搜档网
当前位置:搜档网 › 2021-08-17-2021年中国女子数学奥林匹克第8题的解答

2021-08-17-2021年中国女子数学奥林匹克第8题的解答

2021-08-17-2021年中国女子数学奥林匹克第8题的解答
2021-08-17-2021年中国女子数学奥林匹克第8题的解答

2021年中国女子数学奥林匹克第8题的解答

---含有60°角的三角形的性质与判定之一

2018年女子数学奥林匹克于2018年8月13、14两天举行考试,每天4个题目。此次考试规模恢宏,几乎聚齐了世界各地的巾帼英雄——女子数学奥林匹克选手。

在此,我顺便说点题外话,一直以来有一种普遍的认识是女性的理科比较弱,女科学家相当少,数学尤其不适合女生,因为女数学家更是凤毛麟角。甚至有人认为女生天生缺乏理科思维,不适合学理科,特别是数学!这种说法在农村里面尤其盛行。我来自农村,原来我也这样认为,因为周围的女生确实普遍理科弱。但是等我到了大城市以后,我发现班级里面的女学霸层出不穷,大学有不少同学毕业后留在大学、从事数学研究。再后来教书以后,发现班级里面也有不少女生的理科学得非常好。我开始对这个观点产生怀疑。后来读了不少科普知识,感觉今是而昨非。

我的理解是:从生物本能上看,雌性生物整体比雄性生物各方面都要出色,因为她们负担着物种延续的使命。所以人类平均寿命女性比男性高很多。因此男女在理科学习上应该也没有明显的差异。有不少统计数据来证实这个观点。之所以以往女科学家及数学家比较少,是因为以前一直是男权社会,重男轻女的思想特别严重。导致女性没

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

2009中国数学奥林匹克解答

2009中国数学奥林匹克解答 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N . (1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,则 11 ,22 EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,所以 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,所以 ABD ACD ∠=∠, 于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 所以 E Q M E Q O O Q M F R O O R M ∠=∠+∠=∠+∠=∠, 故 E Q M M R F ???, 所以 EM =FM , 同理可得 EN =FN , 所以 E M F N E N F M ?=?. (2)答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则 11 ,22 NS OD EQ OB ==, 所以 N S O D E Q O B =. ① C B

又 11 , 22 ES OA MQ OC ==,所以 ES OA MQ OC =.② 而AD∥BC,所以 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 所以NSE ?~EQM ?, 故 EN SE OA EM QM OC ==(由②).同理可得, FN OA FM OC =, 所以EN FN EM FM =, 从而EM FN EN FM ?=?. C B

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

自招竞赛 数学讲义:轮换对称式的最值问题(讲师版)

自招竞赛 数学讲义 轮换对称式的最值问题 学生姓名 授课日期 教师姓名 授课时长 知识定位 在不等式和求最值的问题中,轮换对称式是十分常见的。自招、竞赛中出现的不等式证明或代数式求最值问题以轮换对称式为主,而这一类有关轮换对称式的问题也以其简洁优美的数学形式和较为灵活多变的解决方法成为自招竞赛中的一大难点。 本章节列举了处理几类轮换对称式问题和几种常见处理方法,希望同学们在考场上见到这类问题时能够有思路有针对性地着手处理,而不是盲目地尝试变形求解(证)。 知识梳理 1. 不等式对称和轮换对称式的定义 在一个不等式中,若把其中任何两个字母(),,1,2,...,i j a a i j n i j =≠且对调位置后,这个不等式不变(如① 32 a b c b c c a a b ++≥+++,其中,,0a b c >), 我们便称此不等式是关于12,,...,n a a a 对称的。如果把不等式中的字母12,,...,n a a a 按一定顺序依次轮换(如1a 换成2a ,2a 换成3a ,...,1n a -换成n a )后不等式不变(如② 222222 0,,,0c a a b b c a b c b c c a a b ---++≥>+++其中),我们便称此类不等式是关于12,,...,n a a a 轮换对称的。 2. 对称式与轮换对称不等式的性质 由定义易知,对称的不等式一定是轮换对称的(如①),而轮换对称的不等式却不一定是对称的(如②就不是对称的)。 关于12,,...,n a a a 对称的不等式,由于,i j a a 互换后原不等式不变,因此要想怎么排列他们的大小顺序,只要调换其位即可,故我们可任意排列12,,...,n a a a 的大小顺序(如在①

2007年第6届中国女子数学奥林匹克(CGMO)试题(含答案)

2007年女子数学奥林匹克 第一天 1.设m 为正整数,如果存在某个正整数n ,使得m 可以表示为n 和n 的正约数个数(包括1和自身)的商,则称m 是“好数”。求证: (1)1,2,…,17都是好数; (2)18不是好数。 2.设△ABC 是锐角三角形,点D 、E 、F 分别在边BC 、CA 、AB 上,线段AD 、BE 、CF 经过△ABC 的外心O 。已知以下六个比值 DC BD 、EA CE 、FB AF 、FA BF 、EC AE 、DB CD 中至少有两个是整数。求证:△ABC 是等腰三角形。 3.设整数)3(>n n ,非负实数.2,,,2121=+++n n a a a a a a 满足 求1 112 1232 221++++++a a a a a a n 的最小值。 4.平面内)3(≥n n 个点组成集合S ,P 是此平面内m 条直线组成的集合,满足S 关于P 中的每一条直线对称。求证:n m ≤,并问等号何时成立? 第二天 5.设D 是△ABC 内的一点,满足∠DAC=∠DCA=30°,∠DBA=60°,E 是边BC 的中 点, F 是边AC 的三等分点,满足AF=2FC 。求证:DE ⊥EF 。 6.已知a 、b 、c ≥0,.1=++c b a 求证: .3)(4 1 2≤++-+ c b c b a 7.给定绝对值都不大于10的整数a 、b 、c ,三次多项式c bx ax x x f +++=2 3)(满足条件32:.0001.0|)32(|+<+问f 是否一定是这个多项式的根?

8.n 个棋手参加象棋比赛,每两个棋手比赛一局。规定:胜者得1分,负者得0分,平局各得0.5分。如果赛后发现任何m 个棋手中都有一个棋手胜了其余m —1个棋手,也有一个棋手输给了其余m —1个棋手,就称此赛况具有性质P (m ). 对给定的)4(≥m m ,求n 的最小值)(m f ,使得对具有性质)(m P 的任何赛况,都有所有n 名棋手的得分各不相同。 综上,最少取出11枚棋子,才可能满足要求。 三、定义集合}.,|1{P k m k m A ∈∈+=+N 由于对任意的k 、1 1, ,++≠∈i k i k P i 且是无理数,则对任意的k 1、P k ∈2和正整数 m 1、m 2, .,1121212211k k m m k m k m ==?+=+ 注意到A 是一个无穷集。现将A 中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n ,设此数列中的第n 项为.1+k 接下来确定n 与m 、k 间的关系。 若.1 1,1111++≤+≤+i k m m k m i m 则 由m 1是正整数知,对5,4,3,2,1=i ,满足这个条件的m 1的个数为].1 1[++i k m 从而,).,(]1 1[5 1 k m f i k m n i =++= ∑= 因此,对任意.),(,,,n k m f P k N m N n =∈∈∈++使得存在

第32届中国数学奥林匹克获奖名单及2017年集训队名单

第32届中国数学奥林匹克获奖名单 一等奖(116人,按省市自治区排列) 编号姓名地区学校 M16001 吴蔚琰安徽合肥一六八 M16002 考图南安徽安师大附中 M16003 徐名宇安徽合肥一中 M16004 吴作凡安徽安师大附中 M16005 周行健北京人大附中 M16006 王阳昇北京北京四中 M16007 陈远洲北京北师大附属实验中学M16008 杨向谦北京人大附中 M16009 夏晨曦北京北师大二附 M16010 谢卓凡北京清华附中 M16011 薛彦钊北京人大附中 M16012 胡宇征北京北京四中 M16013 徐天杨北京北京101中学 M16014 董昕妍北京人大附中 M16015 冯韫禛北京人大附中 M16016 林挺福建福建师范大学附属中学M16017 任秋宇广东华南师大附中 M16018 何天成广东华南师大附中 M16019 戴悦浩广东华南师大附中 M16020 谭健翔广东华南师大附中 M16021 王迩东广东华南师大附中 M16022 程佳文广东深圳中学 M16023 李振广东深圳外国语学校 M16024 张坤隆广东深圳中学 M16025 齐文轩广东深圳中学 M16026 卜辰璟贵州贵阳一中 M16027 顾树锴河北衡水第一中学 M16028 袁铭泽河北衡水第一中学 M16029 卢梓潼河北石家庄二中 M16030 赵振华河南郑州外国语学校 M16031 陈泰杰河南郑州外国语学校

M16032 迟舒乘黑龙江哈尔滨市第三中学 M16033 黄桢黑龙江哈尔滨市第三中学 M16034 姚睿湖北华中师范大学第一附属中学M16035 魏昕湖北武汉二中 M16036 黄楚昊湖北武钢三中 M16037 刘鹏飞湖北武汉二中 M16038 赵子源湖北华中师范大学第一附属中学M16039 徐行知湖北武钢三中 M16040 吴金泽湖北武汉二中 M16041 李弘梓湖北武汉二中 M16042 施奕成湖北华中师范大学第一附属中学M16043 袁睦苏湖北武汉二中 M16044 王子迎湖北武汉二中 M16045 袁昕湖北华中师范大学第一附属中学M16046 陈子瞻湖北湖北省黄冈中学 M16047 詹立宸湖北华中师范大学第一附属中学M16048 严子恒湖北武钢三中 M16049 陈贵显湖北华中师范大学第一附属中学M16050 张騄湖南长沙市长郡中学 M16051 刘哲成湖南长沙市雅礼中学 M16052 仝方舟湖南长沙市长郡中学 M16053 谢添乐湖南长沙市雅礼中学 M16054 尹龙晖湖南长沙市雅礼中学 M16055 黄磊湖南长沙市雅礼中学 M16056 肖煜湖南长沙市长郡中学 M16057 吴雨澄湖南湖南师范大学附属中学M16058 方浩湖南长沙市第一中学 M16059 郭鹏吉林东北师大附中 M16060 丁力煌江苏南京外国语学校 M16061 朱心一江苏南京外国语学校 M16062 高轶寒江苏南京外国语学校 M16063 彭展翔江西高安二中 M16064 刘鸿骏江西江西省吉安市第一中学M16065 孔繁淏辽宁大连二十四中 M16066 孔繁浩辽宁东北育才学校 M16067 孟响辽宁大连24中 M16068 毕梦达辽宁辽宁省实验中学

2006年第3届中国东南数学奥林匹克试题及答案

第三届中国东南地区数学奥林匹克 第一天 (2006年7月27日, 8:00-12:00, 南昌) 一、 设0,a b >>2()2()4a b x ab f x x a b ++= ++.证明:存在唯一的正数x ,使得 113 3 3 ()()2 a b f x +=. 二、 如图所示,在△ABC 中,90,,ABC D G ∠=?是 边CA 上的两点,连接BD ,BG 。过点A ,G 分别作BD 的垂线,垂足分别为E ,F ,连接CF 。若BE =EF ,求证:ABG DFC ∠=∠。 三、 一副纸牌共52张,其中“方块”、“梅花”、“红心”、“黑桃”每种 花色的牌各13张,标号依次是2,3,,10,,,,J Q K A ,其中相同花色、相邻标号的两张牌称为“同花顺牌”,并且A 与2也算是顺牌(即A 可以当成1使用). 试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含“同花顺牌”的取牌方法数。 四、 对任意正整数n ,设n a 是方程3 1x x n +=的实数根,求证: (1) 1n n a a +>; (2) 2 11 (1)n n i i a i a =<+∑。 第二天 (2006年7月28日, 8:00-12:00, 南昌) 五、 如图,在ABC ?中,60A ∠=?,ABC ?的内切圆I 分 别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、 CI 相交于点F 、G ,证明:1 2 FG BC =。 六、 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a ,b ,c ,都有333222(61m a b c a b c ++≥+++) ()。 七、 (1)求不定方程2()mn nr mr m n r ++=++的正整数解(,,)m n r 的组数。 (2)对于给定的整数k >1,证明:不定方程()mn nr mr k m n r ++=++至 少有3k +1组正整数解(,,)m n r 。 B A

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC 上两点D 、E 分别为弧 ABC 、 ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。求好矩阵A 的个数。 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得 1122m m n b a b a b a =+++ .

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤= ∑ 的最大值。

参考答案 第一天 1. 如图2,联结EP 、BE 、BP 、CD 。 分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。 由已知条件易得,AD DC AE EB ==。结合A 、B 、D 、 12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也 不改变结论。同样,不妨设12p y y y <<< 。于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。 由上面的讨论知11121,2a a ==或212a =,不妨设122a =。否则,将整个数表关于主对

中国数学奥林匹克(cmo)试题(含答案word)

2012年中国数学奥林匹克(CM O)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧BC 上两点D 、E 分别为弧 ABC 、ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为 2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤=、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1。若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵"。求好矩阵A 的个数. 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,, a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈-使得 1122m m n b a b a b a =+++.

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x ++ +=的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤=∑的最大值. 5.设n 为无平方因子的正偶数,k 为整数,p 为质数,满足 |p p <2,|()n p n k +。 证明:n 可以表示为ab bc ca ++,其中,,,a b c 为互不相同的正整数。 6.求满足下面条件的最小正整数k :对集合{1,2,,2012}S =的任意一个k 元子集A ,都存在S 中的三个互不相同的元素a 、b 、c ,使得a b +、b c +、c a +均在集合A 中.

江苏2010年高考+(世上最难+最牛试卷)+数学

一、2010年江苏高考数学考卷解读 2010年高考已经落下帷幕,本次数学试题突出数学学科特点,考查基础与考查能力并重,有创新题、题目梯度明显,区分度较高。考生的评价集中为一个字“难”,许多题目看似简单,但要真正解决得分却很难。运算量很大,甚至部分同学的最后两题都没来得及看。接下来我们来具体分析试题。 1、基础题 试题第1题、第2题、第3题、第4题、第5题、第6题、第7题分别考查考纲中的集合的性质与集合的运算、复数的运算、古典概型、频率直方图的运用、函数的奇偶性、双曲线的标准方程与集合性质、算法流程图,基本集中在对A、B级要求的考查。难度与计算量均不大。大多数考生都应该能顺利解决。 第9题主要考查直线与圆的位置关系以及点到直线的距离的计算,只要判断准确接下来的计算也不成问题。 第11题主要考查分段函数、函数的单调性以及不等式,难度虽不大,但分情况讨论对于部分函数基础较薄弱的考生稍有难度。 第15题主要考查向量,并与平时常用的解析法结合,在处理过程中需要稍加小心,容易出现计算上的失误。 第16题以四棱锥为模型,主要考查立体几何中线线、线面垂直以及多面体的体积,需要证明过程完整、理由充分,有部分考生虽然会做,但论证过程写的不够完善而导致失分。 总体看以上列举的考题考查的考点明确,难度与平时练习相当,

考生的失分会较少。 2、中档题 第8题、第10题、第12题主要考查导数的集合意义、数列的概念、三角函数的图像、不等式的解法与不等式的性质中比较容易的考点,只要平时的基本功扎实,解决这几个问题应该不难。重点在与考题与平时练习题的联系。 第17题测量电视塔的高度,本题的原型在苏教版数学必修5第11页第3题,它进行了改编,并添加了初中的相似三角形、解直角三角形这些知识的运用,在此基础上,考查了解斜三角形、基本不等式的运用。题目本身难度不大,但在这些知识点的融合中,有部分考生往往会失去方向,似乎有很多途径来解决问题,但要找到一个真正适合的方法不容易。 第19题主要考查等差数列的概念和通项公式与不等式的证明,本题主要是难下手,许多考生就在这一环节上缺少有效的突破,最终无功而返。 3、难题 第13题主要考查三角变换与运用解三角形知识进行三角运算,综合性较高,边、角、三角函数名称错综复杂,处理这类问题在运算、代换等运用方面需要恰当。否则导致运算量偏大,却得不到最后结果。第14题构造等腰梯形,求其周长的平方与面积的比值的最小值,将几何图形与函数模型相结合,具有高度的综合性,有想法,当深入解决问题时发现对于函数知识的要求相当高。

2016女子数学奥林匹克试题

2016女子数学奥林匹克 (2016年8月12‐8月13日) 1、整数3n ≥,将写有21,2,...,n 的2 n 张卡片放入n 个盒子,每个盒子各有n 张。其后允许操作如下:每次选其中两个盒子,在每个盒子中各取两张卡片放入另一个盒子。证明:总是可以通过有限次操作,使得每个盒子内的n 张卡片上恰好是n 个连续整数。 2、ABC ?的三条边长为,,BC a CA b AB c ===,ω是ABC ?的外接圆。 ①若不含A 的 BC 上有唯一的点P (不同于,B C ),满足 PA PB PC =+,求,,a b c 应该满足的充要条件。 ②P 是①中所述唯一的点,证明:若AP 过BC 的中点, 则60BAC ∠

5、设于数列12,,...a a 的前n 项之和为12...n n S a a a =+++,已知11S =,对于1n ≥都有 21(2)4n n n S S S ++=+。证明:对于任意正整数n ,都有n a ≥。 6、求最大的正整数m ,使得可以在m 行8列的方格表中填入,,,C G M O ,每个单元格填一个字母。使得对于其中任意两行,这两行中最多在一列所填字母相同。 7、I 是锐角ABC ?的内心,AB AC >。BC 边上的高AH 与直线,BI CI 分别交于,P Q 。O 是IPQ ?的外心,,AO BC 交于L ,AIL ?的外接圆与BC 交于,N L ,D 是I 在BC 上的投影,求:BD BN CD CN =。 8、,Q Z 分别代表全体有理数、整数,在坐标平面上,对于任意整数m ,定义 (,),,0,m xy A x y x y Q xy Z m ??=∈≠∈???? 。对于线段MN ,定义()m f MN 为线段MN 上属于m A 的点的个数。求最小的实数λ,使得对于任意直线l ,均存在与l 有关的实数()l β,满足:对于l 上任意两点,M N ,都有20162015()()()f MN f MN l λβ≤?+。

2007年CMO第4题的别证

(1996年上海市高中理科实验班招生试题) 解 由x ,y ,z 的对称性,不妨假设x ≤y ≤z ,由 得x +1≥x +x 2 ,所以x 2 ≤1,因为x >0,所以0

中国女子数学奥林匹克(CGMO)第10届(2011)解答

2011女子数学奥林匹克 2011年8月1日 上午8:00 ~ 12:00广东 深圳市第三高级中学 1.求出所有的正整数n ,使得关于,x y 的方程 111x y n += 恰有2011组满足x y ≤的正整数解(,)x y . 解:由题设,20()()xy nx ny x n y n n --=?--=.所以,除了x=y=2n 外,x n -取2n 的小于n 的正约数,就可得一组满足条件的正整数解(x , y ).故2n 的小于n 的正约数恰好为2010. 设1 1k k n p p α α= ,其中1,,k p p 是互不相同的素数,1,,k αα 是非负整数.故2n 的 小于n 的正约数个数为 1(21)(21)1 2 k αα++- , 故1(21)(21)4021k αα++= . 由于4021是素数,所以1k =,1214021α+=,12010α=. 所以,2010n p =,其中p 是素数.

2.如图,四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q.若M F C D N F AB ?=?且DQ BP AQ CP ?=?,求证:PQ BC ⊥. 证明:连接AF、BF、CF、DF.由题目条件可知△AFB和△CFD都是等腰三角形,FM 和FN分别为这两个等腰三角形底边上的高.由M F C D N F AB ?=?,知△AFB∽△DFC,从而∠AFB=∠CFD,∠FAB=∠FDC. 由∠AFB=∠CFD可得∠BFD=∠CFA,又因FB=FA,FD=FC,所以△BFD≌△AFC.由此可得∠FAC=∠FBD,∠FCA=∠FDB.从而A、B、F、E四点共圆,C、D、E、F四点共圆. 由上可得∠FEB=∠FAB=∠FDC=∠FEC,即直线EP是∠BEC的角平分线,从而EB/EC=BP/CP.同理,ED/EA=QD/AQ.由于DQ BP AQ CP ?=?,所以EB ED EC EA ?=?.由此可得ABCD为圆内接四边形,且点F为其外接圆的圆心.这时,因为 ∠EBC=1 2∠DFC=1 2 ∠AFB=∠ECB,所以E P B C ⊥. Q P M N F E D C B A A B C D E F N M P Q

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

历届女子数学奥林匹克试题

目录 2002年女子数学奥林匹克 (1) 2003年女子数学奥林匹克 (3) 2004年女子数学奥林匹克 (5) 2005年女子数学奥林匹克 (7) 2006年女子数学奥林匹克 (9) 2007年女子数学奥林匹克 (11) 2008年女子数学奥林匹克 (13) 2009年女子数学奥林匹克 (16) 2010年女子数学奥林匹克 (19) 2011年女子数学奥林匹克 (21) 2012年女子数学奥林匹克 (24)

2002年女子数学奥林匹克 1.求出所有的正整数n,使得20n+2能整除2003n+200 2. 2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次. (1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数. 3.试求出所有的正整数k,使得对任意满足不等式 k(aa+ab+ba)>5(a2+a2+b2) 4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC. 5.设P1,P2,?,P n(n≥2)是1,2,?,n的任意一个排列.求证: 1P 1+P2+1P2+P3+?+1P n?2+P n?1+1P n?1+P n>n?1n+2. 6.求所有的正整数对(x,y),满足x y=y x?y. 7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半. 8.设A1,A2,?,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,?,A8在该直线上的摄影分别是

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计 国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。由罗马尼亚罗曼(Roman)教授发起。1959年7月在罗马尼亚古都布拉索举行第一届竞赛。 我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。 2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。入选国家队的六名学生是:(按选拔成绩排名) 陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、 佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中) --------------------------------------------------------- 历届IMO的主办国,总分冠军及参赛国(地区)数为: 年份届次东道主总分冠军参赛国家(地区)数 1959 1 罗马尼亚罗马尼亚7 1960 2 罗马尼亚前捷克斯洛伐克5 1961 3 匈牙利匈牙利 6 1962 4 前捷克斯洛伐克匈牙利7 1963 5 波兰前苏联8 1964 6 前苏联前苏联9 1965 7 前东德前苏联8 1966 8 保加利亚前苏联9 1967 9 前南斯拉夫前苏联13 1968 10 前苏联前东德12 1969 11 罗马尼亚匈牙利14 1970 12 匈牙利匈牙利14 1971 13 前捷克斯洛伐克匈牙利15 1972 14 波兰前苏联14 1973 15 前苏联前苏联16 1974 16 前东德前苏联18 1975 17 保加利亚匈牙利17 1976 18 澳大利亚前苏联19

最新-2018女子数学奥林匹克 精品

第一天 2018年8月12日上午8∶00~12∶00 长春 我们进行数学竞赛的目的,不仅仅是为了数学而数学,其着眼点还是因为它是一切科学的得力助手,因而提高数学,也为学好其他科学打好基础. ——华罗庚 1. 如图,设点P 在△ABC 的外接圆上,直线CP 和AC 相交于点E ,直线BP 和AC 相交于点F ,边AC 的垂直平分线交边AB 于点J ,边AB 的垂直平分线交边AC 于点K,求证: 2 2BF CE =F ··K AK JE AJ . 2.求方程组 的所有实数解. 3.是否存在这样的凸多面体,它共有8个顶点,12条棱和6 个面,并且其中有4个面,每两个面都有公共棱? 4.求出所有的正实数a ,使得存在正整数n 及n 个互不相交的无限集合1A ,2A ,…,n A 满足1A ∪2A ∪…∪n A =Z ,而且对于每个i A 中的任意两数b >c ,都有b -c ≥i a . ?? ???=++??? ?? +=???? ? ?+=??? ??+1 ,11311215zx yz xy z z y y x x

第二天 2018年8月13日上午8∶00~12∶00 长春 数学竞赛,它对牢固基础知识、发展智力,培养拔尖人才,是一件具有战略意义的活动。 ——华罗庚 5.设正实数x ,y 满足3 x +3y =x -y ,求证: .1422<y x + 6.设正整数n ≥3,如果在平面上有n 个格点,,,?21P P n P 满足:当j i P P 为有理数时,存在k P ,使得k i P P 和k j P P 均为无理数;当j i P P 为无理数时,存在k P ,使得k i P P 和k j P P 均为有理数,那么称n 是“好数”. (1)求最小的好数; (2)问:2018是否为好数? 7.设m ,n 是整数,m >n ≥2,S ={1,2,…,m },T ={1a ,2a …,n a }是S 的一个子集.已知T 中的任两个数都不能同时整除S 中的任何一个数,求证: .11121m n m a a a n ++?++< 8.给定实数a ,b ,a >b >0,将长为a 宽为b 的矩形放入一个正方形内(包含边界),问正方形的 边至少为多长?

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

2010IMO中国国家队练习题42题

2010IMO中国国家队培训42题 各位队员大家好,下面是我为挑选的一些问题,供各位在4月-6月自己练习用,请每位队员认真思考、琢磨。要求用A4纸写解答,每张纸上写上题号,每个没做过的问题都要求写出详细解答过程,以此锻炼自己的书写、表达能力。对做过的题目,如有好的解答(不必刻意去追求)也请写出。平均分配时间,在6月10日报到时上交,可以包含在80个作业题内。希望大家在这段时间内水平能再上一个台阶。 1.设凸四边形ABCD有一个内切圆,圆心为O,直线AC,BD交于点P;AB,CD交于点Q;AD,BC交于点R.证明:OP⊥QR. 2.设ΔABC、ΔPQR满足:A、P分别是QR、BC的中点,直线QR、BC分别是∠BAC、∠QPR的内角平分线.证明:AB+AC=PQ+PR. 3.以O1,O2,O3为圆心的三个圆有一个公共交点Q,它们两两相交所得的另外一个交点分别为A,B,C.证明:若A,B,C三点共线,则Q,O1,O2,O3四点共圆. 4.设ABCD为一个凸四边形,O为该四边形的对角线的交点.证明:若三角形OAB,OBC,OCD,ODA的内切圆半径相同,则四边形ABCD为菱形.

5.设P 为三角形ABC 所在平面上一点,一个过P 的圆Γ分别交三角形PBC,PCA, PAB 的外接圆于点A 1,B 1,C 1,直线PA 1,PB 1,PC 1分别交边BC,CA,AB 于点A 2,B 2, C 2,直线PA,PB,PC 分别交圆Γ于点A 3,B 3,C 3.证明: (1) 点A 2,B 2,C 2三点共线; (2) 直线A 1A 3,B 1B 3,C 1C 3三线共点. 6.圆内接四边形ABCD 的对角线AC=1,设AB,BC,CD,DA 的长分别为a,b,c,d.证明:数ad+bc 夹在c b 和b c 之间. 7.对每个正整数n,证明:存在唯一(在不相似的意义下)的三角形ABC,使得∠MBH=n ∠ABM=n ∠CBH,这里M,H 为BC 上的点,BM 为该三角形的一条中线,而BH 为高.并求三角形ABC 的各内角的大小(用n 表示). 8.设平行四边形ABCD 内有一点P ,ΔP AD 、ΔPBC 的外接圆还交于Q ,ΔP AB 、

相关主题