图, 在正方形ABCD-A 1B 1C 1D 1中, 则BD 1与AC 的位置关系 ___________ . BD 1与B 1C 的位置关系___________ . 进而可得BD 1与平 面ACB 1的关系___________ . 6.如图。一点P 不在ΔABC 所在的平面内,O 是ΔABC 的外心,若PA=PB=PC. 求证:PO ⊥平面ABC. A B C A 1

选修延伸 1.证明: 过一点和已知平面垂直的直线只有一条. 2.已知直线a 接AO并延长交BC于D ∵O为重心 ∴AD⊥BC 而PO平面ABC ∴BC⊥PA 7.(1) ∵PA⊥平面ABCD 而BC ⊥AB,CD ⊥AD ∴BC ⊥PB,CD ⊥PD ∴PBC, PDC 是Rt 。PAB ,PAD 也是R t (2)∠PCA 为PC 与平面ABCD 所成 角,易求tan ∠ PCA= 2 拓展延伸 7.证明∵SA⊥平面ABCD O A B P C

相关主题