搜档网
当前位置:搜档网 › 无线电能传输(课程设计)实验报告

无线电能传输(课程设计)实验报告

无线电能传输(课程设计)实验报告
无线电能传输(课程设计)实验报告

实验报告

1.实验原理

与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术(Wireless Power Transfer, WPT)也称之为非接触电能传输技术( Contactless PowerTransmission, CPT),是一种借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。

无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“10 项引领未来的科学技术”之一。

到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。

磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。

除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。

基于磁耦合谐振技术的无线电能传输技术主要利用的是近场磁耦合共振技术,共振系统由多个具有相同本征频率的物体构成,能量只在系统中的物体间传递,与系统之外的物体基本没有能量交换,在达到共振时,物体振动的幅度达到最大。

基于磁耦合谐振技术的无线电能传输系统一般由高频发射源、发射系统、接收系统、负载等部分组成,其中发射系统和电磁接收系统,是无线电能传输系统的关键部分。

其典型模型如下图所示。由下图可知发射系统包括励磁线圈和发射线圈,它们之间是通过直接耦合关系把能量从励磁线圈传到发射线圈,励磁线圈所需能量直接从高频电源处获得。电磁接收系统包括接收线圈和负载线圈,它们之间也是通过直接耦合关系把能量从接收线圈传到负载线圈。发射线圈与接收线圈之间通过空间磁场的谐振耦合实现电能的无线传输。

目前国外的学者多利用“耦合模”理论对磁耦合谐振技术的无线电能传输技术进行分析,并得到能量高效传输的必要条件[13]:

①发射线圈和接收线圈的固有谐振频率相同,并具有较高的品质因数;

虽然“耦合模”理论对无线电能传输技术基本原理进行了解释,但是在涉及具体电路及其参数的设计问题上“耦合模”理论也有一定的局限性,因此本文利用互感理论来进一步分析问题,尤其是利用该方法在参数设计方面进行探索。

基于磁耦合谐振技术的无线电能传输系统的等效电路模型如下图所示,励磁线圈由激励源(高频功放)V S和单匝线圈组成,负载线圈由单匝线圈和负载组成,发射和接收线圈均由具有相同谐振频率的多匝线圈组成。在系统设计时为了降低设计的复杂性,将发射和接收线圈设计成相同的尺寸和机械结构,因此,两

线圈的等效参数可认为是一致的。

上图中激励源阻为R S,负载电阻为R L;L1、L2、L3、L4分别为励磁线圈射线圈、接收线圈和负载线圈的等效电感;C1、C2、C3、C4分别为励磁线圈、发射线圈、接收线圈和负载线圈的等效电容;R P1、R P2、R P3和R P4分别为励磁圈、发射线圈、接收线圈和负载线圈由于趋肤效应等因素产生的损耗电阻;R rad1、R rad2、R rad3、R rad4分别为励磁线圈、发射线圈、接收线圈和负载线圈的辐射等效电阻。将励磁线圈的电路反射到发射线圈,相当于发射线圈中加入一个感应电动势;而将负载线圈反射到接收线圈相当于接收线圈增加了一个反射阻抗,其等效电路如下图所示。设流过发射线圈和接收线圈的电流分别为I 1、I2,方向如下图所示。根据基尔霍夫电压定律(KVL),

上图为无线电能传输系统的简化电路。由此图可推导出:

2.实验步骤

a. 在印刷电路板上绕制所需电感线圈(发射极)

b.测量所绕制的电感线圈的电感值L

c.根据所测得的L值,初定角频率w,并计算出匹配电容的理论值C

0 d.根据匹配电容的理论值 C

匹配电容组合,并通过比对示波器上的电压

电流波形,确定匹配电容的实际值C。

3.实验过程及数据

先将导线绕入印刷电路板,然后用透明胶粘好,使导线位置固定,然后除去两头导线的绝缘层,测量其电感值,如下图所示:

得出所绕制的电感线圈的电感稳定值为1.61uH

由w2CL=1可知,定f=200KHz,

所以w=1256.64 rad/s,所需匹配电容的值为:C

=393nF

如上图,根据计算的理论电容值,匹配组合出实际电容值,并通过对比电流、

电压波形,对实际的匹配电容值进行微调。微调直至匹配电容值相应的电流、电压波形同相。

=357nF 根据示波器的波形,可以认定匹配电容值达到要求,实际值C

实际根据接收端电路谐振理论电容,微调电容使接收端电路达到谐振状态。

接收端线圈电感为1 uH,由上公式LC=1可算得,接收端电容理论值为

C=633nF。

实际微调至C=720nF时接收端电路电压电流同相,达到谐振状态。

将匹配好的发射端电路连接至电源,接收端电路与负载相连。因为我们制作的电感太小,导致耦合系数太小,而且实验条件有限,我们所做实验的负载为小灯泡。当电源打开时,负载端的电压电流很小,只能观察到小灯泡及其微弱的亮光。

4.实验感想

1.由于前期的理论准备不充分,和对课程设计的实验具体过程不熟悉,导致实际进行实验操作时,很多所需实验数据都需要花费实验时间计算。

2.前期制作电感线圈所花费的时间很长,是因为我们的动手操作能力不足,也是相关的经验太少。

3.在匹配电容时,计算出现了问题,是老师和实验室的学长帮助我们算出了正确的理论值,并向我们示正确的匹配电容操作流程。我们深感自己理论知识和实践能力的不足,希望可以在以后努力赶上,向优秀的研究生学长学习!

4.向带病指导我们的肖老师表达崇敬的致意和感谢!

无线电能传输(课程设计)实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术(Wireless Power Transfer, WPT)也称之为非接触电能传输技术( Contactless PowerTransmission, CPT),是一种借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“10 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。 磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。

高效无线电力传输系统

高效无线电力传输系统 摘要——本文提出了基于自动引导车辆的无线电力传输系统的概念,该系统在车上装有充电电池,并在特定的地方进行充电。当给车辆充电时,要接近蓄电池充电器进行自动充电,因此,蓄电池充电器的初级变压器与车上的次级变压器之间需要较大的间隙,用以防止碰撞损坏。这样的话就要设法预防由于这个较大距离产生的变压器耦合率的降低,传统的无线电力传输技术由于电力需要通过拾波电圈从电线获得,就要装备一个大尺寸的变压器,并且当距离超过车行驶的长度铜的损失也会加大。先进的系统采用一个高频率的应用软开关方法变极器减小变压器尺寸,变压器间隙每10mm耦合率0.88,并且可达到91%的运行效率。 1.引言 最近,研究者对基于诸如自动引导车辆等运动机械的无线电力传输系统进行了测试,自动引导车辆通常使用带台车的供电系统,但好的金属粒子是通过供电时的摩擦产生的,由于无线电力传输系统不产生摩擦,其严格要求在清洁的室内或医院里,并且因为没有磨损从而该系统有减低维修频率的有点。 传统的带有无线电力传输系统的自动引导车辆需要一条与轨道平行的电线并且通过拾波电圈获得电能,但是因为拾波电圈在结构上与变压器的第一圈相似,所以为了在次级变压器端(车辆端)获得足够的电能,在初级变压器一端(电线端)需要超额的电流,特别是当车辆行驶一段长距离,铜损失不能被忽略,并且由于发生磁通量的大量泄漏,耦合率不足,所以拾波线圈也需要大型的变压器和较大的电能供应设备。 本文提出了基于自动引导车辆的无线电力传输系统的概念,在无线变压器见有10mm间隙的情况下,得到不同变压器结构的仿真和实验结果,从这些结果中给出了一种高耦合率的变压器结构,此外采用了0V变换方式的回荡变极器作为供电设备(蓄电池充电器)的变极器,选取100kHz变换频率以减小变压器尺寸。对充电器和变压器的实验评价显示该提出的系统可以高效率运行。 2.无线电力传输系统的概念 图1.表示基于自动引导车辆的无线电力传输系统的新概念,该系统的充电电池装载在车

质量管理-张

《质量管理统计方法》实验报告一 院系数学与统计学院 专业应用统计学 姓名张逸枫 学号20131387056 指导教师张斌 二O一六年四月二十五日

实验目的: 掌握假设检验,以及过程能力指数的求解,并要求熟练运用minitab软件进行分析。实验内容: 书64页12、13、14及16题 实验过程: 12.有一批枪弹出厂时的初速(单位;米/秒)服从正态分布N(950,),经过一段时间储存后,取9发进行试射,得初速的观察值为: 914 920 910 934 953 945 912 924 940 据经验,枪弹储存后的初速仍服从正态分布,能否认为这批枪弹的初速有显著降低。(取=0.05) 解:设原假设 H储存后初速仍服从正态分布N(950,) 备选假设H1:储存后初速小于950 过程:打开minitab,输入数据,选择协助—假设检验,选择单样本 得出结果

,不服从原假设,接受储存后初速小于950。 13.某公司产品的一个关键参数服从正态分布,为提高该关键参数,一位工程师建议在生产的最后增加一道工序,为检验这道工序是否有用,决定从所生产的产品中随机抽取7件,先测起参数值,然后经过新的这道工序加工后再测其参数,结果如下表,试问再=0.05水平下能否认为这道工序对提高参数值有用? 解:设原假设:新工序对提高参数无显著作用 备选假设:新工序对提高参数有显著作用 打开minitab, 输入数据,协助—假设检验,选择双样本t,选择

确定,得出结果 30 252015C1 C2 C1 的均值并不显著小于 C2 的均值 (p > 0.05)。 > 0.5 0.1 0.050 否 是 P = 0.228 2 -2 -4 -6 前查找异常数据。 -- 数据分布: 比较样本的位置和均值。用于在解释检验结果之间。 定性。您可以 90% 确信实际差值介于 -5.7672 和 2.3100-- 置信区间: 通过估计样本数据的差值量化与之相关的不确的均值小于 C2。 -- 检验: 没有足够的证据断定,显著性水平为 0.05 时,C1样本数量77均值 22.529 24.257 90% 置信区间(20.20, 24.85) (20.605, 27.909) 标准差 3.1663 4.9729 统计量 C1 C2 -1.7286 (-5.7672, 2.3100) 均值之间的差值* 90% 置信区间 * 所定义的差值为 C1 - C2。 C1 和 C2 的均值的双样本 t 检验 汇总报告 数据分布 比较样本的数据和均值。 均值检验C1 是否小于 C2? 差值的 90% 置信区间区间是否包含零? 注释 可知,接受原假设:新工序对提高参数无显著作用。 14.某产品的质量特征X(单位:厘米)服从正态分布,规范限为[90,110]. (1)若该过程的标准差的估计σ ?=2.5,求c ?p ; (2)若该过程均值的估计为μ? =107,求 c pk ?;

无线通信试验报告

信息工程学院通信工程专业 2 班学号321200976 姓名周琪协作者陈玉红教师评定_________________ 实验题目FH-CDMA(跳频码分多址)技术 一、实验目的 1.了解FH-CDMA(跳频码分多址)移动通信原理。 2.了解一种常用的正交跳频序列-RS编码序列。 二、实验内容和要求 1.测量FH-CDMA移动通信实验系统发射端及接收端锁相频率合成器控制电压,了解收发两端频率是否按同一跳频序列同步跳变(同地址FH-CDMA)按不同跳频序列跳变(不同地址FH-CDMA)。 2.测量同地址与不同地址FH-CDMA发射端及接收端的有关信号与数据。 三、实验报告要求 1.整理实验记录,画出图1-3所示FH-CDMA系统在同地址同步FH-CDMA工作方式下,跳频工作过程图及数据传输处理波形图,结合不同地址FH-CDMA工作方式下接收端接收不到发端信号、AF0输出恒一片噪声的情况,说明FH-CDMA的基本工作原理。 1、uct及ucr 2、占空比分别为0.9和0.1时的输出波形 3、发端D1及收端AFO、DK1、DK2、CLK、DK波形 D1与AFO D1与DK1

D1与DK2 D1与CLK D1与DK 六、思考题 1.结合不同地址FH-CDMA工作方式下接收端接收不到发端信号、AFO输出恒为一片噪声的情况,说明FH-CDMA的基本工作原理。 答:FH-CDMA的基本原理是优选一组正交跳频码(地址码/扩频码),为每个用户分配一个唯一的跳频码,并用该跳频码控制信号载频在一组分布较宽的跳频集中进行跳变。可将FH-CDMA看作是一种由跳频码控制的多进制频移键控(MFSK)。从每一时隙来看也可以将其视为一种FDMA;但与普通FDMA的最大不同是,FH-CDMA的频率分配是由一组相互正交的具有伪随机特性的跳频码来控制实现的,仍然将其归属于码分多址,同时它又是一种扩频多址。因为,虽然单独从每一跳变时隙的内部来看,FH-CDMA是一个窄带系

谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System 谐振耦合式无线电力传输系统建模 This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators. 这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。 This example requires the following product: 这个例子需要以下产品: Partial Differential Equation Toolbox? Design Frequency and System Parameters设计频率和系统参数 Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields. 选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。 fc=30e6; fcmin = 28e6; fcmax = 31e6; fband1 = 27e6:1e6:fcmin; fband2 = fcmin:0.25e6:fcmax; fband3 = fcmax:1e6:32e6; freq = unique([fband1 fband2 fband3]); pt=linspace(-0.3,0.3,61); [X,Y,Z]=meshgrid(pt,0,pt); field_p=[X(:)';Y(:)';Z(:)']; The Spiral Resonator螺旋谐振器 The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example. 螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。 Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles. 创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。 Rin=0.05; Rout=0.15; N=6.25; [p,t]=createSpiral(Rin,Rout,N);

质量管理与可靠性实验报告

实验1 工序能力调查实验 一、实验目的 掌握数据的抽样方法以及质量数据的统计分析方法,熟练操作Minitab软件,掌握统计分析图形的绘制,理解工序不合格品率与工序能力指数的关系。 二、实验仪器 装有Minitab软件的计算机。 三、实验步骤 实验内容: 收集待分析质量数据50组,用Minitab软件对质量数据进行分析,绘制相关分析图形,并根据分析结果估算工序不合格品率。 实验步骤: 在4M1E条件基本相同的前提下,收集待分析质量数据50组。 1.用Minitab软件对质量数据进行分析(分布规律和变化趋势,进行正态性检验); 2.用软件绘制相关分析图形并根据分析结果估算工序不合格品率。 四、实验结果 1.绘制直方图;

2.分布形状拟合; 如上图所示,成份C的数据分布曲线是近似正态分布。 3.成份C的数据变化趋势分析 4.工序能力

5.估计工序不合格品率 p=2-Ф[3C p(1+k]-Ф[3C p(1-k]=2-0.934389-0.855587=0.210024 实验2 工序质量控制实验 一、实验目的 掌握质量控制图的原理及绘制方法,掌握控制图的判异准则,学会根据控制图对工序状态进行判断。 二、实验仪器 装有Minitab软件的计算机。 三、实验内容及步骤 实验内容: 利用实验一收集数据,对其进行分组数据分组,应用Minitab的Control Chart模块,绘制工序控制图(xbar-s)并根据控制图对工序状态进行判断。 该钢铁公司内部采取以下判异准则来检验异常原因: 检验1:有1 个点离开中心线的距离超过3 倍标准差 检验2:连续7 个点在中心线的同一侧 检验3:连续7 个点有上升趋势或下降趋势 实验步骤: 1.收集50组车轴钢成份(C、Si、Mn、P、S、Al)化验数据

无线电能传输装置设计报告

无线电能传输装置设计报告 摘要 磁耦合谐振式无线电能传输是众多短距离电能特殊传输技术之一,它因其便捷,节 能环保而受到广泛关注。现在磁耦合谐振式无线电能传输距离已经可以达到米级的范围,甚至有些技术还能穿透障碍物,相信当无线传输距离问题解决以后该技术无疑对无线电能技术的发展具有重大的意义。该文主要讲述了运用磁耦合谐振无限能量传输的原理设计制作的小型无线电能传输设备。该设备主要包括驱动发射线圈电路,磁耦合谐振传输电路,磁耦合谐振接收电路,整流滤波电路,以及显示电路模块等。当发射和接收端都达到谐振频率时即可实现能量的最大传输。该设备在题目要求下可实现10cm以上,效率高达26%的能量传输,并且可以实现点亮30cm以外的2W的灯泡。 关键词磁耦合谐振无线电能传输发射距离接收效率 一、设计任务 设计并制作一个磁耦合谐振式无线电能传输装置,其结构框图如图1所示。 要求:(1)保持发射线圈与接收线圈间距离x =10cm、输入直流电压U1=15V时,调整负载使接收端输出直流电流I2=,输出直流电压U2≥8 V,尽可能提高该无线电能传输装置的效

率η。(2)输入直流电压U1=15V,输入直流电流不大于1A,接收端负载为2只串联LED 灯(白色、1W)。在保持LED灯不灭的条件下,尽可能延长发射线圈与接收线圈间距离x。 二、方案论证 驱动发射线圈电路 方案一 :采用集成发射芯片XKT408和T5336搭建发射驱动电路。无线充电/供电主控制芯片XKT-408A,采用CMOS制程工艺,具有精度高稳定性好等特点,其专门用于无线感应智能充电、供电管理系统中,可靠性能高。XKT-408A芯片负责处理该系统中的无线电能传输功能,采用电磁能量转换原理并配合接收部分做能量转换及电路的实时监控。 其主要特点为:

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

无线电能传输装置

目录 1系统方案 (2) 1.1系统总体思路 (2) 1.2系统方案论证与选择 (2) 1.2.1 电源模块论证与选择 (2) 1.2.2驱动模块论证与选择 (2) 1.2.3线圈的论证与选择 (2) 1.2.4整流电路的论证与选择 (2) 1.3系统总体方案设计 (3) 2理论分析与计算 (3) 2.1 TL494应用原理 (3) 2.2 IR2110原理 (3) 2.3 无线传输原理 (4) 2.4 计算公式 (4) 3电路设计 (4) 3.1电源模块(图3) (4) 图3 电源模块 (5) 3.2驱动模块(图4) (5) 3.3传输模块(图5) (5) 4测试方案与测试结果 (6) 4.1测试方法与仪器 (6) 4.2测试数据与结果 (6) 4.3数据分析与结论 (7) 参考文献 (8)

无线电能传输装置(F题) 1系统方案 1.1系统总体思路 由题我们设计并制作一个磁耦合谐振式无线电能传输装置,且用空心线圈制作了直径为20cm的发射和接收线圈;利用信号发生电路将输入的直流15V电转化为PWM脉冲信号,通过驱动电路产生交变电流,对发射线圈进行供电,线圈利用磁耦合谐振式原理,将电能无线传输到接收线圈端,最终在接收线圈端产生电流,达到无线电能的传输的要求。 经过几天的测试,制作出了传输效率达38.3%,x的值最大为26 cm的磁耦合谐振式无线电能传输装置。 1.2系统方案论证与选择 1.2.1 电源模块论证与选择 方案一:利用双电源,直接对电路进行供电。 方案二:利用单电源,再接入PWM控制器芯片TL494固定频率的脉冲宽度调制电路,能够有效地将直流电转换为高频脉冲。 TL494芯片的功耗低,构成的电路结构简单,调整方便,输出电压脉动小;且IR2110 的电路无需扩展,使电路更加紧凑,工作可靠性高,附加硬件成本也不高,为获取死区时间,可由基本振荡电路、与门电路构成,为方便我们选用TL494,选择方案二。 1.2.2驱动模块论证与选择 方案一:利用三极管对无线电能传输装置进行驱动,可以比较经济地进行驱动。 方案二:使用两个IR2110对无线电能传输装置进行驱动,因其15V 下静态功耗仅116mW输出的电源端电压范围10~20V,工作频率高,可达500kHz,能够很好地满足线圈进行电能传输的需要。 考虑到线圈所需谐振频率较高,而三极管的通断不是那么灵敏,所以选择较为灵敏的场效应管,又考虑到电路的简便,则选择方案二。 1.2.3线圈的论证与选择 方案一:利用单层同心圆平面绕组,但其输出的频率很高对电容要求过高。 方案二:利用多层绕组。 考虑到多层绕组的频率相对稳定,它对谐振电容的要求较低,还有它对线圈的磁场干扰较小,并且它的电能传输效率能够达到标准,因此选择方案二。 1.2.4整流电路的论证与选择 方案一:二极管半波整流。利用二极管的单向导电性,二极管承受反压大,很有可能会烧毁二极管,直流电源输入时,不能构成放电回路,不适用于本电路。 方案二:桥式整流。四只整流三极管D1~4 和负载电阻RL组成。四只整流三极管接成电桥形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,且成本低,效率高,适用于各种电路。 考虑到半波整流对电能的损失,我们选择的损失较小的全波整流,因此选择方案二。

无线电能传输系统报告.doc

摘要 随着电子产品的快速发展,越来越多的电源连接线开始困扰人们的生活,为改善传统导线电路电能传输的弊端,给出了一种基于近距离无线电能传输原理的传输系统,而电磁谐振耦合无线电能传输技术正可以很好解决对距离有较高要求的这类问题。 本设计主要包括发射模块、传输模块和接收模块三大部分。首先由有源晶振产生1MHZ的方波,通过驱动IR2110及MOS管提高了交流信号,加强后的信号源经发送线圈通过磁耦合谐振感应到接收线圈,再经过半波整流和滤波后得到稳定直流电压,带动负载工作,即实现了无线电能的传输。在本实验中,我们采用单片机STC89C52控制液晶屏LC1602来显示负载短的的实时电压和电流值。 关键字:无线电能有源晶振驱动电路谐振半波整流 Abstract In this paper, With the rapid development of electronic products, more and more power cables on people's lives, to improve the disadvantages of traditional power transmission conductor circuit, presents a transmission system based on can close radio transmission principle, and the electromagnetic resonance coupling can radio transmission technology is very good to solve this kind of problem have higher request for the distance. This design mainly includes the transmitting module, transmission module and receiving module three parts. First 1 MHZ square wave generated by the active crystals, driven by IR2110 and MOS tube improve the signal communication, strengthen the signal source approved by the sending coil magnetic coupling resonant induction to the receiving coil, and after a half-wave rectifier and filter get steady dc voltage, drive the work load, which can realize the radio transmission. In this experiment, we adopt LC1602 STC89C52 MCU LCD screen to display the real-time voltage and current value of load short. Key words: radio can active vibration crystal driver circuit resonance half-wave rectifier

质量管理实验报告

质量管理实验 实验一质量数据测定 一、实验任务 以减速器中的轴(输入轴和输出轴)为对象进行抽样检测,对测得的数据分别进行质量检验。 二、实验目的及训练要点 1)了解抽样的基本原理和方法。 2)了解测试仪器的选择、调整技巧。 3)了解测量数据的质量判定与检验。 三、实验内容 数据测试工作是工业企业生产的重要环节,是质量管理的一项基础工作,是确保产品质量的重要手段和方法,并且它可为各类质量问题的统计分析提供科学的依据,本次实验的主要内容包括: 1)外径千分尺的调整和校正。 2)游标卡尺的调整和校正。 3)减速器中各个轴(输入轴和输出轴)的外径宽度的抽样测量。 4)对所测数据进行处理和质量判定。 5)完成实验报告的攥写。 四、实验设备、仪器、工具及资料 外径千分尺1把,游标卡尺1把,减速器50个,标准件一组。

五、实验步骤 1.准备工作 1)熟悉“实验数据记录表”及检测仪器的使用方法。 2)准备所需资料,确定待选取的抽样方法及与之适宜的测量工具。 2.外径千分尺的调整和校正 外径千分尺主要用于工件的外尺寸测量。使用前应将测量面仔细擦净,检查或调整零位到正确位置。调整步骤如下: 1)校正或调整零位方法: 转动测力装置,使两测量面轻轻地接触(>25mm的外径千分尺应用校对量杆校正),当听到棘轮摩擦声时,即为零位。若此时不是零位则将固定套管上的螺钉松开用扳手转动固定套管使零位对准,然后紧固固定套管上的螺钉; 2)压线或离线的调整: 当微分筒压线或离线超过标准规定时,则松开取下测力装置,并取下盖板,取下微分桶及锥套,将锥套向前移或向后退来调整压线或离线,锥套向前移调压线,锥套向后移调离线,调好后将微分筒,及锥套装上,零位对准,盖上盖板。将测力装置装上拧紧则调整完毕。 3)测量时必须使用测力装置,以恒定测量压力进行测量,禁止测量运动的被测物。 3.游标卡尺的调整和校正 游标卡尺用于工件的内、外尺寸,外尺寸、深度、台阶等尺寸的测量。

无线电能传输

Frequency dependence of magnetic flux profile in the presence of metamaterials for wireless power transfer Boopalan G School of Electronics Engineering VIT University Vellore, Tamil Nadu, India boopalan@vit.ac.in Subramaniam C K School of Advance Sciences VIT University Vellore, Tamil Nadu, India subramaniam@vit.ac.in Abstract— We discuss the change in the magnetic flux profile by introducing a negative refractive index material (metamaterial) in between the source and receiver. The environment parameters, ε and μ , has a significant effect on the propagation of electromagnetic wave. The behavior of Transverse Magnetic (TM) wave when the medium in the path of propagation is changed to negative permittivity and permeability is simulated and discussed. The effect of size, shape and anisotrophy of the metamaterials, for near-field regions, on the magnetic flux density has been studied using finite element analysis. An enhancement in the magnetic flux density when a metamaterial is introduced in between the source and receiver was observed. The results show that the static and quasi-static behavior of the system is same. Keywords—metamaterials, quasi static, magnetic flux transverse magnetic I.I NTRODUCTION The idea of charging on the go is an exciting option for various high power applications like Electric Vehicle. Wireless power charging can be done by radiative or non-radiative processes. Use of microwave and optical frequencies falls into the radiative category while non-radiative process refers to the near-field domain. This concept was put forward by Nikola Tesla when he invented an apparatus for transmitting electrical energy wirelessly [1]. Later, with the advent of microwave transmission technology in 1960’s researchers dreamed power transfer from satellite space station to earth [2]. For short distances inductive coupling is very convenient [3-4]. The enhancement in coupling efficiency is obtained by replacing coils with resonators [5-7]. The efficiency can further be improved by introducing a negative refractive index material between the source and the receiver [8-12]. The negative refractive index material or metamaterial has the unique property of enhancing the evanescent as well as non-evanescent waves [10]. In this paper we present the magnetic flux density variations for quasi-static scenarios when a metamaterial is introduced in between the source and the receiver. The model used for simulation is a 2-dimensional one as we are interested only in the profile in that direction which is in the direction of propagation. II.T HEORY Our system consists of a source, receiver and a metamaterial as shown in fig. 1. The source is a circular loop of radius ‘a’ located in free space. The receiver is a point of interest ‘P’ where the magnetic flux density enhancement is observed. The metamaterial in between the source and the receiving point is a rectangular block which enhances the magnetic flux density at the point ‘P’. The transmitter is a single turn coil carrying current ‘I’ which in turn generates the magnetic field H in the surrounding medium. The magnetic field H at a distance ‘z’ from the center of the coil is given by I (1) The coil is fed with a current of ‘I’ amperes as given by the equation below I . (2) Fig. 1. Schematic of Wireless Power transfer y x z

无线电能传输系统设计

本科毕业论文(设计) 题目中短距离小功率 无线电力传输系统设计 指导教师张军职称讲师 学生姓名陈昂学号20091526102 专业通信工程(无线移动通信方向) 班级2009级无线移动通信1班 院(系)电子信息工程学院 完成时间2013年4月20日

中短距离小功率无线电力传输系统设计 摘要 移动互联网的井喷式繁荣,移动互联设备(MID)层出不穷的涌现,电池技术瓶颈的限制已难以满足人们的用电需求;物联网的深入发展,越来越广泛的网络节点能量供给等都要求更为先进的无线能量传输技术的发展,尤其是中短距离中小功率的无线电能传输的发展。两者共同昭示着无线电能传输光明的未来。 本文对无线电能传输(WPT)做出了简要但系统的介绍,并对其中的微波输能技术(MPT)做出了深入的探讨,在此基础上建立起了中短距离中小功率无线电力传输系统模型,即为MPT-MDSP式系统的模型。这种系统是由发射和接收两部分组成,发射部分用声表面波射频发生电路将DC转变成RF并通过特制天线辐射出去,接收部分再通过接收天线接收RF能量,用整流电路将RF转变成DC,供应用电设备。 关键词无线电能传输(WPT)/微波输能 (MPT) /天线

MIDDLE DISTANCE & SMALL POWER WIRELESS POWER TRANSPOTAION SYSTEM ABSTRACT The Wireless Power Transportation (WPT) shows a outstanding necessity in our today`s daily life .For one thing The Mobile Internet device (MID) comes out one after another because of The prosperity of Mobile Internet.The limitations of the technology bottleneck in battery capacity can not fit people`s requirement in these devises .For another the booming of Internet of Things brings large quantity of net nodes .These nodes cannot be charged easily.However,WPT will be the best way to solve this problem.Especially,the Middle Distance & Small Power Wireless Power Transportation System(WPT-MDSP) will plays a great role in these scopes. In this paper ,I made a brief but clear introduction of the WPT,and a thorough discussion in Microwave Power Transportation (MPT) ,which was used to leed to the applied system WPT-MDSP .This system contains two parts,the eradiation part and the Receive part .The first part works for changing Direct-current(DC)into R adiofrequency (RF),the other does the converse work.Both of them are designed for exclusive use. They works together to charge the Electrical equipment. Key words Wireless Power Transportation (WPT)/ Microwave Power Transportation (MPT)/Antenna

短距离无线通信实验报告

3.5 无线数据传输控制实验 3.5.1 实验目的 1. 在ZX2530A 型CC2530 节点板上运行自己的程序。 2 .通过发送命令来实现对其它节点的外设控制。 3.5.2 实验内容 实验中一个节点通过射频向另一个节点发送对LED 灯的控制信息,点亮LED 灯或让LED 熄 灭,节点接收到控制信息后根据控制信息点亮LED 或让LED 熄灭。 3.5.3 实验设备及工具 1.硬件:ZX2530A 型CC2530 节点板、USB 接口的仿真器,PC 机Pentium100 以上。 2.软件:PC 机操作系统WinXP、IAR 集成开发环境、串口监控程序。 3.5.4 实验原理 LED 灯连接到CC2530 端口P1_0,程序中应在初始化过程中对LED 灯进行初始化,包括端口 方向的设置和功能的选择,并给端口P1_0 输出一个高电平使得LED 灯初始化为熄灭状态。无线 控制可以通过发送命令来实现,在main.c文件中中添加宏定义#define COMMAND 0x10,让发送

数据的第一个字节为COMMAND,表明数据的类型为命令,同时,发送节点检测用户的按键操作当 检测到用户有按键操作时就发送一个字节为COMMAND 的命令。当节点收到数据后,对数据类型进 行判断,若数据类型为COMMAND,则翻转端口P1_0 的电平(在初始化中已将LED 灯熄灭)。即可, 实现LED 的状态改变。 3.5.5 实验步骤 1. 打开工程,在“物联网光盘\无线射频实验\5 无线控制”文件夹下 2. 将节点类型变量NODE_TYPE 设置为0,编译工程,并下载到ZX2530 节点板中,作为接收节点。 3. 将节点类型变量NODE_TYPE 设置为1,编译工程,并下载到ZX2530 节点板中,作为发送节点。 4. 复位接收节点和发送节点。 5.按下发送节点板上的key1 按键,观察接收节点上led 显示情况 6. 在主程序中添加一个宏定义#define LED_MODE_BLINK 0x02,在对数据的解析中添加对 LED_MODE_BLINK 的解析,让LED 灯每隔250 毫秒闪烁一次,让发送节点发送的数据为 LED_MODE_BLINK (代替LED_MODE_ON,紧接在COMMAND

2018Multisim仿真无线电能传输项目设计

无线电能传输项目设计

一 预备知识 (一)项目设计的目的: (1)在实践中对现代电工技术的理论知识做进一步巩固; (2)锻炼对综合运用能力。 (二)实验内容与要求: 在不采用专用器件(芯片)的前提下,设计一个非接触供电系统。原理电路如 下图所示,实现对小型电器供电或充电等功能。 (三)要求 用仿真软件对电路进行验证,使其满足以下功能: (1)供电部分输入36V 以下的直流电压,具有向多台电器设备非接触供电的 功能。 (2)在输出功率≥1W 的条件下,转换效率≥15%,最大输出功率≥5W 。 (3)设计报告必须包括建模仿真结果 (4)利用multisim 生成PCB 板 D 功放 AC/DC 耦合线圈 耦合线圈 振荡器 充电电路 电源

二无线电能传输技术 (一)无线能量传输技术介绍 根据电能传输原理,可将 WPT 技术分为三种:射频或微波 WPT、电磁感应式WPT、电磁共振式 WPT,下面分别予以介绍。 1微波无线能量传输 所谓微波 WPT,就就是以微波(频率在 300MHz-300GHz 之间的电磁波)为载体在自由空间无线传输电磁能量的技术。利用微波源将电能转变为微波,由天线发射,经长距离的传播后再由天线接收,最后经微波整流器等重新转换为电能使用。 微波频率传输所具备的“定向、可穿透电离层”等特性,使得该能量传送方式早在20世纪60年代初期就受到人们的关注,并在远程甚至超距能量传输场合有着重要的应用价值。微波WPT主要用于如微波飞机、卫星太阳能电站等远距输电场合,其中卫星太阳能电站作为人类应对能源危机的有效策略已成为美国、日本等国大力发展的重要航天项目。 目前,限制微波 WPT 技术进一步发展的主要技术瓶颈在于高效微波整流器件、大功率微波天线以及大功率微波电磁场的生物安全性与生态环境的影响问题。然而,由于工作频率高、系统效率较低,微波 WPT 并不适合于能量传输距离较短的应用场合。 2电磁感应式无线能量传输 电磁感应式 WPT 就是基于电磁感应原理,利用原、副边分离的变压器,在较近距离条件下进行无线电能传输的技术。目前较成熟的无线供电方式均采用该技术,典型的应用包括新西兰国家地热公园的 30kW 旅客电动运输车、Splash power 公司的无线充电器等。可以瞧出,无论就是小功率的消费类电子产品还就是大功率 EV 无线供电系统,电磁感应式 WPT 技术都可有效实现无线供电。 然而,电磁感应式 WPT 仍存在一系列问题:传输距离较短,距离增大时效率急剧下降;传输效率对非接触变压器的原、副边的错位非常敏感等等。

相关主题