搜档网
当前位置:搜档网 › 里氏木霉摇瓶发酵产木聚糖酶培养条件的优化

里氏木霉摇瓶发酵产木聚糖酶培养条件的优化

里氏木霉摇瓶发酵产木聚糖酶培养条件的优化
里氏木霉摇瓶发酵产木聚糖酶培养条件的优化

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

货号:QS2631 规格:50管/24样 内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书 分光光度法 正式测定前务必取 2-3 个预期差异较大的样本做预测定 测定意义: Cx存在于细菌、真菌和动物体内,是纤维素酶系的组份之一,Cx主要作用于非晶态纤维素和水溶性纤维素衍生物,随机水解糖苷键,将其分解成葡萄糖、纤维二糖、纤维三糖和其他寡聚体。 测定原理: 采用3,5-二硝基水杨酸法测定Cx催化羧甲基纤维素钠降解产生的还原糖的含量。 需自备的仪器和用品: 可见分光光度计、水浴锅、离心机、可调式移液器、1mL 玻璃比色皿、研钵、冰和蒸馏水。 试剂的组成和配制: 提取液:液体 50mL×1 瓶,4℃保存; 试剂一:液体 15mL×1 瓶,4℃保存; 试剂二:液体 60mL×1 瓶,4℃保存; 样品测定的准备: 1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104 个):提取液体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液),超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);8000g 4℃离心 10min,取上清,置冰上待测。 2、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织, 加入 1mL 提取液),进行冰浴匀浆。8000g 4℃离心 10min,取上清,置冰上待测。 3、血清(浆)样品:直接检测。 测定步骤: 1、分光光度计预热 30min 以上,调节波长至 540nm,蒸馏水调零。 混匀, 90℃水浴 10min(盖紧,防止水分散失),冷却后,测 540nm 下吸光值 A,计 算ΔA=A 测定管-A 对照管。每个测定管需设一个对照管。 第1页,共2页

哈茨木霉发酵产木霉素的培养条件优化

收稿日期:2009204205 基金项目:浙江省自然科学基金项目(Y 3080238);浙江省重大科技项目(2006C12032)作者简介:申屠旭萍(1974-),女,硕士,讲师,E 2mail :stxp @https://www.sodocs.net/doc/0816028223.html, ;3通讯作者,博导。 哈茨木霉发酵产木霉素的培养条件优化 申屠旭萍, 石一 ,俞晓平3 (中国计量学院生命科学学院,杭州310018) 摘要:采用快速有效的数学统计方法对一株枸骨内生真菌哈茨木霉生产木霉素的培养条件进行了优化。首先利用Plackett 2Burrman 设计在影响木霉素产量的6个因素中筛选出主效因素:葡萄糖浓度、发酵时间、接种量。在此基础上,再利用响应面分析法对以上三个显著因子的最佳水平范围进行研究,建立并分析了各因子与木霉素产量关系的回归模型。通过模型确定出最佳的试验条件:葡萄糖浓度4218g/L ,接种量1139ml 和发酵时间102188h ,该条件下木霉素的产量可达147144mg/L 。经五批培养验证,预测值与验证试验平均值接近。 关 键 词:木霉素;哈茨木霉;优化;Plackett 2Burman 设计;响应面分析法 中图分类号:S4821292;T Q92016文献标识码:A 文章编号:100529261(2009)0420348207 Optimization of Conditions for Production of T richodermin by Trichoderma harzianum SHE NT U Xu 2ping ,SHI Y i 2jun ,Y U X iao 2ping 3 (C ollege of Life Sciences ,China Jiliang University ,Hangzhou 310018,China ) Abstract :Factorial design and response surface techniques were used to design and optimize the process to increase the yield of trichodermin produced by the Trichoderma har zianum ,an endophytic fungus is o 2lated from Llex cornuta.Initially ,Plackett 2Burman design was undertaken to evaluate the effects of the six factors and three statistically significant parameters including glucose ,fermentation time and inoculum size were selected.In the second phase of the optimization process ,a response surface methodology was used to optimize the above critical factors ,and to find out the optimal concentration levels and the rela 2tionships between these factors.By s olving the m odel ,the optimal batch fermentation conditions were de 2termined.Under conditions of glucose ,4218g/L ;inoculum size ,1139ml ;fermentation time ,102188h ,the yield of trichodermin reached 147144mg in 1L fermentation liquor.A fter five batches cultivation ,the predicted values were verified by validation experiments. K ey w ords :trichodermin ;Trichoderma har zianum ;optimization ;Plackett 2Burman design ;response surface methodology 8 4325(4)348-354 中国生物防治 Chinese Journal of Biological C ontrol 2009年11月

(完整版)木质素酶活力的测定方法

1前言 草菇是一种著名的食用菌,营养丰富,味鲜美,深受人们的喜爱。草菇子实体含有人体必需的8种氨基酸,占其他氨基酸总量得38.2%,还含有14种维生素[1],不愧为一种比较理想的天然保健食品。草菇喜高温高湿,生长速度快,生长周期短,一糙只需25天左右,在广西每年4月至9月均可以种植,是一种很有发展前途的食用菌,生产和市 场前景广阔。 栽培草菇的生物学效率比较低(鲜菇与栽培料的比值),用稻草栽培草菇的生物学效率大都在10—15%左右。过去研究认为草菇主要利用纤维素、淀粉,不大利用半纤维素以及木质素。因为草菇的半纤维素酶活性低,又缺乏降解木质素的酶类,但是农作物秸杆中一般含有半纤维素15—30%,木质素占10—30%。为此,本试验用透明圈法、氧化圈法观 测V 展1、V 展2 、V 展3 、V 6 、V 广 、V 11 六个菌株所产的胞外酶利用分解半纤维素,木质素的能 力,看是否能够从其中初步筛选出利用半纤维素、木质素较强的菌株来。探讨更合理地配制栽培料的途径对提高草菇的生物转化率有重要意义。 2 实验原理 半纤维素是由五个碳原子为主的木糖聚合的高分子化合物,经木聚糖酶降解利用之后,基质生成透明圈[2]。木质素是以苯环为基本结构的复杂大分子的有机化合物,含碳60—66%,在多酚氧化酶、过氧化酶降解后,能与愈创木酚进行反应生成棕红色或棕褐色轮环[3]。亮兰试剂与蛋白质结合兰青色、在与过氧化酶作用则呈黄色透明圈[4]。通过相应的平板基质培养,草菇菌丝分泌的酶类降解利用后,形成的透明圈迟早、直径大小、色泽深度等初步判断是否存在半纤维素酶和木质素酶降解酶类及其活性。 3 材料与方法 3.1 材料 3.1.1 菌株 V 9购至广西大学微生物研究所,V 广、 V 11 购至广西农业科学院生物技术研究所,V 展1 、 V 展2 、V 展3 采至广西现代农业展示中心经组织培养所得。 3.1.2 试剂 可溶性淀粉、亮兰溶液自配、半纤维素自已提制、愈创木酚为国产分析纯、木聚糖为进 口。 3.2 试验方法 3.2.1 试剂配制 3.2.1.1 亮兰溶液配制

木聚糖酶及其应用

木聚糖酶及其应用 姓名:程婷婷学号:20083768 班级:食品科学与工程专业08级本科2班摘要:木聚糖是一种多聚五碳糖,是植物半纤维素的主要成分,是仅次于纤维素的第二丰富的可再生资源。木聚糖木聚糖结构复杂,完全降解需要多种酶的参与,其中β-1,4-内切木聚糖酶能够以内切方式作用于木聚糖主链产生不同长度的木寡糖和少量的木糖,是木聚糖降解酶系中最关键的酶。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶,在食品、制浆造纸、饲料等行业上有着广阔的应用前景.本文主要从木聚糖酶的分类、特性及其应用等方面进行阐述。 关键词:木聚糖酶;分类;特性;应用 木聚糖是以木吡喃糖为单位的由β-1, 4键连接的半纤维素,富含于阔叶树和大多数一年生植物体内,是一种重要的可再生资源,仅次于纤维素。它多为异聚多糖,结构变化范围很大,从β-1,4糖苷键相连接的多聚木糖线性分子到高度分枝的异质多糖。目前,木聚糖酶主要由微生物生产,已报道能生产木聚糖酶的微生物有丝状真菌、细菌和链霉菌等。微生物产生的木聚糖酶具有多样性,即常常产生不止一种类型的木聚糖酶,而且这些木聚糖酶的特性也存在差异。木聚糖酶可广泛应用于食品、制浆造纸、饲料等行业。 1木聚糖酶的分类 1.1木聚糖酶 木聚糖酶是指能够降解半纤维素木聚糖的一组酶的总称,主要包括三类:内切-β-1,4一木聚糖酶,作用于木聚糖和长链木寡糖,从β-1,4一木聚糖主链的内部切割木糖苷链,从而使木聚糖降解为木寡糖,其水解产物主要为木二糖与木二糖以上的寡聚木糖,也有少量的木糖和阿拉伯糖;外切-β-1,4一木聚糖酶,作用于木聚糖和木寡糖的非还原端,产物为木糖; β-木糖苷酶,该酶通过切割木寡糖末端而释放木糖残基[1]。 1.2根据所水解的木聚糖苷键类型 木聚糖酶可分为β-1,4糖苷键木聚糖酶和β-1,3糖苷键木聚糖酶两类。陆上植物的木聚糖酶均属β-1,4糖苷键木聚糖酶,而β-1,3糖苷键木聚糖酶大都

酶活力测定方法

蛋白酶活力测定: 参照中华人民共和国专业标准SB/ T10317-1999蛋白酶活力测定方法( Asha 等, 2007)。 纤维素酶DNS酶活力测定方法 DNS, 活力, 纤维素酶, 测定 1 定义" |0 `. y6 t9 b" ^ 2 x 1g固体酶粉在40℃和pH值4.2条件下,每分钟水解纤维素生成1微克葡萄糖的量为1个酶活力单位,以u/g表示。 2 原理 纤维素酶分解纤维素,产生纤维二糖、葡萄糖等还原糖,纤维二糖、葡萄糖等还原糖能将3,5二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量,表示酶的活力。! Y" m& p' q; I& K B& e$ T( B4 } 3.试剂和溶液 3.1 1%葡萄糖标准溶液(同β-葡聚糖酶酶活测定) 3.2 羧甲基纤维素钠(CMC)溶液 取1g羧甲基纤维素钠(粘度300~600厘泊),加入pH4.2的磷酸氢二钠-柠檬酸缓冲液(甲液414ml和乙液586ml并用pH计校正至pH为4.2)混合均匀,水浴加热至溶,冷却后用2M 盐酸或氢氧化钠调节pH到4.2,定溶至100ml,再用二层纱布过滤,此溶液在4℃冰箱贮存,有效期3天。取滤液100ml,20ml,蒸馏水40ml,混匀,贮冰箱备用。4 C) c+ }( l2 R( M( p! L 3.3 DNS 试剂(同β-葡聚糖酶酶活测定); h1 a. l3 Z3 k6 t2 | 4仪器和设备 4.1恒温水浴锅(40℃±0.2℃) 4.2分光光度计 含10mm比色皿,可在550nm处测量吸光度。$ ]1 h& A) p) K 5测定步骤 5.1 标准曲线绘制. [* |! P6 u* G& u2 ^6 J4 Q 分别吸取1%葡萄糖标准溶液0、1.0、2.0、3.0、4.0、5.0、6.0ml于50ml容量瓶中,用蒸馏水制成每ml分别含有葡萄糖0、200、400、600、800、1000、1200mg的稀标准液。各取不同浓度的稀标准液0.5ml于试管中,加入CMC溶液1.5ml、DNS试剂3.0ml,于沸水浴中沸腾7min,取出后立即加入蒸馏水10ml混匀。冷却后,用10mm比色皿,在波长550nm处用分光光度计分别测定其吸光度。以吸光度为纵坐标,相对应的葡萄糖浓度为横坐标,绘制标准曲线或计算回归方程。1 H, `% F/ `7 X/ U. W 5.2待测酶液的制备(同β-葡聚糖酶酶活测定) 1 L- {5 h8 W; q+ V4 u2 Y 5.3 比色测定 精确吸取经待测稀释酶液0.5ml,40℃预热5min,加入经40℃预热的CMC液1.5ml(每个样品同时作3支平行试管),于40℃水浴精确反应10min,立即加入DNS试剂3.0ml终止反应,以后按标准曲线制作步骤测定样品吸光度。 同时进行空白对照测定,取稀释酶液0.5ml,先加入DNS试剂3.0ml,再加入CMC液1.5ml,其余步骤同于样品测定。 6.计算0 W+ i$ S: }( _1 o7 ], R5 m( N

木聚糖酶的酶活测定

木聚糖酶的酶活测定方法 一、原理 木聚糖酶能将木聚糖降解成寡糖和单糖,具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的木聚糖酶的活力成正比。 酶活定义方法 木聚糖酶活力单位是指55℃、pH5.0的条件下,以每分钟催化木聚糖水解生成1μmol木糖所需的酶量定义为一个酶活力单位U。 二、实验试剂 榉木木聚糖(sigma),木聚糖酶(苏柯汉),木糖 50mmol NaAC-HAC、DNS试剂、50mmol柠檬酸-Na2HPO4、50mmol甘氨酸-NaOH DNS(1L)配置方法: 取3,5-二硝基水杨酸6.3g溶于500ml水中,45℃水浴溶解后,加2mol/L的NaOH 262ml,不停搅拌,然后加入185g酒石酸钾钠,溶解后加入5g结晶酚(或6.25ml 80%的苯酚),溶解后加入亚硫酸钠5g,搅拌至溶解后冷却定容至1L。4℃保存,7天后可用,若有絮状物请过滤后使用,有效期为6个月。 50mmol NaAC-HAC:称取3.402gNaAC·3H2O 溶于蒸馏水中,定容至500ml;用移液器移取1.428ml HAC溶于蒸馏水中,定容至500ml。两者按V(NaAC):V(HAC)≈2:1 体积配比,用pH计调节到pH5.0。 50mmol柠檬酸-Na2HPO4:称取柠檬酸5.2535gNa2HPO4 4.477g,溶于蒸馏水中定容至250ml;称取柠檬酸5.2535g溶于蒸馏水中定容至500ml;用pH计调节pH至所需pH值的缓冲液。50mmol甘氨酸-NaOH:称取甘氨酸0.3735g溶于蒸馏水中,定容100ml;称取NaOH 0.200g 溶于蒸馏水中,定容100ml;用pH计调节pH至所需pH值的缓冲液。 三、仪器 水浴锅、分光光度计、电热套、烧杯、具塞刻度试管、移液器、电子天平 四、标准曲线的绘制 1、木糖标准液的配制:准确称取100mg分析纯的无水木糖(预先在105℃干燥至恒重),用 少量蒸馏水溶解后,定容转移到100ml容量瓶中,再定容至刻度,摇匀,浓度为1mg/ml。 2、按下表制木糖标准曲线 表1、木糖标准曲线 五、酶活测定 1、样品制备

食品生物化学 木聚糖酶及其应用

附件一: 新疆农业大学 专业文献综述 题目: 木聚糖酶及其应用 姓名: 全莉 学院: 食品科学与药学学院 专业: 食品科学与工程 班级: 食科112班 学号: 114031226 指导教师: 蓬焕明职称: 副教授 20012 年12 月20 日 新疆农业大学教务处制

木聚糖酶及其应用 姓名:全莉指导老师:蓬焕明 摘要:木聚糖是一种多聚五碳糖,是植物半纤维素的主要成分,是仅次于纤维素的第二β-1,4-内切木聚糖酶能够以内切方式作用于木聚糖主链产生不同长度的木寡糖和少量的木糖,是木聚糖降解酶系中最关键的酶。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶,在食品、制浆造纸、饲料等行业上有着广阔的应用前景.本文主要从木聚糖酶的分类、特性及其应用等方面进行阐述。 关键词:木聚糖酶;分类;特性;应用 引言:丰富的可再生资源。木聚糖木聚糖结构复杂,完全降解需要多种酶的参与,其中木聚糖是以木吡喃糖为单位的由β-1, 4键连接的半纤维素,富含于阔叶树和大多数一年生植物体内,是一种重要的可再生资源,仅次于纤维素。它多为异聚多糖,结构变化范围很大,从β-1,4糖苷键相连接的多聚木糖线性分子到高度分枝的异质多糖。目前,木聚糖酶主要由微生物生产,已报道能生产木聚糖酶的微生物有丝状真菌、细菌和链霉菌等。微生物产生的木聚糖酶具有多样性,即常常产生不止一种类型的木聚糖酶,而且这些木聚糖酶的特性也存在差异。木聚糖酶可广泛应用于食品、制浆造纸、饲料等行业。 正文: 1 木聚糖酶的分类 1.1木聚糖酶 木聚糖酶是指能够降解半纤维素木聚糖的一组酶的总称,主要包括三类:内切-β-1,4一木聚糖酶,作用于木聚糖和长链木寡糖,从β-1,4一木聚糖主链的内部切割木糖苷链,从而使木聚糖降解为木寡糖,其水解产物主要为木二糖与木二糖以上的寡聚木糖,也有少量的木糖和阿拉伯糖;外切-β-1,4一木聚糖酶,作用于木聚糖和木寡糖的非还原端,产物为木糖; β-木糖苷酶,该酶通过切割木寡糖末端而释放木糖残基[1]。 1.2 根据所水解的木聚糖苷键类型 木聚糖酶可分为β-1,4糖苷键木聚糖酶和β-1,3糖苷键木聚糖酶两类。陆上植物的木聚糖酶均属β-1,4糖苷键木聚糖酶,而β-1,3糖苷键木聚糖酶大都存在于海藻及海洋生物中。按木聚糖酶的序列同源性和疏水族,木聚糖酶分别属于糖苷水解酶的两个家族,即F家族(10家族)和G家族(11家族),属于同一家族的木聚糖酶催化区域具有同源性,可以根据已知家族的酶来推测未知酶的催化特性[2]。F家族的木聚糖酶分子量高,结构复杂,通常生成较小的低聚糖,该家族的木聚糖酶可以作用于对硝基苯和对硝基苯纤维二糖,与底物结合需要较少数量的点;G家族的木聚糖酶则对木聚糖有很高的特异性。 1.3 依据木聚糖酶对底物的特异性 木聚糖酶可分为特异性木聚糖酶和非特异性木聚糖酶。特异性木聚糖酶特异作用于木聚糖底物,非特异性酶除作用于木聚糖外,还能作用于纤维素及人工底物,称双功能酶。

里氏木霉及其纤维素酶高产菌株的研究进展_覃玲灵

综述与专论 生物技术通报 BI OTEC HNOLOG Y BULLETI N 2011年第5期 里氏木霉及其纤维素酶高产菌株的研究进展 覃玲灵 何钢 陈介南 (中南林业科技大学生物环境科学与技术研究所,长沙410004) 摘 要: 随着纤维素在能源、材料及化工等领域的广泛开发和应用,里氏木霉作为一种重要的产纤维素酶工业用菌种,越来越受到人们的广泛关注。为了提高其酶活,人们做了大量的工作,获得了一些相当好的突变株。对里氏木霉及其突变株的基因组进行研究,有助于人们理解其高效产酶的机制,同时也有利于构建其基因工程菌。介绍里氏木霉T r ichoderma reesei 的背景及其部分高产纤维素酶突变株,并阐述近些年来对其突变株的基因组的研究进展。 关键词: 里氏木霉 纤维素酶 突变株 基因组 SNV Research Develop m ent of Trichoder ma reesei and Its Cell ulase Hyperproduction Strai ns Q in L i ng ling H e G ang Chen Jienan (Instit ute of B i o l og ic al an d Environ ment al Science&T echnology,Ce ntral South University of Forest ry and Tec hnology,Changsha 410004) Abstrac:t A s w i de l y deve lop m ent and utilization of ce llulose i n the fi e l d of energy ,m ate rials and chem istry i ndustry,T r ichoderma reesei has been caught m ore and m ore attenti on for its be i ng a k i nd of i m portant ce ll u l ase stra i n for i ndustry .Fo r enhanc i ng i ts cell u l ase product ,peop l e hav e done a lot of work on it ,and ob tained seve ra l cons i derably good mutant strai ns .T o learn the genom e o f T r ichoderma reesei and its mu tant strains is he l p f u l to us understand its syste m o f ce llulase hype rproduction ,also he l p f u l to people construct its g enet ic eng i neering stra i n i n the f uture .T h i s article i ntroduced t he background o f T richoderma reesei and part of its hyperce llulase product stra i ns ,a l so elabo rated the research deve l op m ent of its m utan t strains geno m e i n t he recent yea rs . K ey words : T richoderma reesei Cell u l ase M u tant stra i n G enom e SNV 收稿日期:2010 11 24 基金项目:国家林业局 948 项目(2006 4 123) 作者简介:覃玲灵,女,硕士研究生,研究方向:生物质能源;E m ai:l canaceili ng @163.co m 通讯作者:何钢,男,教授,从事生物技术教学和科研;E m a i :l hegong262@yahoo .co https://www.sodocs.net/doc/0816028223.html, 1 背景 随着人口不断增长,以及现有的煤、天然气和石 油存储量的减少,发展新能源成为实现经济社会可持续发展的必经之路。以纤维素、半纤维素和木质素形式存在的生物质收集并且存储了大量太阳能,是一种重要的能源和物质资源[1] 。地球上最主要的生物质来自绿色植物,每年光合作用的生物质净产量约为1800亿t [2] 。生物质中含量最多的是纤维素,其由成百上千个葡萄糖分子聚合而成,是地球上存在最丰富的有机大分子,储量约为850亿t [3] ;其次是半纤维素,储量约为500亿;t 第三类是木质素,由结构复杂的含芳香环的有机分子聚合而成,约 占20%,即350亿t [4] 。这些生物质大多以农业和林业废弃物的形式存在,并且每年都在大量积累,这不仅会导致环境的恶化,而且会导致这种可利用资源的流失[1] 。因此如何充分利用这些资源成为迫 在眉睫的问题,在对生物质的开发利用中,一个重要瓶颈就是如何高效利用微生物进行酶催化水解将生物质降解为单糖[5] 。 自然界中能降解和利用纤维素的微生物种类很多,许多细菌可分解纤维素,而且产生的纤维素酶具有高度专一性,但是它们生长速度慢,需要厌氧的生长条件[6],这些都限制了其应用。真菌所产生的纤维素酶多是胞外酶,便于分离和提取,且

酶活测定方法

酶活测定方法 还原法 酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。在此反应体系中添加 化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。通过在特定的波长下 比色,即可求出还原产物的含量,从而计算出酶活力的大小。 色原底物法 通过底物与特定的可溶性生色基团物质结合,合成人工底物。该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。 粘度法 该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。木聚糖和β-葡聚糖溶液通常 情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子 使其粘度大为降低。基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。 高压液相色谱法 酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行 色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物 的含量,从而换算出酶活力的数值。 免疫学方法 常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。 免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂 家生产的酶产品需要有不同特定的抗体发生反应。 琼脂凝胶扩散法 将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。用打孔器在 琼脂平面上打出一个约4-5mm半径的小孔。在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。 蛋白酶活力的测定

绿色木霉固态发酵产纤维素酶活力的研究_王仪明

草地畜牧业 绿色木霉固态发酵产纤维素酶 活力的研究 王仪明1,张宗舟1,2,蔺海明1,孙小弟3,雷艳芳1,王东明4 (1.甘肃农业大学农学院,甘肃兰州730070;2.天水师范学院生命科学与化学学院,甘肃天水741001; 3.天水师范学院工学院,甘肃天水741000; 4.甘肃省科学院自动化研究所,甘肃兰州730000) 摘要:以麦秆和麸皮为主要原料,通过正交试验和单因素试验优化绿色木霉T richderma v iride固态发酵产纤维素酶的最佳工艺条件,并研究绿色木霉对小麦秸秆纤维素降解的影响,为绿色木霉降解小麦秸秆纤维素提供最佳条件,进而提高小麦秸秆的利用率。结果表明,不同条件下绿色木霉产纤维素酶活力存在显著差异(P<0.05),最佳培养基为:氮源为(N H4)2SO4,pH值5.5,含水量为200%,麦秆∶麸皮质量比为4∶1;最佳发酵条件为:培养时间为96h、温度35℃、初始pH值6.0、含氮量0.4%、接种量15%,培养方式为半密闭;发酵后小麦秸秆中中性洗涤纤维(N DF)、酸性洗涤纤维(AD F)、纤维素含量和半纤维素含量比发酵前分别下降5.22%、6.88%、4.73%和4.16%,木质素含量无明显变化。 关键词:绿色木霉;发酶条件;纤维素酶活;小麦秸秆;纤维素 中图分类号:T Q925.9 文献标识码:A 文章编号:1001-0629(2009)05-0123-05  纤维素类物质是世界上最丰富的可再生资源[1]。纤维素材料可转化为具有商业价值的乙醇、乙酸、单细胞蛋白等纤维素的产品[2-3]。纤维素的生物转化近些年受到了极大的重视,大规模纤维素生物转化工艺的发展,将有效解决食品和动物饲料不足的问题[4-6]。利用微生物所产生的纤维素酶将秸秆转化为营养价值较高的单细胞蛋白饲料倍受人们的青睐[7]。纤维素酶作为一种高活性生物催化剂使其成为研究新型蛋白饲料开发与利用的重要内容[7-8]。纤维素酶不是一个单种酶,而是参与纤维素降解的多组分酶的总称,一个完整的纤维素酶系,通常由作用方式不同而能相互协同催化水解纤维素的3类酶组成:内切葡聚糖酶(EG)、外切葡聚糖酶(EX)和β-葡萄糖苷酶(BG),在分解纤维素时,任何一种酶都不能单独裂解纤维素,只有3种酶共同存在并协同作用才能完成水解过程[9]。 目前,用于研究生产纤维素酶的真菌大多数属于曲霉属Aspergillus、木霉属Trichderma、青霉属Penicillum、根霉属Rhizopus等。曲霉和根霉产β-葡萄糖苷酶活性较高,而在天然纤维素降解中起重要作用的β-葡聚糖纤维二糖水解酶活力较低[10]。木霉菌株是公认产纤维素酶最高的菌种之一[11]。因此,研究绿色木霉T.v iride 的培养条件及其对纤维素酶活的影响为纤维素酶的工业化生产奠定一些试验基础,为更好地利用秸秆开辟新的途径。 研究以麦秆和麸皮为主要原料,通过正交试验和单因素试验对绿色木霉固态发酵产纤维素酶的最佳培养基组分、时间、最适温度、pH值、接种量和含氮量等工艺条件进行优化,并比较发酵前后小麦秸秆的化学成分,研究绿色木霉对小麦秸秆纤维素降解的影响,为绿色木霉降解秸秆生产蛋白饲料提供最佳条件。这对提高秸秆的利用率和缓解我国高蛋白饲料严重紧缺的局面起到重要的促进作用。 1 材料与方法 1.1试验材料 小麦秸秆粉(当地农户提供,粉碎过40目筛),麸皮(市售)。 26卷5期 V ol.26.No.5 草 业 科 学 P RA T ACU L T U RA L SCI ENCE 123-127 5/2009 *收稿日期:2008-09-01 基金项目:国家科技支撑计划“西北内陆灌区农田循环生产 技术集成研究与示范”(2007BAD89B17) 作者简介:王仪明(1981-),男,甘肃天水人,硕士,研究方向 为纤维素降解及蛋白饲料生产。 通信作者:张宗舟

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

木霉

1.1木霉菌株的来源经对峙培养及活体试验后有效的B TC21(Tri cho der ma.har zia num)菌株。 1.2不同碳源对B TC21菌丝生长及产孢的影响基础培养基为:蔗糖20g,硝酸铵5g,磷酸钠2g,硫酸镁1g,蒸馏水1000ml。分别有葡萄糖、果糖等。15碳源与其中的蔗糖置换,以无碳源的做对照,配制成不同碳源的培养液,每瓶50ml,接种培养3天的d=6m m的BT C21菌片3片,在25℃下振荡培养(120rpm)。第8天测菌丝干重并观察孢子产生情况,每处理重复3次。 1.3不同氮源对B TCZ I菌丝生长及产孢的影响在基础培养基中分别用等量的蛋白胨、氯化铵等八种氮源与其中的硝酸铵置换,配制成不同氮源的培养液,培养方法及测量方法同上。 1.4钠、镁盐对BTC21菌丝生长及产孢的影响从15种碳源中选择较好的碳源红糖与蔗糖;从9种氮源中选择理想的氮源酵母浸出汁与牛肉浸膏,比较两种碳源与两种氮源在不同组合下钠、镁盐对BT C21菌丝干重及分生孢子产生情况的影响,培养及测量方法同上。 1.5不同碳氮比对BT C21菌丝生长及产孢的影响分别按红糖:酵母为4:1、4:2、4:4、4:8、4:12的比例配制培养基,钠镁盐含量不变,培养方法及测量方法同上。 1.6液体发酵B TC21最适pH的选择综合以上结果在最佳培养基的最佳碳、氮比下用HCL与NaOH调节发酵液的初始pH,设有pH 2.0~12.0共14梯度,培养条件及测量方法同上。 1.7不同培养时间对B TC21菌丝生长及产孢的影响从培养第24h起每天定时测量孢子量的变化,测至第8天;从第72h起每天记录菌丝干重的变化,测至第16天,培养条件及测量方法同上。 1.8液体发酵BTC21最适温度的选择将B TC21接种在按比例配制好的培养基中,分别在15℃、20℃、2 2.5℃、25℃、27.5℃、30℃、35℃等温度下进行振荡培养,测量5d后的菌丝干重及分生孢子量。 2 结果与讨论 不同培养条件对木霉菌菌丝生长及产孢影响 2.1 不同碳源培养B TC21后的性状及对菌丝生长与产孢的影响液体培养基中以红糖、肝糖为碳源,培养BTC21所获得的菌丝干重最大,可能与红糖中含有其它生长所需成分有关;其次为淀粉、蔗糖、L-(+)树胶醛糖、麦芽糖、半乳糖;以山梨糖、木糖、密二糖、葡萄糖、甘露醇、果糖为碳源获得的BT C21菌丝干重较轻;以菊糖、棉子糖为碳源菌丝干重最轻。 不同碳源培养后性状差异很大,缺碳对照、菊糖、棉子糖培养后产生纸屑或粉末状菌丝,不形成菌球且量极少,麦芽糖、果糖、葡萄糖、甘露醇、红糖、半乳糖、密二糖、L-(+)树胶醛糖、肝糖及蔗糖为碳源,液体培养过程中易产生小菌球(d≤0.3mm);木糖、淀粉、乳糖为碳源时可产生不同大小的菌球。并且大数碳源不利于孢子的产生,其中以果糖、密二糖为碳源的培养滤液中观察到了大量的木霉菌分生孢子;其次为蔗糖、半乳糖、菊糖、葡萄糖、L-(+)树胶醛糖与淀粉。其余8种碳源的B TC21培养滤液中几乎未见到分生孢子。综合以上结果,液体发酵B TC21最利于菌丝生长的碳源为红糖,而最利于产生孢子的碳源是果糖与密二糖。 2.2不同氮源培养BT C21后的性状及对菌丝生长及产孢的影响液体培养中以酵母浸出汁、牛肉浸膏为氮源的BT C21菌丝生长最好,菌丝干重最大,产生d=2mm左右的小菌球;其次为蛋白胨,菌球直径达到2.5m m;菌球直径<1.5m m的谷氨酸、天门冬氨酸、硫酸氨、硝酸铵,氯化铵为氮源的菌丝干重较轻;以脲素、硝酸钾为氮源的菌丝干重最轻,且菌丝未能形成菌球。 最适合BTC21产生分生孢子的氮源是酵母浸出汁、蛋白胨与硫酸铵;其次为氯化铵与天门冬氨酸;牛肉浸膏、硝酸铵、谷氨酸、硝酸钾、尿素则不利于产孢。 综合以上试验结果,液体发酵B TC21最有利于菌丝生长,同时又可促进产孢的氮源为酵母浸出汁。 2.3钠镁盐对BTC21菌丝生长及产孢的影响蔗糖、红糖、牛肉浸膏与酵母浸出汁两种碳源与两种氮源的不同组合中,在加有N a 3 PO 4 与M gSO 4 时,培B TC21所获得的菌丝干重较没有钠镁盐时大。以红糖为碳源、酵母浸出汁为氮源,在有Na 3 P O 4与MgS O 4存在时BT C21菌丝干重最大。观察培养后可以发现,对同碳氮组合,有无钠镁盐对菌球的形态有很大的影响,在以蔗糖为碳源、酵母浸出汁与牛肉浸膏为氮源时,加入钠镁盐情况下菌球直径变小,在2mm左右,而菌球数量明显增多,在红糖为碳源、酵母浸出汁与牛肉浸膏分别为氮源时则与上述情况不同。 2.4不同碳氮比对BT C21生长及产孢的影响在液体培养中碳氮比为4/6时可以获得最大的菌丝干重,4/8、

木聚糖酶活力特性研究

木聚糖酶活力特性研究 郑翔鹏 (福建省燕京惠泉啤酒股份有限公司) 概况 木聚糖酶分子只含一个亚基,分子量在8~30kD间的为碱性蛋白,分子量在30~145kD 间的为酸性蛋白。PI值为3~10.5,稳定pH值为3~10,反应最适pH值在4~7之间,最适温度为40~60℃。离子通过改变酶的构象影响木聚糖酶的稳定性,一般情况下,Ag+ (离子浓度1 mmol·L - 1 ,抑制酶活达100% ) 、Hg2 + (离子浓度1 mmol · L - 1 , 抑制酶活达7013% ) 、Cu2 + (离子浓度2. 00 mg·ml- 1 ,抑制酶活达25. 42% )等离子抑制木聚糖酶的活性,Mg2 + (离子浓度2. 00 mg·ml- 1 ,提高酶活达6% ) 、Mn2+ (离子浓度1 mmol·L - 1 ,提高酶活达24% )等离子则能提高木聚糖酶的活性。Ag+ 、Hg2 + 、Cu2 +等离子主要通过改变酶分子中2SH基团的还原态或直接攻击酶分子中的某些氨基酸残基,改变酶的构象来抑制木聚糖酶的活性, Mg2 + 、Zn2 +等则通过影响酶与底物的结合及解离状态,提高酶的活性,其具体机制还有待进一步研究。 木聚糖酶的分子结构由功能结构域和连接区构成。其中,功能结构域由催化结构域和纤维素结合结构域构成,纤维素结合结构域可改变酶对可溶或不溶底物的活力。根据结构域的相似性,木聚糖酶可通过结构域的改组和随后结构域的修饰而进,许多木聚糖酶具有纤维素酶的活性。木聚糖酶与木聚糖的结合利用离子间的静电作用。木聚糖含有的4-O-甲基葡糖醛酸带负电,木聚糖酶在pH低于PI时带正电荷,易于结合,而在pH值高于PI时,则不易结合。其反应为典型的酸碱亲核水解反应。 木聚糖酶特性分析 在对木聚糖酶的特性分析中,着重分析酶活力与温度、PH值、钙离子对酶活力的影响。 1.1木聚糖酶活力分析 对于木聚糖酶活力的分析,国标中没有相应的推荐方法。目前,主要采用分光比色测定反应液颜色的强度来定量分析酶的活力。木聚糖酶活力单位是指在50℃、pH值为5.3的条件下,每分钟从浓度为10mg/ml的木聚糖溶液中降解释放1μmol还原糖所需要的酶量为一个酶活力单位U。 木聚糖酶能将木聚糖降解成寡糖和单糖。具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应。反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中木聚糖酶的活力成正比。 吸取水1.0ml,加入DNS试剂3.0ml,沸水浴加热5min。用自来水冷却至室温,制成标准空白样。分别吸取木糖溶液1.00、2.00、3.00、4.00、5.00ml,分别用水定容至100ml,配制成浓度为0.10~0.50mg/ml木糖标准溶液。分别吸取上述浓度系列的木糖标准溶液各1.00ml (做二个平行),分别加入到刻度试管中,再分别加入3mlDNS试剂。电磁振荡3s,沸水浴加热5min。然后用自来水冷却到室温,以标准空白样为对照调零,在540nm处测定吸光度OD值。以木糖浓度为Y轴、吸光度OD值为X轴,绘制标准曲线。每次新配制DNS试剂均需要重新绘制标准曲线。 固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm)。液体试样可直接称取。称取试样,精确至0.001g。加入250ml乙酸-乙酸钠缓冲溶液。磁力搅拌30min,再用缓冲溶液定容至500ml,在4℃条件下避光保存12h,过滤。再用缓冲溶液做二次稀释(稀释后的待测酶液中木聚糖酶的活力最好能控制在0.04~0.08U/ml之间)。

文献综述木聚糖酶的研究及应用前景

木聚糖酶的研究及应用前景 (张海珍1吴萍2) (张海珍江苏省灌云县伊山高级中学 222200 吴萍安徽科技学院生命科学院 233100) 摘要:对木聚糖酶的特性及其在国内外的研究进展作了介绍,详细阐述了木聚糖酶在造纸、食品、饲料、酿酒、烘烤等工业及其在生产单细胞蛋白、生物制药、液体或气体燃料、糖浆、饮料等方面的巨大潜力及十分诱人的应用前景。 关键词:木聚糖酶特性研究进展应用前景 木聚糖酶(endo—1,4—β—D—xylan xylanohydrolase, EC. 3. 2. .1. 8)是一类以内切方式降解木聚糖分子中的β—1 ,4--木糖苷键的水解酶类。该酶在造纸工业上可用于预漂纸张,提高木素溶出率,改善纸张性能且减少环境污染。在食品工业中利用木聚糖酶降解半纤维素的主要成分,木聚糖生产低聚木糖具高附加的产品。在饲料工业中可提高饲料的能量值和禽。畜对饲料的利用率,并且在饮料和制药,溶剂,糖浆,气体或液体燃料等行业中也具有巨大潜力,其前景十分诱人。因此,木聚糖酶的开发具有重要的经济和社会价值意义。 1.木聚糖酶的特性 木聚糖酶(endo—1,4—β—D—xylan xylanohydrolase,EC·3·2·1·8)是一类以内切方式讲解木聚糖分子中的β—1,4—木糖苷键的水解酶类。包括内切β—木聚糖酶、外切β—木聚糖酶和β—木二糖苷酶。其主要水解产物为木二糖和木二糖以上的低聚木糖,还有少量木糖和阿拉伯糖。[1] 木聚糖酶按其序列同源性和疏水族分析属于糖苷水解酶的两个家族,即F家族(10家族)和G家族(11家族),属于同一家族的木聚糖酶催化区域具有同源性,可根据已知家族的酶来推测未知酶的催化特性。F家族的木聚糖酶分子量高,复杂,通常产生较小的聚糖;F家族则具有较高的特异性[4,10]。 木聚糖酶体(xylanosome)是在微生物表面分离到的多酶复合体。[2]这些复合体在半纤维素的降解中起重要作用。现在已知能够产木聚糖酶的微生物包括细菌、真菌、黑曲霉、木霉等。不同来源的木聚糖酶催化特性是有差异的,它们各自有其不同的PH值和最适温度。已证实放线菌和细菌的最适生长和产酶PH 接近于中性;耐碱性杆菌PH值在9—10;而真菌却较适合酸性条件[15],且能分泌胞外木聚糖酶的水平高于酵母菌[10,11,12]和细菌[2,13],从而格外引起研究人员的关注。

相关主题