搜档网
当前位置:搜档网 › FM20L08铁电存储器

FM20L08铁电存储器

FM20L08铁电存储器

Ramtron可替代SRAM的1兆位铁电存储器

[日期:2005-6-14] 来源:21IC中国电子网作者:佚名 [字体:大中小]

Ramtron 国际公司宣布推出1兆位的铁电存储器产品 ---- FM20L08。此型号的操作电压为3-volt、32-pin TSOP (thin small outline plastic) 封装。

FM20L08 是 Ramtron 目前生产的容量最大的铁电存储器,可以对其进行无限次的读写操作。该型号是专门设计用来替换标准异步静态随机存储器的 (Standard asynchronous SRAM)。同时,这个型号还特别适用电压多样或者电压会突然丢失的存储数据系统,如机顶盒、汽车远程信息处理以及工业应用等系统。

作为对 Ramtron 现有并口铁电存储器型号重要补充,FM20L08 在地址转换检测 (ATD) 方面可以与 SRAM 完全兼容,它允许用户在芯片使能有效的情况下改变地址。FM20L08 的内存访问方式与 SRAM 类似,极大的简化了设计工程师使用非易失性 RAM 时所需要做的工作。

Ramtron 设计 FM20L08 的目标就是“易于使用”。除了能够完全兼容标准SRAM,FM20L08 还包含一个内部的电压监控器用来阻止低电压进入,保护已存储的数据。这个监控器会连续不断的检查工作电源电压,当工作电压低于一个临界值时,它就会发出一个低电压信号表明现在存储器已处于一个写保护的状态。当 /LVL 信号很弱的时候,存储器就被保护起来,防止无意中的访问和数据存储损坏。FM20L08 还有软件控制的写保护功能。整个内存被分成八个区域,每个区域都可能通过软件单独设置写保护,而不需要硬件或改变管脚排列。为了给现在的高性能微处理器提供一个方便的接口,FM20L08 包含一个高速的页面模式,这种模式可以允许在比传统随机存取器更高的总线速度的情况下,进行四字节脉冲的读写操作。

所有的数据一旦被写入铁电存储器,就立即变成非易失性,并且不像老技术生产的非易失存储器一样出现延时现象。所有的铁电存储器都是非易失性的,在失去电源的情况下,数据仍然被保存在芯片中。与其它非易失性存储器技术相比,铁电存储器能提供非易失性的数据保存,免除了人们对存储器可靠性的担忧、对功能性的缺点和系统设计复杂性的担忧,而这些担忧都是需要后备电池的 SRAM (BBSRAM) 所存在的不足。此外,铁电还具有非常快的写入速度以及无限次的擦写寿命,而这些特点都优于其它类型的非易失性存储器 (例如:EEPROM 或者Flash 等)。

铁电存储器比 BBSRAM 更先进,单片集成电路的特质所带来的高可靠性,使得铁电存储器不需要在电路板上或者外部安装电池来备份数据。FM20L08 是一种真正的表面组装解决方案,不需要为配备附加电池而重复工作步骤,对负电压和负脉冲信号有着非常高的抵御能力,而对于这些方面,SRAM是无能为力的。

FM20L08 的容量为 28K x 8。其读写操作与标准 SRAM 相同。访问进入时间为 60 ns。高速的页模式操作总线速度最高可达到 33MHz,4 字节脉冲。写操作无延时,也没有最大写操作缓冲大小限制。操作电压从 3.3V 开始,和标准SRAM 相比,需要消耗的操作电流更少,因而操作耗能更少。FM20L08目前有两种型号,分别可满足工业温度 (-40℃到 +85℃) 和商业温度 (0℃到 +70℃) 的需求。商业温度型 cycle time 为 150 ns;工业温度型号的 cycle time为 350 ns。

FM20L08 样片 (32-pin TSOP) 现在可供立即申请,10,000 片以上单片价格为 13.65 美元。此型号为绿色无铅封装。

铁电随机存储器(FRAM)的工作原理(EN)

Technology Note Sept. 2007 Ramtron International Corporation 1850 Ramtron Drive, Colorado Springs, CO 80921 (800) 545-FRAM, (719) 481-7000, Fax (719) 481-7058 F-RAM Technology Brief Overview Established semiconductor memory technologies are divided into two categories: 1. RAMs are Random Access Memories, which simply means that the access time for reads and writes are symmetric. 2. Nonvolatile memories have traditionally been ROM (Read Only Memory) until the advent of floating gate technology, which produced electrically erasable memories such as Flash and EEPROM. These products allow for in-system programming but read and write access times are dissimilar. In fact, the write access times can be several orders of magnitude greater than the read access times. Ferroelectric Random Access Memory or F-RAM has attributes that make it the ideal nonvolatile memory. It is a true nonvolatile RAM. The write advantages and non-volatility make it quite suitable for storing data in the absence of power. Ferroelectric Property The ferroelectric property is a phenomena observed in a class of materials known as Perovskites. Figure 1 shows a Perovskite crystal. The atom in the center has two equal and stable low energy states. These states determine the position of the atom. If a field is applied in the proper plane, the atom will move in the direction of the field. Applying an electric field across the crystal causes the low energy state or position to be in the direction of the field and, conversely, the high energy state in the opposite position. The applied field will, therefore, cause the atom to move from the high energy state to the low energy state. This transition produces energy in the form of charge generally referred to as switch charge (Qs). Therefore, applying an alternating electric field across the crystal will cause the atom to move from the top of the crystal to the bottom and back again. Each transition will produce charge, Qs. Figure 1. Ferroelectric (Perovskite) Crystal A common misconception is that ferroelectric crystals are ferromagnetic or have similar properties. The term “ferroelectric” refers to similarity of the graph of charge plotted as a function of voltage (Figure 2) to the hysteresis loop (BH curve) of ferromagnetic materials. Ferroelectric materials switch in an electric field and are not affected by The ferroelectric material has two states, the atom at the top, which is referred to as up polarization, and the atom at the bottom, which is referred to as down polarization (Figure 3). Therefore, with a viable sensing scheme a binary memory can be produced. Figure 3. Crystal Polarization

用铁电存储器(FRAM)存储数据

一个完美的电表数据存储系统 华胄科技陈其龙电表作为一个计量用电量的仪器电表的精度不但与检测芯片的精度有关更重要与其存储方式有很大的关系如果检测到的电量数据不能写入存储器或者写入存储器过程出错电表的精度就大大降低 以前电表数据的存储方式有2种选择1用存储EEPROM数据2用NVRAM存储数据现在有了第三种选择用铁电存储器FRAM存储数据 在以前在设计电表电量的存储方案过程中工程师在怎样把数据准确无误的写入存储绞尽脑汁主要的原因是以前的EEPROM速度慢,有10MS写的周期擦写次数少为了解决存储器的问题工程师必须在控制电路增加很多电路见图一 由于EEPROM的擦写次数为10万次所以不能来一个脉冲就写入EEPROM只能将脉冲暂存MCU的SRAM内等脉冲计录到一定的值1度电或到了一定的时间1小时再把数据写入EEPROM正是由于电数据不能实时写入EEPROM引起一个问题如果停电怎么办在停电时MCU内存储的平均电量为0.5度,如果系统不管掉电情况,那么电表的精度很低(以10万家用户计算,每停一次电,供电局将有5万度电因存储器的原因而丢掉),这供电局当然不能接受为了解决这问题在电路上必需增加掉电检测电路在检测到掉电后把MCU中存储不到1度电的数据写入EEPROM 由于EEPROM写入数据时有10MS写的周期这也引起了一个问题在停电后必需有足够长的电压维持EEPROM写的时间设计者的一般思路是利用滤波电路的大电容由于电容内部是电解液随着时间的推移电容的容量将变小因此为了使电表能使用10年必须把增大滤波的电容的容量和提前检测到掉电 EEPROM写入数据时数据先是写入EEPROM的缓冲区当数据写入缓冲区后EEPROM 自动把数据写入EEPROM的具体地址其过程需要10MS由于EEPROM内部写入时间长所以容易受到干扰EEPROM一旦受到干扰写入的数据容易出错此时出错MCU 没有办法知道为了解决这一问题设计者必须把同一个数据写入三个不同的地址然后再把数据读出来校正图5

铁电存储器原理及应用比较

铁电存储器原理及应用比较摘要:介绍铁电存储器(FRAM)的一般要领和基本原理,详细分析其读写操作过程及时序。将FRAM与其它存储器进行比较,分析在不同场合中各自的优缺点。最后以FM1808为例说明并行FPGA与8051系列单片机的实际接口,着重分析与使用一般SRAM的不同之处。关键词:铁电存储器 FRAM原理 8051 存储技术1 背景铁电存储技术最在1921年提出,直到1993年美国Ramtron国际公司成功开发出第一个4Kb的铁电存储器FRAM产品,目前所有的FRAM产品均由Ramtron公司制造或授权。最近几年,FRAM又有新的发展,采用了0.35μm工艺,推出了3V产品,开发出“单管单容”存储单元的FRAM,最大密度可在256Kb。2 FRAM原理FRAM利用铁电晶体的铁电效应实现数据存储,铁电晶体的结构如图1所示。铁电效应是指在铁电晶体上施加一定的电场时,晶体中心原子在电场的作用下运动,并达到一种稳定状态;当电场从晶体移走后,中心原子会保持在原来的位置。这是由于晶体的中间层是一个高能阶,中心原子在没有获得外部能量时不能越过高能阶到达另一稳定位置,因此FRAM保持数据不需要电压,也不需要像DRAM一样周期性刷新。由于铁电效应是铁电晶体所固有的一种偏振极化特性,与电磁作用无关,所以FRAM存储器的内容不会受到外界条件(诸如磁场因素)的影响,能够同普通ROM存储器一样使用,具有非易失性的存储特性。FRAM的特点是速度快,能够像RAM一样操作,读写功耗极低,不存在如E2PROM的最大写入次数的问题;但受铁电晶体特性制约,FRAM仍有最大访问(读)次数的限制。2.1 FRAM 存储单元结构FRAM的存储单元主要由电容和场效应管构成,但这个电容不是一般的电容,在它的两个电极板中间沉淀了一层晶态的铁电晶体薄膜。前期的FRAM的每个存储单元使用2个场效应管和2个电容,称为“双管双容”(2T2C),每个存储单元包括数据位和各自的参考位,简化的2T2C存储单元结构如图2(a)所示。2001年Ramtron设计开发了更先进的“单管单容”(1T1C)存储单元。1T1C的FRAM所有数据位使用同一个参考位,而不是对于每一数据位使用各自独立的参考位。1T1C的FRAM产品成本更低,而且容量更大。简化的1T1C存储单元结构(未画出公共参考位)如图2(b)所示。2.2 FRAM的读/写操作FRAM保存数据不是通过电容上的电荷,而是由存储单元电容中铁电晶体的中心原子位置进行记录。直接对中心原子的位置进行检测是不能实现的。实际的读操作过程是:在存储单元电容上施加一已知电场(即对电容充电),如果原来晶体中心原子的位置与所施加的电场方向使中心原子要达到的位置相同,中心原子不会移动;若相反,则中心原子将越过晶体中间层的高能阶到达另一位置,在充电波形上就会出现一个尖峰,即产生原子移动的比没有产生移动的多了一个类峰。把这个充电波形同参考位(确定且已知)的充电波形进行比较,便可以判断检测的存储单元中的内容是“1”或“0”。[!--empirenews.page--]无论是2T2C还是1T1C的FRAM,对存储单元进行读操作时,数据位状态可能改变而参考位则不会改变(这是因为读操作施加的电场方向与原参考位中原子的位置相同)。由于读操作可能导致存储单元状态的改变,需要电路自动恢复其内容,所以每个读操作后面还伴随一个“预充”(precharge)过程来对数据位恢复,而参考位则不用恢复。晶体原子状态的切换时间小于1ns,读操作的时间小于70ns,加上“预充”时间60ns,一个完整的读操作时间约为130ns。图2 写操作和读操作十分类似,只要施加所要的方向的电场改变铁电晶体的状态就可以了,而无需进行恢复。但是写操作仍要保留一个“预充”时间,所以总的时间与读操作相同。FRAM的写操作与其它非易失性存储器的写操作相比,速度要快得多,而且功耗小。2.3 FRAM的读写时序在FRAM读操作后必须有个“预充电”过程,来恢复数据位。增加预充电时间后,FRAM一个完整的读操作周期为130ns,如图3(a)所示。这是与SRAM和E2PROM不同的地方。图3(b)为写时序。3 FRAM与其它存储技术比较目前Ramtron公司的FRAM主要包括两大类:串行FRAM和并行FRAM。其中串行FRAM 又分I2C两线方式的FM24××系列和SPI三线方式的FM25xx系列。串行FRAM与传统的24xx、25xx型的E2PROM引脚及时序兼容,可以直接替换,如Microchip、Xicor公司的同型号产品;并行FRAM价格较高但速度快,由于存在“预充”问题,在时序上有所不同,不能和传统的

阻变随机存储器(RRAM)综述(自己整理)

目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

AD10原理图封装列表

原理图封装列表 Name Description ------------------------------------------------------------------------------------------------- 74ACT573T双向数据传输 74HC138138译码器 74HC1544-16译码器 74HC4052双通道模拟开关 74HC595移位寄存器 74HVC32M双输入或门 74LS32M双输入或门 74VHC04M非门 ACS712电流检测芯片 ACT45B共模电感 AD5235数控电阻 AD8251可控增益运放 AD8607AR双运放 AD8667双运放 AD8672AR双运放 ADG836L双刀双掷数字开关 AFBR-5803-ATQZ光以太网 AS1015可调升压芯片 ASM1117 3.3V稳压芯片 AT24C02EEROM存储器 AT89S5251系列单片机 BC57F687蓝牙音频模块 BCP68NPN三极管 BCP69T PNP三极管 BEEP蜂鸣器 BMP闪电符号 BTS7970电机驱动 Battery备份电池 Butterfly功率激光器 Butterfly-S功率激光器 CD4052BCM双通道模拟开关 CG103BOSCH点火芯片 CHECK测试点 CY7C026AV RAM CY7C1041CV33RAM Cap无极性电容 Cap Pol极性电解电容 D Connector 15VGA D Connector 9串口

D-Schottky肖特基二极管 DAC8532数模转换 DM9000A网络芯片 DM9000C网络芯片 DP83848I网络芯片 DPY-4CA共阳4位数码管 DPY-4CK共阴4位数码管 DRV411闭环磁电流 DS1307Z实时时钟 DS18B20温度传感器 Diode二极管 Diode-Z稳压二极管 Diode_CRD恒流二极管 EMIF接插件 FIN散热片 FM24CL16铁电存储器 FPC-30P FPC排线连接器 FPC-40P FPC排线连接器 FT232RL USB转串口 FZT869NPN三极管 Fuse 2保险丝 G3VM-61半导体继电器 GA240Freescale16位单片机HFBR-1414光发送 HFBR-2412光接收 HFKC单刀双掷继电器 HK4100F单刀双掷继电器 HR911103A网络接口 HR911105A以太网接口 HS0038B红外接收器 Header 10Header, 10-Pin Header 10X2Header, 10-Pin Header 14X2B2*14双排插针 Header 16Header16贴片 Header 16X2接插件 Header 2接插件 Header 2X2A接插件 Header 2X2B接插件 Header 3接插件 Header 32X2接插件 Header 4接插件 Header 40接插件 Header 5X2接插件 Header 6接插件

关于铁电存储器(FRAM)的常见问答

关于铁电存储器(FRAM)的常见问答 问:和其它非易失性存储器制造技术相比,铁电存储器在性能方面有什么不同吗? 答: 铁电存储器在性能方面与EEPRON和Flash相比有三点优势之处: 首先,铁电存储器的读写速度更快。与其它存储器相比,铁电存储器的写入速度要快10万次以上。读的速度同样也很快,和写操作在速度上几乎没有太大的区别。 其次,FRAM存储器可以无限次擦写,而EEPROM则只能进行100万次的擦写。最后,铁电存储器所需功耗远远低于其他非易失性存储器。 问:和其它存储器相比铁电存储器有什么不同吗? 答: 如果要回答这个问题的话,简单了解一下存储器技术的背景资料很有必要。存储器的生产技术可以分为两类:易失性和非易失性。易失性存储器在断电后存储的数据 会丢失,而非易失性存储器则不然。传统的易失性存储器包括SRAM(静态随机存储器)和DRAM(动态随机存储器)。他们都源自RAM技术-随机存取存储 器技术。 RAM 的主要优点是容易使用且读写操作类似。但是传统RAM的主要缺点是其只能被用来做暂时性的存储。传统的非易性存储器技术均源自ROM技术,即只读存储器技 术。经过各种技术的改进,工程师们创造出Flash和EEPROM存储器,这些改进的存储器开始能够进行写入操作了。但是这种基于ROM技术生产的存储器 都有不易写入、写入需要特大功耗等缺点。 所以传统的基于ROM技术制造的存储器是不适应需要多次写入操作的应用领域的。而铁电存储器(FRAM)则是第一个非易失性的RAM存储器。它结合了SRAM和DRAM易写入的特性,又具有Flash和EEPROM得非易失性的特点。 问:铁电存储器怎样与其它高性能的非易失性存储器,诸如MRAM来竞争? 答: 两者最大的区别就是产品技术和市场是否成熟。铁电存储器是从实验室研发阶段一步步发展到拥有巨大客户群的生产销售阶段的。而 MRAM和其他比较高级的存储器虽然承诺的条件和技术很好,但是在实际应用层面还面临着许多障碍,很难达到目前铁电存储器的水平,并且铁电存储器的技术还 在不断的更新和改进。所以事实上Ramtron不能将还处于实验室开发阶段的存储器产品与技术已经成熟并大量生产销售的铁电存储器相比较。

存储器的分类

说起存储器IC的分类,大家马上想起可以分为RAM和ROM两大类。 RAM是Random Access Memory的缩写,翻译过来就是随机存取存储器,随机存取可以理解为能够高速读写。常见的RAM又可以分成SRAM(Static RAM:静态RAM)和DRAM(dynamic RAM:动态RAM)。 ROM是Read Only Memory的缩写,翻译过来就是只读存储器。常见的ROM又可分为掩膜ROM(有时直接称为ROM)、PROM(Programmable ROM:可编程ROM,特指一次编程的ROM)、EPROM(Erasable Programmable ROM:可擦除可编程的ROM,擦除时用紫外线)、EEPROM(Electrically Erasable Programmable ROM:电可擦除可编程ROM)。 以上是大家在各种教材上看到的存储器的分类。 问题是,ROM明明叫只读存储器,也就是不可写的存储器,现实是除了掩膜ROM是不可写的外,PROM、EPROM、EEPROM事实上都是可写的。它们的名称中还带有“ROM”是名不副实的叫法。掩膜ROM、PROM、EPROM、EEPROM这几种存储器的共同特点其实是掉电后,所存储的数据不会消失,所以可以归类为非易失性存储器(即Non-Volatile Memory)。 SRAM、DRAM的共同特点是掉电后数据会丢失,所以也可称为易失性存储器(V olatile memory)。 于是,存储器从大类来分,可以分为易失性存储器和非易失性存储器。 后来出现的Flash Memory(快闪存储,简称闪存),掉电后数据也不容易丢失,所以也属于非易失性存储器。Flash Memory的名称中已经不带ROM字样了,但是传统的分类方法中,还是把Flash Memory归类为ROM类,事实上此时是因为这些存储器都是非易失的。 把存储器分为易失性存储器和非易失性存储器就万事大吉了么? 令人纠结的是,有一种新的存储器,它既是非易失的,同时又是能够高速随时读写数据的,也就是说能够随机存取的。这种存储器就是FRAM(Ferroelectric Random Access Memory:铁电随机存取存储器,简称铁电存储器)。把FRAM归类为非易失性存储器是可以,但是FRAM的高速读写性质又与SRAM、DRAM更为接近,它也是一种RAM。 于是,存储器的分类令人纠结。传统的分为RAM与ROM的方式本来就不科学。如果分成RAM与非易失性存储器这两大类,也不科学,因为这个分类本身就不是按同一个标准分的,导致FRAM即属于RAM,又属于非易失性存储器。如果只分成易失性存储器和非易失性存储器,又导致FRAM与SRAM、DRAM分家,大家都有RAM嘛,凭什么分开是吧。 我的建议是,存储器分成随机存取存储器和非随机存取存储器两大类比较合适。 于是,存储器的分类如下(按存取速度分类): 1、随机存取存储器:SRAM、DRAM、FRAM; 2、非随机存取存储器:掩膜ROM、PROM、EPROM、EEPROM、Flash Memory。 差强人意的分类为(按易失性分类): 1、易失性存储器:SRAM、DRAM; 2、非易失性存储器:掩膜ROM、PROM、EPROM、EEPROM、Flash Memory、FRAM。

FM31256的基本结构及原理

FM31256的基本结构及原理 摘要FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。 关键词I2C总线铁电体技术 RTC MSP430F FM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。与其他非易失性存储器比较,它具有如下优点:读/写速度快,没有写等待时间;功耗低,静态电流小于1 mA,写入电流小于150 mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。 铁电存储器(FRAM)的核心技术是铁电晶体材料。这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。 1 FM31256的基本结构及原理 FM31256由256 KB存储器和处理器配套电路(processor companion)两部分组成。与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。 FM31256 器件将非易失FRAM与实时时钟(RTC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。采用先进的0.35 μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。存储器的读/写以及其他控制功能都通过工业标准的I2C总线来实现。 图1为FM31256的原理图。其中,SDA和SCL引脚用于与CPU进行数据交换和命令写入,数据输出部分均具有施密特触发器,以提高抗干扰性能;同时,SDA 作为二线接口中的双向信号线,集电极开路输出,可与二线总线上其他器件进行“线或”。A1~A0为器件地址选择信号,即总线上可同时使用4个同类器件。正常模式下,PFI引脚分别为比较器的输入(不可悬空),CAL/PFO引脚输出PFI 引脚的输入信号与1.2 V参考电压之间的比较结果;校准模式下,CAL/PFO引脚将输出512 Hz的方波用于时钟校准。CNT2~CNT1是通过备份电池支持的事件计数器的两路输入端,通过边沿触发启动计数器,触发沿由用户自由选择。

磁耦隔离器..

磁耦隔离器 一磁耦简介 磁耦:基于磁隔离技术的隔离器件,也称为磁隔离器。 磁耦合隔离是指利用电磁感应原理,把需要传输的变化信号加在变压器的初级线圈,该信号在初级线圈中产生变化的磁场,变化的磁场使次级线圈的磁通量发生变化,从而在次级感应出与初级线圈激励信号相关的变化信号输出,在整个信号的传输过程中,初级与次级之间没有发生电连接,从而达到隔离初次级的目的。 磁耦隔离器根据对信号编解码的不同,主要有脉冲调制变压器隔离器(ADI公司)和巨磁电阻隔离器(NVE公司和安华高公司)。 脉冲调制变压器隔离器 ADI公司的iCoupler隔离器是基于芯片尺寸变压器的磁耦合器,是采用脉冲调制方式实现的数字隔离器件。 磁隔离变压器采用平面结构,在晶圆钝化层上使用CMOS金属和金构成。金层下有一个高击穿的聚酰亚胺层,将顶部的变压器线圈与底部的线圈隔离开来。连接顶部线圈和底部线圈的CMOS电路为每个变压器及其外部信号之间提供接口。晶片级信号处理提供了一种在单颗芯片中集成多个隔离通道以及其它半导体功能的低成本的方法。磁隔离技术消除了与光耦合器相关的不确定的电流传送比率、非线性传送特性以及随时间漂移和随温度漂移问题;功耗降低了90%;并且无需外部驱动器或分立器件。 图1脉冲调制变压器隔离器剖面图 磁隔离的每个线圈的直径大约是500um,匝数15。顶部线圈粗4um,采用金材料制成;底部线圈粗1~2um,采用铝或金材料制成。 磁耦隔离器是空心变压器,没有磁芯。为了实现紧密互耦,将两个15匝、直径500um 的线圈直接堆叠,空隙仅为20um。这使得耦合系数大于0.8。 工作原理 iCoupler数字隔离器使用传送到给定变压器初级端的脉冲对输入逻辑跳变进行编码。这些脉冲从变压器初级线圈耦合到次级线圈,并且由次级端电路检测。然后,该电路在输出端重新恢复成输入数字信号。此外,输入端还包含一个刷新电路,保证即使在没有输入跳变的情况下输出状态也与输入状态保持匹配。

完美的铁电存储器

完美的铁电存储器 一. Fujitsu铁电存储器(FRAM) 技术原理 日本Fujitsu公司是全球最大的铁电存储器(FRAM)供货商,至2010年12月31日,全球已经累计出货17亿颗铁电存储器! Fujitsu公司铁电存储器(FRAM)的核心技术是铁晶体管材料,这一特殊材料使得铁电存储产品同时拥有随机存取内存(RAM) 和非挥发性存贮产品(ROM)的特性。 铁晶体管材料的工作原理是:当我们把电场加载到铁晶体管材料上,晶阵中的中心原子会沿着电场方向运动,到达稳定状态,晶阵中的每个自由浮动的中心原子只有两个稳定状态,一个我们拿来记忆逻辑中的0、另一个记亿1,中心原子能在常温,没有电场的情况下停留在此状态达一百年以上。铁电存储器不需要定时刷新,能在断电情况下保存资料。 二、Fujitsu铁电存储器(FRAM) 技术优点 传统半导体内存有两大体系:挥发性内存(Volatile Memory),和非挥发性内存(Non-volatile Memory)。 挥发性内存如SRAM和DRAM 在没有电源的情况下都不能保存资料,但这种内存拥有高性能、易用等优点。 非挥发性内存像 EPROM、 EEPROM和 FLASH 能在断电后仍保存资料,但由于所有这些内存均起源自只读存储器 (ROM) 技术,所以您不难想象得到它们都有不易写入的缺点, 确切的来说,这些缺点包括写入缓慢、有限次写入次数、写入时需要特大功耗等等。 FRAM第一个最明显的优点是FRAM可跟随总线(Bus Speed)速度写入,若比较起 EEPROM/Flash的最大不同的是 FRAM在写入后无须任何等待时间(NoDelayTM Write),而 EEPROM/Flash须要等 3~10毫秒 (mS) 才能写进下一笔资料。 铁电存储器(FRAM)的第二大优点是近乎无限次读写。当 EEPROM/Flash只能应付十万次 (10的5次方)至一百万次写入时,新一代的铁电存储器(FRAM)已达到一百亿个亿次(10的 10次方)的写入寿命。

FM24C64B 铁电存储器

Preliminary This is a product that has fixed target specifications but are subject Ramtron International Corporation to change pending characterization results. 1850 Ramtron Drive, Colorado Springs, CO 80921 FM24C64B 64Kb Serial 5V F-RAM Memory Features 64K bit Ferroelectric Nonvolatile RAM ? Organized as 8,192 x 8 bits ? High Endurance 1 Trillion (1012) Read/Writes ? 38 Year Data Retention ? NoDelay? Writes ? Advanced High-Reliability Ferroelectric Process Fast Two-wire Serial Interface ? Up to 1 MHz maximum bus frequency ? Direct hardware replacement for EEPROM ? Supports legacy timing for 100 kHz & 400 kHz Low Power Operation ? 5V operation ? 100 μA Active Current (100 kHz) ? 4 μA (typ.) Standby Current Industry Standard Configuration ? Industrial Temperature -40° C to +85° C ? 8-pin “Green”/RoHS SOIC (-G) Description The FM24C64B is a 64-kilobit nonvolatile memory employing an advanced ferroelectric process. A ferroelectric random access memory or FRAM is nonvolatile and performs reads and writes like a RAM. It provides reliable data retention for 38 years while eliminating the complexities, overhead, and system level reliability problems caused by EEPROM and other nonvolatile memories. The FM24C64B performs write operations at bus speed. No write delays are incurred. Data is written to the memory array in the cycle after it has been successfully transferred to the device. The next bus cycle may commence immediately without the need for data polling. The FM24C64B is capable of supporting 1012 read/write cycles, or a million times more write cycles than EEPROM. These capabilities make the FM24C64B ideal for nonvolatile memory applications requiring frequent or rapid writes. Examples range from data collection where the number of write cycles may be critical, to demanding industrial controls where the long write time of EEPROM can cause data loss. The combination of features allows more frequent data writes with less overhead for the system. The FM24C64B provides substantial benefits to users of serial EEPROM, yet these benefits are available in a hardware drop-in replacement. The FM24C64B is available in an industry standard 8-pin SOIC package and uses a familiar two-wire protocol. The specifications are guaranteed over an industrial temperature range of -40°C to +85°C. Pin Configuration A0A1A2VSS VDD WP SCL SDA Pin Names Function A0-A2 Device Select Address SDA Serial Data/address SCL Serial Clock WP Write Protect VSS Ground VDD Supply Voltage Ordering Information FM24C64B-G “Green”/RoHS 8-pin SOIC FM24C64B-GTR “Green”/RoHS 8-pin SOIC, Tape & Reel

隔离,您选择光耦还是数字隔离器

话题大PK:隔离,您选择光耦还是数字隔离器??? 由ADIForum于2014-1-15 创建 正方——支持数字隔离器: 功耗低——数字隔离器在低频条件下只使用光耦合器功率的1%;在50Mbps,即光耦合器最高传送速率条件下(数字隔离器可以工作在100Mbps以上),它使用光耦合器功率的大约20%。降低功率会使其提高可靠性。 设计简单方便——单个器件;标准TTL或CMOS;电源可根据预算灵活调整;无CTR,在整个温度范围内稳定工作;不像光耦缺少集成特性,完整的集成解决方案降低整体BOM成本…… 反方——支持光耦: 光耦是70年代发展起来的隔离器件,产品种类繁多,价格便宜; 信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,无触点,使用寿命长; …… 您怎么看?欢迎参与探讨(无论您持怎样的观点,尽可畅所欲言,无所谓对错)。。。 硬件高手的实际设计经验分享——提高系统效率的几个误解 mu-zi 2014-1-10 下午5:52 误解一:这主频100M的CPU只能处理70%,换200M主频的就没事了 点评:系统的处理能力牵涉到多种多样的因素,在通信业务中其瓶颈一般都在存储器上,CPU 再快,外部访问快不起来也是徒劳。 误解二:CPU用大一点的CACHE,就应该快了 点评:CACHE的增大,并不一定就导致系统性能的提高,在某些情况下关闭CACHE反而比使用CACHE还快。原因是搬到CACHE中的数据必须得到多次重复使用才会提高系统效率。所以在通信系统中一般只打开指令CACHE,数据CACHE即使打开也只局限在部分存储空间,如堆栈部分。同时也要求程序设计要兼顾CACHE的容量及块大小,这涉及到关键代码循环体的长度及跳转范围,如果一个循环刚好比CACHE大那么一点点,又在反复循环的话,那就惨了。 误解三:这么多任务到底是用中断还是用查询呢?还是中断快些吧 点评:中断的实时性强,但不一定快。如果中断任务特别多的话,这个没退出来,后面又接踵而至,一会儿系统就将崩溃了。如果任务数量多但很频繁的话,CPU的很大精力都用在进出中断的开销上,系统效率极为低下,如果改用查询方式反而可极大提高效率,但查询有时不能满足实时性要求,所以最好的办法是在中断中查询,即进一次中断就把积累的所有任务都处理完再退出。

非易失性铁电存储器(FRAM)芯片

16Kbit非易失性铁电存储器(FRAM)芯片FM25C160原 理及其应用 哈尔滨理工大学测控技术与通信工程学院周宝国The Principle of 16-Kbit Nonvolatile FRAM Chip FM25C160 and Its Application Zhou Baoguo 摘要:FM25C160是美国Ramtron公司生产的非易失性铁电介质读写存储器。它具有高速读写,超低功耗和无限次写入等特性。文中介绍了FM25C160的性能特点﹑管脚定义﹑内部结构和工作原理。给出了AT89C51单片机与FM25C160的接口电路图和对FM25C160的写操作流程图。 关键词:铁电存储器(FRAM);FM25C160;SPI总线;写保护 1.概述 传统半导体存储器主要有两大体系:易失性存储器(volatile memory)和非易失性存储器(non-volatile memory)。易失性存储器主要包括静态随机存储器SRAM和动态随机存储器DRAM。非易失性存储器主要包括掩模只读存储器OTP RAM﹑可紫外线擦除可编程只读存储器EPROM﹑可电擦除可编程只读存储器EEPROM﹑可快速电擦除可现场编程的快闪存储器Flash Memory和用高能量锂电池作静态读写存储器后备电源的非易失静态读写存储器NVSRAM。 SRAM和DRAM等易失性存储器在没有电的情况下都不能保存数据。EPROM﹑EEPROM和Flash等非易失性存储器虽然在断电后仍能保存资料,但由于这类存储器均源于只读存储器(ROM)技术,因此都有不易写入的缺点。 FRAM是由美国Ramtron公司生产的非易失性铁电介质读写存储器。其核心技术是铁电晶体材料,这一特殊材料使得铁电存贮产品同时拥有随机存储器(RAM) 和非易失性存储器的特性。 铁电晶体材料的工作原理是: 当我们把电场加载到铁电晶体材料上,晶阵中的中心原子会沿着电场方向运动,到达稳定状态。晶阵中的每个自由浮动的中心原子只有两个稳定状态,一个我们记作逻辑0,另一个记作逻辑1。中心原子能在常温﹑没有电场的情况下停留在此状态达一百年以上。由于在整个物理过程中没有任何原子碰撞,铁电存储器(FRAM)拥有高速读写,超低功耗和无限次写入等特性。 FM25C160是16Kbit串行FRAM,它的主要特点如下: ● 采用2048×8位存储结构; ● 读写次数高达1百亿次; ● 在温度为55℃时,10年数据保存能力; ● 无延时写入数据; ● 先进的高可靠性铁电存储方式; ● 连接方式为高速串行接口(SPI)总线方式,且具有SPI方式0和3两种 方式; ● 总线频率高达5MHz; ● 硬件上可直接取代EEPROM;

铁电材料及其在存储器领域的应用

目录 摘要 (1) Abstract (1) 1 前言 (1) 2 压电材料 (2) 3 储能用铁电介质材料 (3) 3.1 BaTiO3基陶瓷 (3) 3.2 SrTiO3基陶瓷 (4) 3.3 TiO2陶瓷 (4) 3.4 PMN 基陶瓷以铌镁酸铅 (4) 4 有机铁电薄膜材料 (4) 5 铁电阻变材料 (5) 6 多铁性材料 (5) 7 铁电材料的应用 (5) 7.1 铁电存储器(MFSFET) (6) 7.2 铁电存储器的应用 (8) 8 结语 (9) 参考文献 (10)

铁电材料及其在存储器领域的应用 摘要:铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的应用概况。 关键词:铁电材料;铁电性;存储器;应用 Application of ferroelectric materials and in the area of memory Abstract:Ferroelectric materials, one of the current research focuses with numbers of physical advantages such as high integration, low energy consumption and fast response, has broad application prospects in many aspects.Being combined with other physical technologies,the properties of ferroelectric materials can be significantly improved.Describes the historical development of ferroelectric materials and current applications. Keywords:ferroelectric materials;Iron electrical;memorizer ;development 1前言 铁电材料,是指具有铁电效应的一类材料,最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的,这一发现揭开了研究铁电材料的序幕。在1935 年Busch发现了磷酸二氢钾KH2PO4——简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后,以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。集成铁电体是凝聚态物理和固体电子学领域的热门课题之一。铁电材料有着

相关主题