搜档网
当前位置:搜档网 › (第8讲)奇偶性与单调性(2)

(第8讲)奇偶性与单调性(2)

(第8讲)奇偶性与单调性(2)
(第8讲)奇偶性与单调性(2)

高中数学复习专题讲座

——处理具有单调性、奇偶性函数问题的方法(2)高考要求

函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样特别是两性质的应用更加突出本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识

重难点归纳

(1)判断函数的奇偶性与单调性

若为具体函数,严格按照定义判断,注意变换中的等价性

若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性

同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一

复合函数的奇偶性、单调性问题的解决关键在于既把握复合过程,又掌握基本函数

(2)加强逆向思维、数形统一正反结合解决基本应用题目

(3)运用奇偶性和单调性去解决有关函数的综合性题目此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力

(4)应用问题在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决特别是往往利用函数的单调性求实际应用题中的最值问题

典型题例示范讲解

例1已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤5},求函数g(x)=-3x2+3x

-4(x∈B)的最大值

命题意图本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力

知识依托主要依据函数的性质去解决问题

错解分析题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域

技巧与方法借助奇偶性脱去“f”号,转化为x的不等式,利用数形结合进行集合运算和求最值

解 由???<<-<

332x x x x 得且x ≠0,故0

又f (x )在(-3,3)上是减函数,

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,

综上得2

∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},

又g (x )=-3x 2+3x -4=-3(x -21)2-4

13知g (x )在B 上为减函数, ∴g (x )max =g (1)=-4

例2已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π

]都成

立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由 命题意图 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力 知识依托 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题 错解分析 考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法 技巧与方法 主要运用等价转化的思想和分类讨论的思想来解决问题 解 ∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数 于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),

即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0

设t =cos θ,则问题等价地转化为函数

g (t ) =t 2

-mt +2m -2=(t -2m )2-42

m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正 ∴当

2

m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-22

当2

m >1,即m >2时,g (1)=m -1>0?m >1 ∴m >2

综上,符合题目要求的m 的值存在,其取值范围是m >4-2

另法(仅限当m 能够解出的情况) cos 2θ-m cos θ+2m -2>0对于θ∈[0,2π

]恒成立,

等价于m >(2-cos 2θ)/(2-cos θ) 对于θ∈[0,2π

]恒成立

∵当θ∈[0,2π

]时,(2-cos 2θ)/(2-cos θ) ≤4-22,

∴m >4-

例3 已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,

解不等式f [log 2(x 2+5x +4)]≥0 解 ∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2)

又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数,

∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0

∴不等式可化为 log 2(x 2+5x +4)≥2 ①

或 log 2(x 2+5x +4)≤-2 ②

由①得x 2+5x +4≥4,∴x ≤-5或x ≥0 ③

由②得0<x 2+5x +4≤41得 2105--≤x <-4或-1<x ≤2

105+- ④ 由③④得原不等式的解集为

{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2

105+-或x ≥0} 学生巩固练习

1 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7 5)等于( )

A 0 5

B -0 5

C 1 5

D -1 5 2 已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( ) A (22,3) B (3,10) C (22,4) D (-2,3) 3 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________

4 如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (3

2),f (1)的大小关系_________ 5 已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明 6 已知f (x )=x

x a 2112+-? (a ∈R )是R 上的奇函数, (1)求a 的值;

(2)求f (x )的反函数f -1(x );

(3)对任意给定的k ∈R +,解不等式f -1(x k x +1 7 定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-4

7+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围 8 已知函数y =f (x )=c

bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f 5 (1)试求函数f (x )的解析式;

(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由

参考答案:

1 解析 f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)

=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5

答案 B

2 解析 ∵f (x )是定义在(-1,1)上的奇函数又是减函数,

且f (a -3)+f (9-a 2)<0

∴f (a -3)<f (a 2-9) ∴?????->-<-<-<-<-9319113122a a a a ∴a ∈(22,3)

答案 A 3 解析 由题意可知 xf (x )<0???<>???>

???<>???->???->

030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3) 答案 (-3,0)∪(0,3) 4 解析 ∵f (x )为R 上的奇函数

∴f (

31)=-f (-31),f (32)=-f (-3

2),f (1)=-f (-1), 又f (x )在(-1,0)上是增函数且-31>-3

2>-1 ∴f (-31)>f (-32)>f (-1),∴f (31)<f (3

2)<f (1) 答案 f (31)<f (32)<f (1) 5 解 函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数 6 解 (1)a =1

(2)f (x )=1212+-x x (x ∈R )?f --1(x )=log 2x

x -+11 (-1<x <1) (3)由log 2x

x -+11>log 2k x +1?log 2(1-x )<log 2k , ∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1} 7解

222sin 44sin 7cos 474sin sin 147sin cos 4m x m x x m x x m x x ??-≤-≤??+≤?≥-++???-+??即, 对x ∈R 恒成立,

?????=≥≤∴21233m m m 或 ∴m ∈[23,3]∪{2

1}

8 解 (1)∵f (x )是奇函数,

∴f (-x )=-f (x ),即c bx c bx c

bx ax c bx ax -=+?+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b

a , 当且仅当x =a 1时等号成立,于是22b

a =2,∴a =

b 2, 由f (1)<25得b

a 1+<25即

b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x x

1 (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-

x 0,-y 0)也在y =f (x )图象上,则???

????-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1

∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称 课前后备注

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

函数的单调性与奇偶性综合

函数的单调性与奇偶性综合 【课时目标】 1、能准确判断函数的单调性与奇偶性 2、会灵活利用函数的单调性与奇偶性求参数或参数的取值范围 3、能够解决抽象函数的单调性与奇偶性的问题 【基础训练】 1、单调性: (1)函数||2x x y +-=,单调递减区间为 (2)函数b x k y ++=)12(在实数集上是增函数,则k 的取值范围是 (3)已知函数2()(3)2f x ax a x =+++在区间[1,)+∞上为增函数,则实数a 的取值范围是 ___ (4)已知()f x 为R 上的减函数,则满足)1()1(f x f >的实数x 的取值范围是____________ — 2、奇偶性: (1)下列函数具有奇偶性的有 ①x x y 13+= ②x x y 2112-+-= ③x x y +=4 ④?? ???<--=>+=)0(2)0(0)0(222x x x x x y (2)函数1()f x x x =-的图像关于__________对称 (3)若函数(1)()y x x a =+-为偶函数,则a =__________ (4)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则_______ 【例题精讲】 例1、已知()f x 是偶函数,而且在0(,)+∞上是减函数.判断()f x 在0(,)-∞上是增函数还是减函数,并加以证明

例2、()f x 是定义在R 的奇函数,且()f x 在0(,)+∞上是增函数,10()f =,则不等式0()()f x f x x --<的解集为_________________ } 练习:已知()f x 是定义在(3,3)-上的偶函数,当0 x ≤< ()f x 的图象如右图,则不等式(1)()0x f x -?≤ 变:()f x 是定义在22[,]-的奇函数,且()f x 在02[,]上单调递减,若1()()f m f m -<,则实数m 的取值范围是________________ … 例3、已知函数()1).f x a =≠ (1)若0a >,则()f x 的定义域是 (2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是______________ 例4:(1)函数()y f x =的图象关于直线1x =对称,若当1x ≤时,2()1f x x =+,求()f x · (2)函数()y f x =的图象关于点(1,1)对称,若当1x ≤时,2()1f x x =+,求()f x

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

函数奇偶性与单调性的综合应用--专题.

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感谢现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“2 121)()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是考察单调性;

3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值范围); 6.确定函数解析式或定义域中某一未知数(参数)的取值范围. 二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值范围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; (2)计算 的解析式,并考察其与 的解析式的关系; (3)下结论 . 【典型例题】

函数单调性奇偶性周期性和对称性的综合应用

函数单调性、奇偶性、周期性和对称性的综合应用 例1、设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线2 1=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________. 【考点分析】本题考查函数的周期性 解析:()()00f f -=-得()00f =,假设()0f n = 因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数n 都有:()0f n = 从而:()()()()()123450f f f f f ++++=。本题答案填写:0 例2、(2006福建卷)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51()()22 c f f ==<0,∴c a b <<,选D. 例3、(安徽卷理)函数()f x 对于任意实数x 满足条件()() 12f x f x +=,若()15,f =-则()()5f f =__________。 【考点分析】本题考查函数的周期性与求函数值,中档题。 解析:由()()12f x f x +=得()() 14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5 f f f f f =-=-==--+。 【窥管之见】函数的周期性在高考考查中除了在三角函数中较为直接考查外,一 般都比较灵活。本题应直观理解()() 12f x f x += “只要加2,则变倒数,加两次则回原位” 则一通尽通也。 例4、设()f x 是()+∞∞-,上的奇函数,()()x f x f -=+2,当0≤x ≤1时,()x x f =,则f ()等于( ) A.0.5 B.-0.5 D.-

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数单调性、奇偶性、周期性与对称性综合.doc

专项5函数单调性、奇偶性、周期性、对称性综合 有关函数的奇偶性、单调性、周期性和图像的综合问题,历来都是一个难点,并且几乎是必考的重点内容,它考察的 内容应该说是非常多的,综合性也是非常强的,而且不易想,因而,对很多同学來说,十分头疼,在这一章节内容上, 我们绝对要摒弃大量做题不顾总结的复习思路,基于此,我们从以下几个方面讲这部分内容。 第一个问题,就是对于“已知奇/偶函数一段定义域上的解析式,求另一段的解析式”这样的问题,最为基础题,同学 们一定要知道怎么解决这种问题,但是对于求确切的/(G )的问题,这里的。代指一个确切的常数,我们可以不求出另 一 ?段上的解析式,我们采取“进/退周期”的方式,什么意思呢?就是如果讣我们求的于(G )中的。不在己经解析式的 定义域上,对于比定义域右端点值大的,要根据周期定义每次减一个周期,逐步将其转化到已知解析式的定义域之上, 比如,题目让我们求/(13),我们通过分析发现该函数的周期为2,而我们只知道XG (0,2).上的解析式,那么我们就 可以“退周期”,即/(13) = /(2x6+l) = /(l),即只需要求出这个/(I)就是了,同理,对于比定义域小的,我们用 同样方法,可以“进周期”,求解相关问题。 第二个问题,我们必须要说这个周期的问题,周期其实在高中教材中只是在必修四三角函数中学了,但是函数中却经 常出现,而且不算是超纲内容,这一点需要大家知道,不能因为函数教材屮没有讲就认为不需要掌握,但是有一点需 要大家知道,那就是对于周期性,我们更多的是记住一些结论,推到这些结论是不要求的,因此,我们在这里总结这 些结论,希望大家都记住。 如果一个函数满足= + 则这个函数就是以。为一个周期的函数,这里要强调“一个周期”,事实上,弦/都 是这个函数的周期,也就是说/(x) = f(ka + x), /(x) = f(ka-x), /(x) = f(x-a),还有一?些有关周期的拓展定义: 第三个问题,是有关于图像的问题,特别是图像的做法,有很多是需要掌握对称性规律的,相关的对称性规律结论请 回顾复习专项4,专项4屮有比较基础的对称性总结函数关于兀轴、y 轴、坐标原点对称的规律;特别强调下列三种函 数l.f(x)l,/(lg(x)l),/(g(lxl)),这三种绝对值加到不同地方的函数图像本身的对称性规律要掌握好。 奇函数、偶函数、反函数和一些常见的函数,如对号函数等的对称性 对于耍求函数有几个零点或者两个函数有几个交点的问题,作图是最主耍的方法,作图的吋候,一定要按照我们学过 的函数图像的三种变换进行画图,从授基本的图形开始画,通过平移、对称一步一步的得到我们想要的函数图像,做 图的过程小,如果有带有绝对值,一定要想着使丿IJ 相应带有绝对值的作图规律,坚决不允许通过描点连线的方式进行 作图。 下面开启做题Z 旅,下面的这些题,淘汰、更换历经了很长时间,不论简单还是难度稍微大些,都是非常好的试题, 一定要认认真真完成,对于错题,还要进行总结分析。 1. /⑴为奇函数,g ⑴= /(x) + 9,g(2) = 3,则/(2)= _______________ 2. .f(x)为定义在/?上的奇函数,当xhO 时,/(Q = 2" + 2x + b ,则/(-1)= _____________ ①弘+沪_卍);②弘+沪命;③弘+沪 1 /(x ) ,则函数/(兀)的周期为2a 。

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

奇偶性与单调性与典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

函数的单调性和奇偶性教案(学生版)

函数的单调性和奇偶性 一、目标认知 学习目标: 1.理解函数的单调性、奇偶性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性; 4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点: 1.对于函数单调性的理解; 2.函数性质的应用. 二、知识要点梳理 1.函数的单调性 (1)增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数; 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数. 如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间. 要点诠释: [1]“任意”和“都”; [2]单调区间与定义域的关系----局部性质; [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; [4]不能随意合并两个单调区间. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 2.函数的奇偶性 偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: [1]奇偶性是整体性质; [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; [3]f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;

函数的单调性和奇偶性练习题

—函数的单调性和奇偶性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21 ++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 2 1 ,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1]∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞

函数奇偶性与单调性

一、函数的奇偶性 奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数; ()()f x f x =--,则称函数()y x =为奇函数. 性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言; (2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分) (3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分) (4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数?()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数?函数()f x 图像关于原点对称; 函数()f x 是偶函数?函数()f x 图像关于y 轴对称. (6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =则在D 上有:

(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数?偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数?奇次项系数全为0. 二、函数的单调性 单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间. 性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式: ① ()() ()121200f x f x x x ->?>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x -->

函数的单调性、奇偶性的综合问题

函数的单调性、奇偶性综合运用 【学习目标】 1.进一步掌握函数的单调性与奇偶性综合问题; 2.利用单调性、奇偶性来解决相关问题。 【学习过程】 一.复习回顾: 1.函数单调性、奇偶性的定义 2.设()x f 为定义在()+∞∞-,上的偶函数,且()x f 在[)+∞,0上为增函数,则()2-f ,()π-f ,()3f 的大小顺序是 二.例题精讲: 题型一:知单调性求参数的范围 1.若()x f 是偶函数,其定义域为(),-∞+∞,且在 [)+∞,0上是减函数 则)43(-f ,)1(2+-a a f 的大小关系是 。 2.已知()x f 是定义在()1,1-上的奇函数,且在定义域上为增函数,若2(2)(4)0f a f a -+-<,求 a 的取值范围. 【变式】 已知()x f 是定义在()1,1-上的偶函数,且在()1,0上为增函数,若 )4()2(2a f a f -<-,求 a 的取值范围。

题型二:单调性的判断与证明: 3.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,则f (x ) 在(-∞,0)上的单调性,并证明你的结论 4.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x )<0对一切R x ∈成立,试判断) (1x f -在(-∞,0)上的单调性,并证明你的结论. 【课堂巩固】 1.设()x f 是偶函数,且当[)+∞∈,0x 时, 1)(-=x x f , 则0)1(<-x f 的解是 . 2. 定义R 在的偶函数()x f 在()0,∞-上是单调递增的,若()122++a a f < ()1232+-a a f ,求a 的取值范围. 3.若奇函数)(x f 是定义域()1,1-上的减函数,且0)1()1(2<-+-m f m f 求实数 m 的取值范围 4.已知f (x )是R 上的奇函数,且在(0,+ ∞)上单调递减,则f (x) 在(-∞,0)上的单调性,并证明你的结论

《函数的单调性与奇偶性》教学设计(人教A版必修)

1.3《函数的单调性与奇偶性》教学设计 【教学目标】 1. 理解增函数、减函数、单调区间、单调性等概念;掌握增(减)函数的证明和判别;学会运用函数图象理解和研究函数的性质; 2. 理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义; 3. 理解奇函数、偶函数的概念及图象的特征,能熟练判别函数的奇偶性. 【导入新课】 1.通过对函数x y 2=、x y 3-=、x y 1=及2x y =的观察提出有关函数单调性的问题. 2.阅读教材明确单调递增、单调递减和单调区间的概念. 3.实践活动:取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题: ① 以y 轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形; 问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. ② 以y 轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形: 问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,-f(x))也在函数图象上,即

函数单调性和奇偶性综合

函数单调性和奇偶性综合 ? 教学重点、难点:函数奇偶性、单调性的综合应用. ? 教学过程: 一、复习提问 1.奇偶函数的定义及奇偶函数的图象特征. 2. 练习:已知函数()f x 是定义在 R 上的奇函数,给出下列命题: (1)()0f x =; (2)若 ()f x 在 [0, )∞+上有最小值 -1,则()f x 在)(0,∞-上有最大值1; (3)若 ()f x 在 [1, )∞+上为增函数,则()f x 在](1,-∞-上为减函数. 其中正确的序号是: ① ② 二、新课讲解 例1.已知:函数()y f x =在R 上是奇函数,而且在(0,)+∞上是增函数,证明:()y f x =在(,0)-∞上也是增函数. 证明:设120x x <<,则120x x ->->∵()f x 在(0,)+∞上是增函数. ∴12()()f x f x ->-,又()f x 在R 上是奇函数. ∴12()()f x f x ->-,即12()()f x f x < 所以,()y f x =在(,0)-∞上也是增函数. 说明:函数的奇偶性和单调性的综合:奇函数在对称于原点的两个区间上的单调性一致;偶函数则在在对称于原点的两个区间上的单调性相反!

例2.()f x 为R 上的奇函数,当0x >时,2 ()231f x x x =-++,求()f x 的解析式. 解:设0x <,由于()f x 是奇函数,故()()f x f x =--, 又0x ->,由已知有22()2()3()1231f x x x x x -=--+-+=--+ 从而解析式为222310()0 02310x x x f x x x x x ?-++>?==??+--?-<-?解之得112m -≤<. 例4:(1)已知()f x 的定义域为{|0}x x ≠,且12()()f x f x x +=,试判断()f x 的奇偶性; (2)函数()f x 定义域为R ,且对于一切实数,x y 都有()()()f x y f x f y +=+,试判断()f x 的奇偶性. 解:(1)∵()f x 的定义域为{|0}x x ≠,且12()()f x f x x += ① 令①式中x 为1x 得:112()()f f x x x += ②

相关主题