搜档网
当前位置:搜档网 › 2020中考数学专题6——几何模型之”12345“-含答案

2020中考数学专题6——几何模型之”12345“-含答案

2020中考数学专题6——几何模型之”12345“-含答案
2020中考数学专题6——几何模型之”12345“-含答案

【模型解析】

2020 中考专题 6——几何模型之“12345”

班级姓名

.

【例题分析】

例 1.在如图正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB 与CD 相交于O,则tan∠BOD 的值等于。

例1 图例2 图

k

例2.(2017 浙江金华)如图,已知点A(2,3)和点B(0,2),点A 在反比例函数y=

x

的图象上.作射线AB,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C,则点C 的坐标为.

32

例3.如图,正方形ABCD 中,P 是BC 的中点,把△PAB 沿着PA 翻折得到△PAE,过C 作CF⊥DE 于F,若CF=2,则DF=.

【巩固训练】

1.如图1,∠AOB 是放置在正方形网格中的一个角,则cos∠AOB 的值是.

图1 图2 图3

2.如图2 是由边长相同的小正方形组成的网格,A,B,P,Q 四点均在正方形网格的格点上,线段AB,PQ 相交于点M,则图中∠QMB 的正切值是()

1

A. B.1 C.

2

D.2

3.如图3,把一个矩形纸片OABC 放入平面直角坐标系中,使OA、OC 分别落在x 轴、y 轴上,连接OB,将纸片OABC 沿OB 折叠,使点A 落在A'的位置上.若OB= ,

BC

1

,求点A'的坐标为.

OC 2

4.如图4,半圆O 的直径AB=10cm,弦AB=10cm,弦AC=6cm,AD 平分∠BAC,则AD 的长为()

A.4cm

B. 3 cm

C. 5 cm

D.4 cm

图4 图5

5.如图5,在四边形ABCD 中,∠BAC =∠BDC=90°,

AB=AC=

则DM= ( )

,CD=1 ,对角线的交点为M,

A. B.

2 3

1

C. D.

2 2

3

5

555

5

5

5 6. 如图6,在平面直角坐标系xOy 中,点A (-1,0),B (0,2),点C 在第一象限,∠ABC =135°,

k

AC 交y 轴于D ,CD =3AD ,反比例函数y =

的图象经过点C ,则k 的值为 .

x

A

D

F

B

E

C

图 6

图 7

图 8

7(2017 浙江丽水)如图 7,在平面直角坐标系 xOy 中,直线 y =-x +m 分别交 x 轴,y 轴于 A ,B 两点,已知点 C (2,0). (1) 当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是 ; (2) 设点 P 为线段 OB 的中点,连结 PA ,PC ,若∠CPA =∠ABO ,则 m 的值是 .

8.(2018山东滨州)如图8,在矩形ABCD 中,AB =2,BC =4,点E ,F 分别在BC ,CD 上,若AE = , ∠EAF=45°,则AF 的长为 .

9.如图 9,在四边形 ABCD 中 BC⊥AB,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E 是 AB 上一点,且∠ DCE=45°,BE=4, 则 DE= .

图 9 图 10 图 11

10.(2018 山东泰安)如图 10,在矩形 ABCD 中, AB = 6 ,BC = 10 ,将矩形 ABCD 沿 BE 折叠, 点 A 落在 A ' 处,若 EA ' 的延长线恰好过点C ,则sin ∠ABE 的值为 .

11. 如图 11,正方形 ABCD 的边长 AB=2,E 为 AB 的中点,F 为 BC 的中点,AF 分别与 DE 、BD

相交于点 M ,N ,则 MN 的长为( )

A.

B .

﹣1

C .

D .

12.如图12,抛物线y =-x2 +bx +c 与直线y =

1

x + 2 交于C、D 两点,其中点C 在y 轴上,

2

7

点D 的坐标为(3,

2

F。

)。点P 是y 轴右侧的抛物线上一动点,过点P 作PE⊥x 轴于点E,交CD 于点(1)求抛物线的解析式。(2)若存在点P,使∠PCF=45°,请直接写出相应的点P 的坐标。

图12

13.如图13,抛物线y=x2-4x+3 与坐标轴交于A、B、C 三点,点P 在抛物线上,PD⊥BC 于点D,

垂足D 在线段BC 上.若CD

=

1

,求点P 的坐标.PD 2

图13

2 2020 中考专题 6——几何模型之“12345” 参考答案

1

例 1.解:如图,∠BOD=∠OAD+∠OED,易得 tan ∠OAD= 2

∠BOD=3.

1 ,∠OED=45°,由“3”=“ 2

”+45°得 tan

例2.解:如图,作AE⊥y轴于E ,作AF⊥CF,垂足为F ,且AF∥y轴.由点A (2,3)和点B (0,2),可得 1 BE=1.AE=2,所以tan∠BAE= 2 1 .因为∠BAC=45°,所以∠BAE+∠CAF=45°,由“ 2 1

”+“ 3

”=45°

1 CF 1

可得tan∠CAF= ,即 = .设CF=a,则AF=3a,所以C 点坐标可表示为(2-a,3-3a ).把C (2-a,3-3a )

3 AF 3 代入 y = 6

得(2-a)(3-3a)=6.解得a=3(a=0舍去).所以点C 的坐标为(-1,-6).

x

1 例 3.解:因为在正方形 ABCD 中 P 是 BC 的中点,所以 tan ∠BAP=

2

1

,由翻折可知∠EAP=∠BAP.由“ ”

2

1 4 +“ ”=“ 2

3 4 ”可知 tan ∠BAE= 3

3

,所以 tan ∠DAE= 4

,又因为 AE=AD ,作 AH ⊥DE ,则∠DAH=∠EAH. 1 1

由“ ”+“ 3 3 3 ”=“ 4 1

”可知 tan ∠DAH= 3

1 ,所以 tan ∠CDF= 3

,所以 DF=3CF=6.

【巩固训练】答案

1. 3

; 2.D 3.( - 3 , 4 )

4.A

5.D

6. 9

7.(1) (2)12

8.

4 10

5

5 5

3

1 9. 10. 3 10

11. C 12.(1) y = -x 2 + 7 x + 2 (2)P( 1 , 7

)

2 2 2

简析:易得tan ∠DCG= 1 ,因为∠PCF =45°,所以∠DCG+∠PCH=45°,由“ 1 ”+“ 1

”=45°,

2 2 3

1 PH 1 7 可得tan ∠PCH = .所以 = ,设PH=a.则CH=3a.所以设 P (a,2+3a ).所以- a 2

+ a + 2 = 2 + 3a ,

3 CH 3 2

所以 a = 0(舍去)或a = 1 .所以 P ( 1 , 7

)。

2 2 2

10

13.P(

13 , 40 ) 3 9

简析:易得 tan ∠PCD=2,因为∠DCH =135°,所以 tan ∠PCH=3.设 CH=a,则 PH=3a. 所以 P(3a,3+a) 代入抛物线解析式得9a 2

-12a + 3 = 3 + a ,所以 a = 0(舍去)或a =

13 .所以 P ( 13 ,

40 )。

9

3 9

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE = ,PE=5 554×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴2 1==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=55 25 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

中考数学 几何模型汇编

中点模型 【模型1】倍长 1、倍长中线; 2、倍长类中线; 3、中点遇平行线延长相交 A B C D E A B C D E F E D C B A 【模型2】遇多个中点,构造中位线 1、直接连接中点; 2、连对角线取中点再相连 G A B C D E F A B C D E 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1 A C D E F G D E F G C D E G A B B F C B A 【解答】 (1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE = 注意G 的两端点D 、E 所在的直线DC ∥FE

F A (2)延长CG 交AB 于点I , 易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC ,且GE ⊥GC A F (3) E J 【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF . (1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG . G F E D C B A 【解答】 (1)证明△ABE ≌△ADF 即可; (2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可 为什么是证明△BCE ≌△FIE 你理解吗? 你能写出解题思路和过程吗? 类似的为什么要延长CG 呢,可以延长EG 吗?

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

中考数学几何证明题专题复习汇总.doc

eei A(D) 最新中考数学几何证明题专题复习汇总 1、 如图1, E 是边长为1的正方形初仞的对角线劭上一点,且BE= BC, P 为CE 上任意一点,PQLBC 于点0, PRIBE 亍点、R,则PQ+PR 的值是【 】A.二些 B. C. D. 2、 如图2,在梯形初切中,AD//BQ 对角线AC1BD,且J^12,锯9,则此梯形的中位线长是 A. 10 B. — C. — D. 12 2 2 3、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图3所示的风筝,点上; G, 〃 分别是四边形加^.0各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不 计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料 A. 15 匹 B. 20 匹 C. 30 匹 D. 60 匹 4、 如图4,若将四根木条钉成的矩形木框变形为平行四边形月测的形状,并使其面积为矩形面积的一半,则这 个平行四边形的一个最小内角的值等于 ___________ . 5、 一个正方形和两个等边三角形的位置如图5所示,若Z3二50。,则Z1+Z2二( ) A. 90° B. 100° C. 130° D. 180° 6、 把三张大小相同的正方形卡片A, B, C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影 表示.若按图6-1摆放时,阴影部分的面枳为若按图6-2摆放时,阴影部分的面积为乂,则J —S2(填 “>”、“V” 或“二”). 7、 如图7-1,两个等边△ABD, ACBD 的边长均为1,将AABD 沿AC 方向向右平移到AA' B' D'的位置,得到图 7-2,则阴影部分的周长为 __________ ? 8、 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形, 如图8-1,用“个全等的正六边形按这种方式拼接,如图8-2,若阖成一圈后中间也形成一个正多边形,则的 值为 . 9、 如图10,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图 形(阴影部分)外轮廓线的周长是( ) A. 7 B. 8 C. 9 D. 10、 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图10,则Z3+ Zl-Z2= ____________ . 图7-1 图7-2 图8-2 A D A n C 图3 图6-1 图6-2 A B B B B 图8-1 图10 图11 图12 图13 图14

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

2017重庆中考数学第25题几何专题训练

G F E D C B A M 证明题 1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD⊥BC,垂足是D ,AE 平分∠BAD,交BC 于点E .在△ABC 外有一点F ,使FA⊥AE,FC⊥BC. (1)求证:BE=CF ; (2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME⊥BC;②DE=DN. 2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。 求证:(1)AF =CG ; (2)CF =2DE 3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC。 (1)求证:OE=OF ; (2)若BC=23,求AB 的长。 4.已知,如图,在?ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2. (1)若CF=2,AE=3,求BE 的长; (2)求证:∠CEG=∠AGE .

5.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。 (1)如图1,若点H是AC的中点,AC= 23 ,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由。 6.如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE. (1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长; (2)若AF是△ABE的高,延长AF交BC于点G. ①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE; ②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变, 如果不变,请求出∠DFG的度数;如果要变,请说明理由. 7.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC (或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证: 1 CF 2 BE AB +=; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:3() BE CF BE CF +=-. 8.已知在四边形ABCD中,180 ABC ADC ∠+∠=?,AB=BC. A B F D C E 25 B A F D C E G 25 A F D C E G 25

重庆中考数学几何证明题__(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA 的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

2019年中考数学真题分类汇编—几何题汇总

2019年中考数学真题分类汇编—几何题汇总 一、选择题 1.【2019连云港市】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是 A.18m2B.m2C.2D2 (第1 题)(第2题)(第3题) 2.【2019宿迁】一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于( ) A.105°B.100°C.75°D.60° 3.【2019宿迁】一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( ) A.20πB.15πC.12πD.9π 4、【2019常州】下图是某几何体的三视图,该几何体是()

A. 圆柱 B. 正方体 C. 圆锥 D.球 5、【2019常州】如图,在线段PA、PB、PC、PD中,长度最小的是( ) A、线段PA B、线段PB C、线段PC D、线段PD 6.【2019镇江】一个物体如图所示,它的俯视图是( ) A.B. C.D. 7、【2019淮安】下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是

( ) 8.【2019泰州】如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、 G 在小正方形的顶点上,则△ABC 的重心是( ) A .点D B .点E C .点F D .点G 9、【2019扬州】 已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足 条件的n 的值有( )A.4个 B.5个 C.6个 D.7个 10.【2019连云港市】如图,在矩形ABCD 中,AD =AB .将矩形ABCD 对折,得 到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:① △CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC = ;④BP =AB ;⑤点 F 是△CMP 外接圆的圆心.其中正确的个数为A B C E D F G ····

中考数学几何证明专题训练

中考数学几何证明专题 1、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 2、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 3、在菱形ABCD 中,GE ⊥CD 、HF ⊥AD ,求证:GE=HF C B C B D B

4、 图,平行四边形ABCD 中,AE=CF , 求证:∠EBF=∠FDE 5、在菱形ABCD 中,对角线AC 、BD 交于点O ,OE ⊥AB 、OF ⊥BC 、 OG ⊥CD 、OH ⊥AD ,求证:E 、F 、G 、H 共圆 6、在矩形ABCD 中,∠ABC 、∠CDA 的平分线交AD 、BC 于F 、E ,求证:BE=DF 、DE=BF D B B D D A C

7、如图,点E 是正方形ABCD 内一点 ,△BEC 绕点C 顺 时针方向旋转90°到△DFC 的位置,求证:BE ⊥DF 8.如图,E 、F 是□ABCD 的对角线AC 上两点,AE=CF. 求证:(1)△ABE ≌△CDF.(2)BE ∥DF. F E D C B A F A

9.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE=CF, 请你以F 为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可). (1)连结_________, (2)猜想______=________. (3)证明: 附加1.如图,已知正方形ABCD 中,E 为BC 上一点, 将正方形折叠起来,使点A 和点E 重合,折痕为MN,若tan ∠AEN=13 ,DC+CE=10. (1)求△ANE 的面积.(2)求sin ∠ENB 的值. K M E N D C B A

中考数学几何五大模型

一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图12::S S a b = ⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上, 五大模型

E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =??△△ 图1 图2 三、蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。 四、相似模型 相似三角形性质: 金字塔模型 沙漏模型

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

相关主题