搜档网
当前位置:搜档网 › 混凝法去除水中TiO2纳米颗粒

混凝法去除水中TiO2纳米颗粒

国内外除砷技术研究现状_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外除砷技术研究现状 国内外除砷技术研究现状康雅,李涛,高红涛 (郑州市自来水总公司,河南郑州 450007) 摘要: 本文介绍了砷对人体的危害,饮用水去除砷的重要性,着重介绍了目前国内外应对饮用水砷超标问题的策略以及常用除砷技术及其优缺点,最后展望了除砷技术今后的发展趋势。 关键词: 饮用水;除砷; MCL 标准;零处理策略根据联合国世界卫生署的报道,自 1990 年起,全世界总人口净增了六亿,而人们赖以生存的水资源却日益枯竭。 水资源的枯竭大部分的原因直接来自水的资源污染,这引起全世界的高度关注。 目前,全世界 43% 的人口其饮用水没有达到足够的卫生标准,而有 22 %的人口其饮用水的情况非常糟糕[1]。 随着人口的增加和用水量的增加,地表水的供应已常常满足不了需要。 人们不得不转向地下,寻找地下水资源。 然而地下水的过度开发,又引起一系列新的问题。 P. Bagla 在《科学》期刊中披露[2],印度和孟加拉国由于地下水的污染,产生了种种新的疾病,严重地威协人类的健康。 在孟加拉湾三角州地区,大约 3600 万的居民喝了被砷污染的 1 / 10

水而导致中毒。 最新一期美国《化学与工程新闻》[3],又专门报道了孟加拉国砷污染的严重情况,并且有科学家义务前往该地,进行调查研究。 世界各地不断有关于饮用被砷污染的水而导致中毒的报道。 这其中有亚洲的印度、孟加拉国、越南、泰国、中国的台湾、新疆、陕西、内蒙古,南美的阿根挺、智利、巴西、墨西哥,欧洲的德国、西班牙、英国,以及北美的加拿大和美国。 砷是一种有毒元素,其化合物有三价和五价两种,三价砷的毒性更大。 五价砷对大鼠、小鼠径口半数致死量为 100mg/kg,三价则为10mg/kg,相差 10 倍。 天然地下水和地表水都可能含有砷,除来源于地壳外,砷污染也来自农药厂、玻璃厂和矿山排水。 地下水含砷量高于地表水,砷可通过呼吸道、食物或皮肤接触进入人体,在肝肾、骨胳、毛发等器官或组织内蓄积,破坏消化系统和神经系统,从而具有致癌作用[4] [5]。 欧洲、美国、日本等西方国家实行饮用水的最高允许含砷质量浓度 10 g/L 的标准,美国环境保护协会(EPA)规定: 2006 年 1 月 23 日,美国所有地区均强制实行饮用水的最高允许含砷质量浓度 10 g/L 的标准[6]。 我国目前实行的饮用水最高允许含砷质量浓度 50 g/L 的标准,随着经济实力的不断增强和全民健康意识的普遍提高,最近建设部

生活饮用水中的砷含量测定方法探讨

生活饮用水中的砷含量测定方法探讨 在最近几年,发生生活用水砷中毒事件非常频繁,这些中毒事件涉及人群广、存在着非常严重的病情,病区复杂。在我国,生活用水当中砷危害已经变为现在急需进行解决的一个卫生方面的问题。在文章中,重点分析了原子荧光光度计砷含量测定生活用水当中砷的方法,具体分析了混凝法以及吸附法两种方法。 标签:生活饮用水;砷;测定方法;原子荧光光度计;混凝法;吸附法 通常来讲,砷属于原生质的毒物,是一种致癌物质,应该进行优先控制。对砷中毒病人进行诊断,确定出高砷区,现在已经变为我国地方性的防治工作。对于早期的诊断来讲,生活饮用水当中的砷含量测定有着非常关键的作用,尤其是准确的判断高砷区以及正确的诊断患者有着非常显著的效果。 1 对生活饮用水当中的砷进行分析 众所周知,生活饮用水是人类生存当中不可缺少的一个部分,在日常生活当中扮演着非常关键的角色,所以,应该有效保证生活饮用水的健康。砷元素是生活饮用水当中需要监测的一个元素,属于重点的一项检测指标,属于可以积蓄其他有毒要素的元素。由于砷化合物存在剧毒,在生活饮用水当中属于一种重金属监控检测。在我国,已经颁布了相关的标准,进而来有效保证居民的生活安全以及身体的健康。在相关的检测当中,对很多检测方法进行了详细的介绍。 2 对原子荧光光度计的砷含量测定方法进行分析 2.1 分析原子荧光光度计原理 在酸性环境当中,三钾砷遇到氢化钾之后会发生一定的化学反应,进而合成砷化氢,在石英当中加入氢气将砷化氢分解成原子态的砷。若阴极灯遇到砷化氢,那么原子态砷会变为高能态,当其回归到基态时,会放射荧光,进而被检测出。砷含量与荧光强度成正比,所以,利用原子荧光光度计能够对砷含量进行测量。 2.2 分析试剂以及标准溶液 首先,砷的标准贮备液是1000微克每毫升,还需要1%的硫-1%抗坏血酸-5%的硝酸混合液,该混合液的制作具体是:在200毫升的蒸馏水当中加入25毫升的硝酸,同时再加入5克的硫以及抗坏血酸,一直稀释到500毫升,保证现用现配。同时,还需要1.5%的硼氢化钾-0.2%的氢氧化钠,主要的制作方法是在200毫升蒸馏水当中溶解1克放入氢氧化钠,之后再溶解7克的硼氢化钾,稀释到500毫升,也需要进行现用现配。3%的硝酸载液,这需要在300毫升蒸馏水当中添加15毫升浓硝酸,一直稀释到500毫升。 标准砷溶液的配制方法是:在100毫升的容量瓶当中溶解1毫升的砷贮备液,

砷的处理方法.

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 5.3.1 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。铁盐法可以用在饮用水的净化

饮用水除砷方法

饮用水除砷方法 水处理技术:1 混凝法 混凝法是目前在工业生产和处理饮用水中运用得最广泛的除砷方法,并且可以很好的使工业污水达到排放标准,使饮用水达到饮用标准。最常见的混凝剂是铁盐,如三氯化铁、硫酸亚铁、氯化铁;铝盐,如硫酸铝、碱氯化铝、聚铝;还有硅酸盐、碳酸钙、煤渣(主要成分是和有骨架结构和微孔)经粉碎及高温培烧活化后做混凝剂,另外还有聚硅酸铁(PFSC)、无机铈铁(稀土基材料)等做混凝剂。 研究表明,铁盐的除砷效果好于铝盐,而且对As(Ⅴ)的去除效果明显好于As(Ⅲ),所以在除砷过程中常对所处理的水进行预氧化,把三价As(Ⅲ)氧化为五价As(Ⅴ),再进行混凝,为了提高氧化效果,有时还会加入催化剂促进氧化。袁涛等人[3]通过正交试验,观察混凝剂成分变化、助凝剂的添加等因素对除砷效果的影响,发现当混凝剂成分分别为硫酸铁、硫酸铝、硫酸铁与硫酸铝聚合而成的复合物(质量比3:1)、硫酸铁和硅酸钠的聚台物(含量约2%)时,单纯用硫酸铁的除砷效果是最好的,在待除砷水中添加活性炭或高岭土对上混凝剂的除砷效率无明显增强作用。但采取过滤措施后.砷去除率明显提高,这说明混凝剂水解产物形成的胶体颗粒吸附有砷,同时在pH 值较高时铁离子还会产生大量的氢氧化铁胶体,这种胶体具有较大的比表面和较高的吸附能力,能和砷酸根发生吸附共沉淀,使砷的去除率明显提高。一般认为,混凝剂投加后,能够促使溶解状态的砷向不溶的含砷反应产物转变,从而达到将砷从水中去除的目的。 该过程可概括整理成以下三个方面: (1)沉淀作用,水解的金属离子与砷酸根形成沉淀; (2)共沉淀作用.在混凝剂水解—聚合一沉淀过程中.砷通过被吸附、包裹、闭合(或络合)等作用而随水解产物一起沉淀; (3)吸附作用,砷被混凝剂形成的不溶性水解产物表面所吸附。后2种机制可能更为重要,因为在饮水除砷处理中,一般pH>,该条件下不易形成沉淀。 混凝法方法需要大量的混凝剂,产生大量的含砷废渣无法利用,且处理困难,长期堆积则容易造成二次污染,因此该方法的应用受到一定的限制。 2 吸附法

饮用水除砷办法

饮用水除砷办法 发布时间:2009-7-28 水处理技术:1 混凝法 混凝法是目前在工业生产和处理生活饮用水中运用得最广泛的除砷方法,并且可以很好的使工业污水达到排放标准,使生活饮用水达到饮用标准。最常见的混凝剂是铁盐,如三氯化铁、硫酸亚铁、氯化铁;铝盐,如硫酸铝、碱氯化铝、聚铝;还有硅酸盐、碳酸钙、煤渣(主要成分是和有骨架结构和微孔)经粉碎及高温培烧活化后做混凝剂,另外还有聚硅酸铁(PFS C)、无机铈铁(稀土基材料)等做混凝剂。 研究表明,铁盐的除砷效果好于铝盐,而且对As(Ⅴ)的去除效果明显好于As(Ⅲ),所以在除砷过程中常对所处理的水进行预氧化,把三价As(Ⅲ)氧化为五价As(Ⅴ),再进行混凝,为了提高氧化效果,有时还会加入催化剂促进氧化。袁涛等人[3]通过正交试验,观察混凝剂成分变化、助凝剂的添加等因素对除砷效果的影响,发现当混凝剂成分分别为硫酸铁、硫酸铝、硫酸铁与硫酸铝聚合而成的复合物(质量比3:1)、硫酸铁和硅酸钠的聚台物(含量约2%)时,单纯用硫酸铁的除砷效果是最好的,在待除砷水中添加活性炭或高岭土对上混凝剂的除砷效率无明显增强作用。但采取过滤措施后.砷去除率明显提高,这说明混凝剂水解产物形成的胶体颗粒吸附有砷,同时在pH值较高时铁离子还会产生大量的氢氧化铁胶体,这种胶体具有较大的比表面和较高的吸附能力,能和砷酸根发生吸附共沉淀,使砷的去除率明显提高。一般认为,混凝剂投加后,能够促使溶解状态的砷向不溶的含砷反应产物转变,从而达到将砷从水中去除的目的。 该过程可概括整理成以下三个方面: (1)沉淀作用,水解的金属离子与砷酸根形成沉淀;

(2)共沉淀作用.在混凝剂水解—聚合一沉淀过程中.砷通过被吸附、包裹、闭合(或络合)等作用而随水解产物一起沉淀; (3)吸附作用,砷被混凝剂形成的不溶性水解产物表面所吸附。后2种机制可能更为重要,因为在饮水除砷处理中,一般pH>5.5,该条件下不易形成沉淀。 混凝法方法需要大量的混凝剂,产生大量的含砷废渣无法利用,且处理困难,长期堆积则容易造成二次污染,因此该方法的应用受到一定的限制。 2 吸附法 吸附法是一种简单易行的水处理技术,一般适合于处理量大、浓度较低的水处理体系。该方法是以具有高比表面积、不溶性的固体材料作吸附剂,通过物理吸附作用、化学吸附作用或离子交换作用等机制将水中的砷污染物固定在自身的表面上,从而达到除砷的目的。主要的除砷吸附剂有活性氧化铝、活性炭、骨炭、沸石以及天然或合成的金属氧化物及其水合氧化物等。李艳红等比较了活性氧化铝、活性炭、骨炭、沸石的动态效果,结果发现,在条件一致的情况下,小颗粒活性氧化铝除三价砷效率可达80%,除五价砷效率达86% ;而骨炭只有25% 和50%,活性炭为25%和44% ,沸石为10%和30%。表明活性氧化铝除砷效率明显优于其他净水剂。凌波等人对强化除砷净水剂进行了除砷试验,结果发现,这种以粉末活性碳和不同产地骨炭作骨架、改性后加工而成的强化净水剂,除砷容量及除砷效率均比原材料高50倍,比市售除砷材料高10倍,除砷性能专一,只去除水中的砷,不改变水中其他元素的组成和含量,对原水pH也无严格要求,可以使用简单方法再生。 李曼尼等研究了微波法磷改性斜发沸石的结构及其对水中砷的去除,发现斜发沸石微波磷改性后: (1)晶胞体积收缩,相对结晶度降低,比表面积、孔体积和微孔体积明显减小。

砷离子去除

水工程与工艺新技术 摘要:自从1996年孟加拉国和印度报道慢性砷中毒事件以来,饮用水砷污染和砷中毒问题就受到全世界的关注。如何解决这一难题,研究人员进行了大量研究。本文综述了饮用水中砷的去除方法,包括混凝/沉淀、吸附、离子交换技术、生物法其他方法如反渗透法以及“微鼻”除砷技工艺等,对各种除砷技术进行了总结和比较。 关键词:化学法处理离子交换法生物法反渗透法(RO) “微鼻”除砷技工艺 饮用水中的砷污染对全球数百万人的健康造成了威胁。这种情况不但发生在印度、中国和孟加拉国,在美国、英国、德国和意大利的部分地区也存在此类问题,主要是源于天然矿源的冲刷,以及矿业和工业废水等人类活动的影响。虽然这种情况的程度较轻。世界卫生组织(WHO)建议将饮用水中砷的最大浓度限值(MCL)定为10 ppb(1 ppb即十亿分之一)。这一限值在许多国家已经被广为接受。但是,仍有数百万人只能喝到含砷量达到50 ppb甚至含砷浓度更高的饮用水。砷对于高级生物和人具有很高的毒性。如果长期接触,普遍会发生皮肤改变或其他健康损害,最终导致血管疾病或癌症。 自然水系中,存在有机砷和无机砷。其中无机砷主要以As (Ⅲ)和As (V)存在,具体存在形式取决于水体的氧化还原电位和pH。在氧化环境如地表水中,砷主要以五价态存在,如(H2AsO4-、HAs O42 - );在还原环境如地下水中,则主要以三价砷(如H3AsO3 ) 存在。有机砷的主要存在形式是二甲基胂酸(DMA) 和甲基胂酸(MMA)。其中,DMA是暴露在无机砷环境中的动物和人类的主要代谢产物。有机砷和无机砷在一定条件下可以相互转化,厌氧条件下,砷酸盐通过甲烷菌中甲基钴氨素作用,此时砷酸盐被还原,同时甲基化而生成二甲基以下将对主要的除砷技术作详细的述评。 1.化学法处理含砷废水处理含砷废水 目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准。

国内外除砷技术研究现状

国内外除砷技术研究现状 1.前言 根据联合国世界卫生署的报道,自1990年起,全世界总人口净增了六亿,而人们赖以生存的水资源却日益枯竭。水资源的枯竭大部分的原因直接来自水的资源污染,这引起全世界的高度关注。目前,全世界43% 的人口其饮用水没有达到足够的卫生标准,而有22 %的人口其饮用水的情况非常糟糕[1]。随着人口的增加和用水量的增加,地表水的供应已常常满足不了需要。人们不得不转向地下,寻找地下水资源。然而地下水的过度开发,又引起一系列新的问题。P.Bagla在《科学》期刊中披露,印度和孟加拉国由于地下水的污染,产生了种种新的疾病,严重地威协人类的健康。在孟加拉湾三角州地区,大约3600万的居民喝了被砷污染的水而导致中毒。最新一期美国《化学与工程新闻》[3],又专门报道了孟加拉国砷污染的严重情况,并且有科学家义务前往该地,进行调查研究。世界各地不断有关于饮用被砷污染的水而导致中毒的报道。这其中有亚洲的印度、孟加拉国、越南、泰国、中国的台湾、新疆、陕西、内蒙古,南美的阿根挺、智利、巴西、墨西哥,欧洲的德国、西班牙、英国,以及北美的加拿大和美国。 砷是一种有毒元素,其化合物有三价和五价两种,三价砷的毒性更大。五价砷对大鼠、小鼠径口半数致死量为100mg/kg,三价则为10mg/kg,相差10倍。天然地下水和地表水都可能含有砷,除来源于地壳外,砷污染也来自农药厂、玻璃厂和矿山排水。地下水含砷量高于地表水,砷可通过呼吸道、食物或皮肤接触进入人体,在肝肾、骨胳、毛发等器官或组织内蓄积,破坏消化系统和神经系统,从而具有致癌作用。 欧洲、美国、日本等西方国家实行饮用水的最高允许含砷质量浓度10μg/L的标准,美国环境保护协会(EPA)规定:2006年1月23日,美国所有地区均强制实行饮用水的最高允许含砷质量浓度10μg/L的标准。我国目前实行的饮用水最高允许含砷质量浓度50μg/L 的标准,随着经济实力的不断增强和全民健康意识的普遍提高,最近建设部行业标准规定砷含量10μg/L,因此,进一步提高引用水的质量,保证居民饮用水中砷含量合格已经迫在眉睫,部分使用地下水源的水厂必须采取适当的处理工艺除去水中过高含量的砷。 减少砷对人类的侵害,是一项世界性的综合性课题,需要诸如地球化学、环境化学、水文地质学、微生物学等学科的共同努力,也需要政府部门的政策干预。有两种地质环境会导

饮用水除砷技术现状及展望

饮用水除砷技术现状及展望 砷(As)是一个广泛存在并且具有准金属特性的元素,呈灰色斜方六面体结晶,有金属光泽,既不溶解于水又不溶解于酸,为非人体必需元素。砷的毒性与它的化学性质和价态有关。单质砷因不溶于水,摄入有机体后几乎不被吸收而完全排出,一般无害;有机砷(除砷化氢的衍生物外),一般毒性较弱;三价砷离子对细胞毒性最强,尤以三氧化二砷(俗称信石,砒霜等)的毒性最为剧烈,三价砷进入人体内,可与蛋白质的巯基结合形成特定的结合物,阻碍细胞的呼吸而显毒性作用,而且三价砷对线粒体呼吸作用也有明显的作用;五价砷离子毒性不强,当吸入五价砷离子时,产生中毒症状较慢,要在体内被还原转化为三价砷离子后,才发挥其毒性作用[1]。砷也是致癌、致突变因子,对动物还有致畸作用。长期饮用高砷水,会引起花皮病或皮肤角质化等皮肤病,黑脚病,神经病,血管损伤,以及增加心脏病发病。天然水中的砷来源于农业和林业使用砷化合物药剂,还来源于冶金、化工、化学制药、制革、纺织、木材加工、玻璃、油漆颜料和陶瓷等工业废水对天然水体的污染。我国的内蒙古、新疆、台湾等地饮水中含砷量高达0.2-2.0mgAs/l,严重超过我国现行饮水卫生标准<0.05mgAs/l,导致地方性砷中毒,饮用水除砷是防治地方性砷中毒的关键措施,所以,安全、有效、经济的饮水除砷方法的研究显得尤为重要。 目前,饮用水除砷措施主要可概括为混凝法、吸附法、离子交换法等。下面将一一做详细介绍: 1 混凝法 混凝法是目前在工业生产和处理生活饮用水中运用得最广泛的除砷方法,并且可以很好的使工业污水达到排放标准,使生活饮用水达到饮用标准。最常见的混凝剂是铁盐,如三氯化铁、硫酸亚铁、氯化铁;铝盐,如硫酸铝、碱氯化铝、聚铝;还有硅酸盐、碳酸钙、煤渣(主要成分是SiO2和Al2O3有骨架结构和微孔)经粉碎及高温培烧活化后做混凝剂,另外还有聚硅酸铁(PFSC)、无机铈铁(稀土基材料)等做混凝剂。研究表明,铁盐的除砷效果好于铝盐,而且对As(Ⅴ)的去除效果明显好于As(Ⅲ),所以在除砷过程中常对所处理的水进行预氧化,把三价As(Ⅲ)氧化为五价As(Ⅴ),再进行混凝[2],为了提高氧化效果,有时还会加入催化剂促进氧化。袁涛等人[3]通过正交试验,观察混凝剂成分变化、助凝剂的添加等因素对除砷效果的影响,发现当混凝剂成分分别为硫酸铁、硫酸铝、硫酸铁与硫酸铝聚合而成的复合物(质量比3:1)、硫酸铁和硅酸钠的聚台物(SiO2含量约2%)时,单纯用硫酸铁的除砷效果是最好的,在待除砷水中添加活性炭或高岭土对上混凝剂的除砷效率无明显增强作用。但采取过滤措施后.砷去除率明显提高,这说明混凝剂水解产物形成的胶体颗粒吸附有砷,同时在pH值较高时铁离子还会产生大量的氢氧化铁胶体,这种胶体具有较大的比表面和较高的吸附能力,能和砷酸根发生吸附共沉淀,使砷的去除率明显提高。一般认为,混凝剂投加后,能够促使溶解状态的砷向不溶的含砷反应产物转变,从而达到将砷从水中去除的目的。该过程可概括整理成以下三个方面:(1)沉淀作用,水解的金属离子与砷酸根形成

不同混凝剂对水中砷的去除效果研究_李建渠

科技信息2013年第9期 SCIENCE&TECHNOLOGYINFORMATION 由于受上游地区开采含砷矿和冶炼废水的影响,使w市某江河(饮用水源)水中砷本底含量较高,尤其在枯水期源水中砷含量较大,会给位于下游的自来水厂常规水处理工艺带来一定的挑战,为应对突发事件对饮用水质的不良影响,保证饮用水的安全,研究有效的除砷方法具有重要的意义。本文用不同种类的铝盐、铁盐混凝剂和自制复合混凝剂进行除砷实验研究,取得了较好的效果。 1材料与方法 1.1主要仪器与试剂 78-1磁力加热搅拌器(江苏金坛市佳美仪器厂);FA1104MINQIAO 电子天平(d=0.1mg)(上海民桥精密科学仪器有限公司);SYZ-550石英亚沸高纯水蒸馏器(金坛市晶玻实验仪器厂)。三氯化铁、硫酸铁、硫酸亚铁、硫酸铝、氯化铝、聚合氯化铝、硅酸钠、盐酸、硫酸等试剂均为分析纯。 1.2水样的配制 用亚砷酸钠和砷酸钠配制浓度为0.1mg/L的三价砷、五价砷水样。 1.3水样分析方法—— —砷斑法 用砷斑目视比色法测定生活饮用水及源水中砷含量(GB/T 13079-2006)。 1.4试验方法 用浓度为0.1mg·L-1的As(III)和As(V)溶液作模拟水样,分别用三氯化铁、硫酸铁、硫酸亚铁、硫酸铝、氯化铝、聚合氯化铝、自制聚合硫酸铝(PASS)、自制聚合硫酸铁(PFSS)、自制聚硅氯化铁(PFSC)、自制聚硅酸铁铝共10种混凝剂进行除砷对比实验研究,各种混凝剂的投加浓度均为30mg·L-1,磁力搅拌15min、静置、沉淀、取上清液用“砷斑法”测定砷含量并计算除砷率。 2结果与分析 2.1商品铁盐和铝盐混凝剂除砷效果比较 用三种铁盐和三种铝盐混凝剂分别对含砷水样进行对比实验,结果如下表1。 表1铁盐和铝盐混凝剂除砷效果比较 由表1看出,各种混凝剂对As(V)的去除率均高于As(III)的;铁盐的除砷效果高于铝盐,其中的三氯化铁效果相对较好,可使As(V)的去除率达到90%,能满足饮用水标准要求(0.01mg·L-1),但沉淀时间均较长。 但由于三氯化铁在设定的投加浓度条件下对As(III)的去除率未 达到饮用水标准,所以继续研究投加量对As(III)去除率的影响。在3份As(III)水样中分别投加浓度为30、40、50mg·L-1的三氯化铁,结果显示:去除率均为80、沉淀时间均为100min,随絮凝剂投加量的增加As(III)去除率并没有明显增加,且增加了水的色度。 2.2自制聚合硫酸铝(PASS)除砷效果研究 在pH值分别为1、2、3条件下制备了三种聚合硫酸铝(PASS)混凝剂[1],分别投加在三份平行的As(V)和As(III)水样中进行对比实验,结果显示:对As(V)的去除率均高于As(III)的,三种混凝剂对As(V)的去除率为80%、沉淀时间10min,三种混凝剂对As(III)的去除率为30%—40%、沉淀时间20-40min;在pH=2、pH=3条件下制备的混凝剂除砷效果相对较好,对As(V)的去除率最高可达到为90%。 2.3自制聚合硫酸铁(PFSS)除砷效果研究 各取三份As(V)水样和As(III)水样,分别投加30mg·L-1不同pH条件下制备的PFSS混凝剂[1],实验结果显示:PFSS对As(V)和As (III)的去除效果均高于PASS的;在pH=2、pH=3条件下制备的PFSS 对As(V)的去除效率达到了95%、沉淀时间仅为15min,对As(III)的去除率可达到90%,在20分钟内沉淀完毕。 2.4自制聚硅氯化铁(PFSC)除砷效果研究 各取三份As(III)和As(V)水样,分别投加20、30、40mg·L-1的自制聚硅氯化铁(PFSC)样品[2],实验结果表明:PFSC的除砷效果明显高于PASS和PFSS,三种投加浓度条件下对As(V)的去除率均为95%、对As(III)的去除率为85%-90%,且形成的矾花大而密实,沉降快,均可在20min内沉淀完毕。 2.5自制聚硅酸铁铝除砷效果研究 各取四份As(III)和As(V)水样,分别投加20、30、40、50mg·L-1的自制聚硅酸铁铝[3]进行对比实验,结果显示:自制聚硅酸铁铝对As(V)的去除效果较好,投加浓度为20mg·L-1即可使去除率达90%,出水满足饮用水国家标准0.01mg·L-1,且矾花大沉淀快,但对As(Ⅲ)的率仅为20%。 3结论 常用的商品混凝剂中铁盐的除砷效果优于铝盐,三氯化铁相对较好,但沉淀时间均较长,各种混凝剂对As(V)的去除率均高于As(Ⅲ)的。 自制的四种混凝剂除砷效果均高于商品混凝剂,且沉淀时间减少。其中PFSC对As(V)和As(Ⅲ)的去除效果相对较好,其投加量为30 mg·L-1时对As(V)的去除率可达到95%、As(Ⅲ)的去除率达到90%,并且形成的矾花大而密实,沉降迅速,均可在20min内沉淀完。 【参考文献】 [1]张令芬,黄健芳.聚硅酸硫酸铝絮凝剂的研制及性能研究[J].轻金属,2000(9):27-28. [2]张永刚,陈蕊,秦娟,等.聚硅氯化铁混凝剂的制备及其对微污染源水混凝性能的研究[J].污染防治技术.2007,20(2):3-5. [3]胡翔,周定.高效无机混凝剂聚硅酸铁铝的研究[J].中国环境科学,1999,19(3):266-269. [责任编辑:曹明明] 不同混凝剂对水中砷的去除效果研究 李建渠 (韶关学院化学与环境工程学院,广东韶关512005) 【摘要】以浓度为0.1mg·L-1的As(III)和As(V)溶液作模拟水样,用铝盐混凝剂、铁盐混凝剂和自制的复合混凝剂进行除砷实验研究。结果表明,铁盐混凝剂的除砷效果均比铝盐好,其中三氯化铁的除砷效果相对较好;各种混凝剂对As(V)的去除率均比As(III)的高;自制混凝剂中聚合硫酸铁(PFSS)和聚硅氯化铁(PFSC)的除砷效果最好,对砷的去除率达到了90%。能满足国家饮用水标准(As≤0.01mg·L-1)。 【关键词】饮用水;混凝剂;除砷 混凝剂 As(V)As(Ⅲ) 去除率(%)沉淀时间/min去除率(%)沉淀时间/min 三氯化铁硫酸铁硫酸亚铁聚合氯化铝氯化铝硫酸铝90 80 90 80 60 40 85 85 85 40 100 170 80 60 20 40 30 20 120 165 120 45 160 180 作者简介:李建渠(1960—),男,教授,主要从事环境监测教学与污染治理研究。 科● ○高校讲坛○ 145

混凝法去除饮用水中砷

饮用水除砷技术现状及展望 来源:网络发布日期:2006-07-23浏览次数: 15568 摘要:介绍饮用水含砷对人体的危害,饮用水去除砷的重要性,着重介绍了目前用于除砷的技术及其优缺点,最后展望了除砷技术今后的发展趋势。 关键词:饮用水除砷技术混凝吸附离子交换展望 Present situation and Prospects of Arsenic Removal Techniques in Potable Water Xu Dawei Abstract:The harmfulness of potable water contaminated by arsenic and the importance of arsenic removal are introduced in this article. The various present methods of arsenic removal, advantages and disadvantages are emphasized. In the end, the later development tendency of arsenic removal techniques is prospected. Key words:potable water; arsenic removal techniques; coagulation; adsorption; ion-exchange; prospect. 砷(As)是一个广泛存在并且具有准金属特性的元素,呈灰色斜方六面体结晶,有金属光泽,既不溶解于水又不溶解于酸,为非人体必需元素。砷的毒性与它的化学性质和价态有关。单质砷因不溶于水,摄入有机体后几乎不被吸收而完全排出,一般无害;有机砷(除砷化氢的衍生物外),一般毒性较弱;三价砷离子对细胞毒性最强,尤以三氧化二砷(俗称信石,砒霜等)的毒性最为剧烈,三价砷进入人体内,可与蛋白质的巯基结合形成特定的结合物,阻碍细胞的呼吸而显毒性作用,而且三价砷对线粒体呼吸作用也有明显的作用;五价砷离子毒性不强,当吸入五价砷离子时,产生中毒症状较慢,要在体内被还原转化为三价砷离子后,才发挥其毒性作用[1]。砷也是致癌、致突变因子,对动物还有致畸作用。长期饮用高砷水,会引起花皮病或皮肤角质化等皮肤病,黑脚病,神经病,血管损伤,以及增加心脏病发病。天然水中的砷来源于农业和林业使用砷化合物药剂,还来源于冶金、化工、化学制药、制革、纺织、木材加工、玻璃、油漆颜料和陶瓷等工业废水对天然水体的污染。我国的内蒙 古、新疆、台湾等地饮水中含砷量高达,严重超过我国现行饮水卫生标准 ,导致地方性砷中毒,饮用水除砷是防治地方性砷中毒的关键措施,所以,安全、有效、经济的饮水除砷方法的研究显得尤为重要。 目前,饮用水除砷措施主要可概括为混凝法、吸附法、离子交换法等。下面将一一做详细介绍:

地下水除砷方法概述

国联质检Untied Nations Quality Detection 权威检测机构 地下水除砷方法概述---国联检测实验室提供 我国除已确定的新疆、内蒙古、山西等饮水型地方性砷中毒病区外,在宁夏、湖南、吉林、浙江、青海和辽宁等地也存在饮水高砷病区。地方性砷中毒病区不仅有饮水型,还有燃煤型,如贵州省有燃煤型地方性砷中毒病区。 砷及砷化物的毒性与其水溶性的大小有关。水溶性大,其毒性也大。元素甚极易氧化性为毒性很强的三氧化二砷。人长期饮用含砷量达0.1-4.7mg/L的水可引起慢性中毒。三氧化二砷的致死量为60-200mg。居住在特定地理环境的居民长期通过饮水、空气、食物摄入过多的砷而引起的以皮肤色素脱失、着色、角化等为主的全身性的慢性中毒,称为地方性砷中毒。我国的内蒙古、新疆、台湾等地饮水中含量高达0.2-2.0mg/L,严重超过我国现行饮用水卫生标准<0.01mg/L,导致地方性砷中毒,饮用水除砷是防治地方性砷中毒的关键措施,所以安全有效经济的饮水除砷方法的研究显得尤为重要。 除砷措施-混凝法 混凝法是目前在工业生产和处理生活饮用水中运用最广泛的除砷方法,可使工业废水达到排放标准,使生活饮用水达到饮用标准。最常见的混凝剂是铁盐,如三氯化铁、硫酸亚铁、氯化铁;铝盐,如硫酸铝、聚合氯化铝;还有硅酸盐、碳酸钙、煤渣经粉碎及高温焙烧活化后做混凝剂,另外还有聚硅酸铁等做混凝剂。研究表明,铁盐的除砷效果好于铝盐,所以在除砷过程中常对所处理的水进行预氧化,把三价As氧化为五价As,在进行混凝,为了提高氧化效果,有时还会加入催化剂促进氧化。袁涛等人通过正交试验,观察混凝剂成分变化、助凝剂的添加等因素对除砷效果的影响,发现当混凝剂成分分别为硫酸铁、硫酸铝、硫酸铁与硫酸铝聚合而成的复合物、硫酸铁和硅酸钠的聚合物时,单纯用硫酸铁的除砷效果是最好的,在待除砷水中添加活性炭或高岭土对上混凝剂的除砷效率无明显增强作用。 但采取过滤措施后,去除率明显提高,这说明混凝剂水解产物形成的胶体具有较大的比表面积,能和砷酸根发生吸附共沉淀,使砷的去除率明显提高。一般认为,混凝剂投加后,能够促使溶解状态的砷向不溶的含砷反应产物转变,从而达到将砷从水中去除的目的,该过程可概括整理成以下三个方面:①沉淀作用,水解的金属离子与砷酸根形成沉淀;②共沉淀作用,在混凝剂水解-聚合-沉淀过程中。砷通过被吸附、包裹、闭合等作用而随水解产物一起沉淀;③吸附作用,砷被混凝剂形成的不溶性水解产物表面所吸附。后两种机制可能更为重要,因为在饮水除砷处理中,一般PH>5.5,该条件下不易形成沉淀。 混凝法除砷需要大量的混凝剂,产生大量的含砷废渣无法利用,且处理困难,长期堆积则容易造成二次污染,因此该方法的应用受到一定的限制。

饮用水中砷去除技术的研究现状与展望

饮用水中砷去除技术的研究现状与展望 摘要:近年来,水体砷污染已成为一个全球性的环境问题,采取有效的方法去除饮用水中的砷已受广泛关注。文章重点综述了各种去除饮用水中砷的技术方法,包括混凝沉淀、吸附、离子交换生物技术、压力膜技术等,并就目前饮用水除砷技术的现状提出了展望。 关键词:砷污染,饮用水,吸附,离子交换,除砷 1 前言 砷在自然界中广泛存在,是地壳的组成成分之一。自然界中砷的来源主要有:(1)自然源:矿物及岩石的风化、火山的喷发、温泉的上溢水;(2)人工源:主要来源于矿化物的开采和冶炼。在雨水冲刷、风吹以及其他自然条件下,来自于自然源和人工源的砷以As3+和As5+ 的形式进入到附近的水体或农田里,导致这些水体或农田里含有高浓度砷。在有的矿井的排水系统中,砷的质量浓度高达7 mg/L,从而对地下水及饮用水源造成了很大的污染[1]。 砷在饮用水中通常以无机砷离子的形式存在,其中2种最主要的价态分别是As(Ⅲ)和As(V)。砷化合物有剧毒,容易在人体内累积,造成慢性砷中毒。长期饮用含高浓度无机砷的水的人群易患有皮肤病、周围血管病、高血压以及癌症等疾病[2]。近年来,在一些国家,尤其是在孟加拉国、中国以及蒙古的饮用水源中均发现能导致人体急慢性中毒的砷。我国新修订的生活饮用水卫生标准(GB5479—2006)规定,从2007年7月1 13起,饮用水中砷的最大允许浓度从50 g/L降低为10μg/L。据调查,按照新的生活饮用水卫生标准,中国水砷中毒危害病区的暴露人数高达1 500万之多,已确诊患者超过数万人。因此,研究符合中国国情的饮用水除砷技术就显得尤为重要。为此,本文综述了近年来国内外饮用水除砷技术的研究现状,并指出了其中存在的问题和今后的研究方向。 2 饮用水中砷去除的技术方法 自然水系中,存在有机砷和无机砷。其中无机砷主要以As3+和As5+存在,具体存在形式取决于水体的氧化还原电位和pH。在氧化环境如地表水中,砷主要以五价态存在,如(H2AsO4-,HAsO42-);在还原环境如地下水中,则主要以三价砷(如H3AsO3)存在。有机砷的主要存在形式是甲基胂酸(DMA)和甲基胂酸(MMA)。其中,DMA是暴露在机砷环境中的动物和人类的主要代谢产物。有机砷和无机砷在一定条件下可以相互转化,厌氧条件下,砷酸盐通过甲烷菌中甲基钴氨素作用,此时砷酸盐被还原,同时甲基化而生成二甲基胂酸[3]。目前砷的去除有多种方法,其中混凝沉淀、吸附、离子交换、生物技术、膜法等是主要方法。 2.1 混凝沉淀法 混凝沉淀法因其使用方便、易于掌握和接受而成为应用最多、最广泛的一种砷超标饮用水处理方法。最常见的混凝剂是铁盐和铝盐。大量研究表明,混凝沉淀法除砷效果和水中砷的氧化态、砷的初始浓度、混凝剂的种类和剂量、水质条件等因素有关。As(Ⅲ)去除的效果较差,As(V)去除率较高。将As(Ⅲ)氧化为As(V)可提高砷的去除率。当As(Ⅲ)初始浓度<0.8 mg/L 时,次氯酸钠1.25 mg

相关主题