搜档网
当前位置:搜档网 › 大物课件 磁场、磁场力 The magnetic field and its application

大物课件 磁场、磁场力 The magnetic field and its application

大物课件 磁场、磁场力 The magnetic field and its application
大物课件 磁场、磁场力 The magnetic field and its application

五种方法搞定变力做功问题

五种方法搞定变力做功 一.微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w ?=来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的 质量为m ,物块与轨道间的动摩擦因数为μ。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大 小不变,方向时刻变化,是变力,不能直接用求解; 但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直 线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做 的功,然后再累加起来,便可求得结果 图1 把圆轨道分成无穷多个微元段,摩擦力在每一 段上可认为是恒力,则每一段上摩擦力做的功分别 为 , ,…,,摩擦力在一周内所做的功 二、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值2 21F F F +=,再由αc o s L F W =计算变力做功。如:弹簧的弹力做功问题。 例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运 动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则 小物块运动到x 0处时的动能为 ( ) A .0 B .02 1x F m C .04x F m π D .204 x π 【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为 04m F x π.C 答案正确. 图2

三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经 过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系 一定是: A .E K B -E KA =E K C -E KB B .E KB -E KA E KC -E KB D . E KC <2E KB 【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD. 四.应用公式Pt W =求解。 当机车以恒定功率工作时,在时间内,牵引力做的功Pt W =。 例 4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值m v 。求机车在这段时间内牵引力所做的功。 解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力是变力,因此,机车的牵引力做功不能直接用公式αcos FS W =来求解,但可用公式Pt W =来计算。 根据题意,机车所受阻力kmg f =。且当机车速度达到最大值时,f F =牵。 所以机车的功率为:max max max kmgv fv v F P ===牵。 根据Pt W =,机车在这段时间内牵引力所做的功为: t kmgv Pt W m ==牵。 五.S F -图象法。 在S F -图像中,图线与坐标轴围成的面积在数值上表示力F 在相应的位移上对物体做的功。这一点对变力做功问题也同样适用。 例5.如图4所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 图4

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等. 一、求解变力做功的几种方法 法1.用公式W =F - l cos α求变力做功 如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2 2来计 算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力. 【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(3-1)d B .(2-1)d C. 5-1d 2 D. 22 d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F - 2d ′=kd +k d +d ′2 d ′,联立解得d ′ =(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确. 【答案】 B 法2.用图象法求变力做功 在F - x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同. 【典例2】 用质量为5 kg 的均匀铁索,

从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2 ) 【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002 N =225 N 故该过程中拉力做功:W =F - h =2 250 J. 方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200 2×10 J =2 250 J. 【答案】 2 250 J 法3.用微元法求变力做功 圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了. 【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功. 【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF . 【答案】 2πRF . 变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块

高中物理选修3-1磁场知识点及习题知识讲解

一、 磁场 知识要点 1.磁场的产生 ⑴磁极周围有磁场。 ⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(不等于说所有磁场都是由运动电荷产生的。) ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。这一点应该跟电场的基本性质相比较。 3.磁感应强度 IL F B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A ?m)=1kg/(A ?s 2 ) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。⑶要熟记常见的几种磁场的磁感线: ⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 5.磁通量 如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。Φ是标量,但是有方向(进该面或出该面)。单位为韦伯,符号为W b。1W b=1T?m2=1V?s=1kg?m2/(A?s2)。 可以认为磁通量就是穿过某个面的磁感线条数。 在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。在匀强磁场中,当B与S的夹角为α时,有Φ=BS sinα。 地球磁场通电直导线周围磁场通电环行导线周围磁场

变力做功的计算

变力做功的计算 Prepared on 22 November 2020

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少 图3 答案:。 二、图象法

磁场的主要物理量教案

《磁场的主要物理量》课程教案

三、磁导率 μ 1.表示媒介质导磁性能的物理量。 μ 的单位是:亨利/米(H/m)。 不同的物质磁导率不同。在相同的条件下,μ 值越大,磁感应强度 B 越大,磁场越强;μ 值越小,磁感应强度 B 越小,磁场越弱。 2.真空中磁导率:μ0 = 4π ? 10-7 H / m 。 相对磁导率:μr = 0 μμ 3.根据相对磁导率 μr 的大小,可将物质分为三类: μr < 1 反磁性物质; μr > 1 顺磁性物质; μr >> 1 铁磁性物质。 前面两种为非铁磁性物质 μr ≈1,铁磁性物质 μ 不是常数。 四、磁场强度H 1.表示磁场的性质,与磁场内介质无关。 2.H = μ B 或 B = μ H = μ0 μr H 3.(1)磁场强度是矢量,方向和磁感应强度的方向一致。 (2)单位:安 / 米(A / m ) (3)磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。 【例题1】如图,在磁感应强度大小为B 的磁场中垂直放置1根长为5m 的载流直导体,测得受到的电磁力为2N ,求磁感应强度B 。 极性 讲结合启学利所解实问题

解:B=F/IL=2/(2×5)=0.2T 【例题2】在磁感应强度为0.05T 的均匀磁场中,放置一个长、宽各为30cm 、20cm 的矩形线圈,试求线圈平面与磁场方向垂直时的磁通量。 解: Φ=BS=0.05×(0.3×0.2)=0.003Wb 1.描述磁场的四个主要物理量是____、____、______、和_____;它们的表示字母分别是____、____、_____和_____;它们的单位分别是____、____、____和____。 2.判断: (1)由B=F/IL 可知,B 与F 成正比,与IL 成反比. ( ) (2)由B=F/IL 可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场. ( ) (3)通电导线在磁场中受力越大,说明磁场越强. ( ) 3.有关磁感应强度的方向,下列说法正确的是( ) A .B 的方向就是小磁针N 极所指的方向 B .B 的方向与小磁针在任何情况下N 极受力方向一致 C .B 的方向与小磁针在任何情况下S 极受力方向一致 D .B 的方向就是通电导线的受力方向 4.如图所示,套在条形磁铁外的三个线圈,其面积S 1>S 2= S 3,且 “3”线圈在磁铁的正中间。设各线圈中的磁通量依次为φ1、φ2、φ3则它们的大小关系是( ) A 、φ1>φ2>φ3 B 、φ1>φ2=φ3 C 、φ1<φ2<φ3 D 、φ1<φ2=φ 3 5.铁磁物质的相对磁导率是_______。 (A )μr <1 (B )μr >1 (C )μr >>1 (D )μr <<1 1、磁感应强度(磁通密度) B=F/IL 2、磁通量 Ф = BS 学思考讨论教进适点播让生纳结结论

高中物理--磁场专题

磁场 一.知识点梳理 考试要点 基本概念 一、磁场和磁感线(三合一) 1、磁场的来源:磁铁和电流、变化的电场 2、磁场的基本性质:对放入其中的磁铁和电流有力的作用 3、磁场的方向(矢量) 方向的规定:磁针北极的受力方向,磁针静止时N极指向。

4、磁感线:切线~~磁针北极~~磁场方向 5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则)) 6、磁感线特点:①客观不存在、②外部N极出发到S,部S极到N极③闭合、不相交、 ④描述磁场的方向和强弱 二.磁通量(Φ韦伯Wb 标量) 通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通 二.磁通密度(磁感应强度B 特斯拉T 矢量) 大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。 S B Φ = 1 T = 1 Wb / m2 方向:B的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场 1、定义:B的大小和方向处处相同,磁感线平行、等距、同向 2、来源:①距离很近的异名磁极之间 ②通电螺线管或条形磁铁的部,边缘除外 四.了解一些磁场的强弱 永磁铁―10-3 T,电机和变压器的铁芯中―0.8~1.4 T 超导材料的电流产生的磁场―1000T,地球表面附近―3×10-5~7×10-5 T 比较两个面的磁通的大小关系。如果将底面绕轴L旋转,则磁通量如何变 化? 地球磁场通电直导线周围磁场通电环行导 N S L

Ⅱ 磁场对电流的作用——安培力 一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。(向里和向外的表示方法(类比射箭)) 规律:(1)左手定则 (2)F ⊥B ,F ⊥I ,F 垂直于B 和I 所决定的平面。但B 、I 不一定垂直 安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。猜想由90度到0度力的大小是怎样变化的 二.安培力的大小:匀强磁场,当B ⊥ I 时,F = B I L 在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B 、电流I 和导线的长度L 三者的乘积 在非匀强磁场中,公式F =BIL 近似适用于很短的一段通电导线 三.磁感应强度的另一种定义 匀强磁场,当B ⊥ I 时,IL F B 练习 有磁场就有安培力(×) 磁场强的地方安培力一定大(×) 磁感线越密的地方,安培力越大(×) 判断安培力的方向 I 不受力

求变力做功的几种方法

求变力做功的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时 细绳与水平方向夹角分别为α和β。求滑块由A 点运动到B点过程中,绳的拉力对滑块所做的 功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为: A 0焦耳 B 20π焦耳 C 10焦耳 D 20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故 B正确。

第一节磁场基本物理量何铁磁性材料

第一节磁场基本物理量和铁磁性材料 一、电磁场的基本物理量 为了更好地理解磁场的基本性质,介绍四个常用的基本物理量,即磁感应强度B、通Φ、磁导率μ、磁场强度H。 1、磁感应强度B 磁感应强度B是反映磁场性质的参数.它的大小反映磁场强弱,它的方向就是磁场的方向. 若在磁场中某一区域,磁力线疏密一致,且方向相同,则称该区域为匀强磁场或均匀磁场.在均匀磁场内,磁感应强度处处相同。场 内某点磁力线的方向即磁感应强度的方向,磁力线的多少就表示磁感应强度的大小。 一载流导体在磁场中受电磁力的作用,如图3-1所示。电磁力的大小就与磁感应强度B、电流I、垂直于磁场的导体有效长度L成正比。公式为 F=BILsinα(3一1) 式中,α为磁场与导体的夹角;B为磁感应强度,单位是特斯拉(T),工程上也曾用高斯(Gs)。两个单位的大小关系是:1 Gs=10-4 T。 若α=90°,则 F=BIL (3一2) 电磁力的方向可用左手定则来确定。 2、磁通Φ

磁感应强度B和垂直于磁场方向的某一面积S的乘积称为该截面的磁通Φ。若磁场为匀强磁场,Φ的大小为: Φ= BS (3-3) 磁通Φ的单位为韦伯(Wb), 工程上过去常用麦克斯韦(Mx), 两个单位的大小关系是:1Mx=10-8Wb。 磁力线垂直穿过某一截面, 磁力线根数越多,就表明磁通越大; 磁通越大就表明在一定范围中磁场越强。由于磁力线是首尾闭合的曲线,所以穿入闭合面的磁力线数,必等于穿出闭合面的磁力线数,这就是磁通的连续性。 3、磁导率μ 磁导率μ是用来衡量磁介质磁性性能的物理量。 如图3-2所示一直导体,通电后在导体周围产生磁场,在导体附近一处X点的磁感应强度B与导体中的电流I及X点所处空间几何位置、磁介质μ有关。公式为: (3-4) 由式(3-4)可知磁导率μ越大,在同样的导体电流和几何位置下,磁场越强,磁感应强度B越大,磁介质的导磁性能越好。 不同的介质,磁导率μ也不同,例如真空中的磁导率μ0=4π×10-7H/m,一般磁介质的磁导率μ与真空中磁导率μ0的比值,称为相对磁导率,用表示μr表示,即 (3-5) 磁导率μ的单位为亨/米(H/m)。 根据相对磁导率不同,我们往往把材料分成三大类,第一类μr略小于1,称为逆磁材料,如铜、银等,第二类μr略大于1,如各类气体、非金属材料、铝等,这两类的的相对磁导率μr约等于1,所以常统称为非铁磁性材料;第三类为铁磁性物质,如铁、钴、镍及其合金等,它们的磁导率很高,相对磁导率μr远远大于1,可达几百到上万,所以电气设备如变压器、电机都将绕组套装在用铁磁性材料制成的铁心上。 需要注意的是,铁磁性物质的磁导率μ是个变量,它随磁场的强弱而变化。 4、磁场强度H 磁场强度H也是磁场的一个基本物理量。磁场内某点的磁场强度H等于该点磁感应强度B除以该点的磁导率μ,即 (3-6) 式中,H为磁场强度,单位为安/米(A/m) 由图3-2可知X点的磁场强度H为

高中物理 磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解) 1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求: (1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比. 2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求: (1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小; (3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为 π 6,求该粒子的比荷及其从M点运动到N点的时间. 4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小; (3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.

考物理复习二轮专题《求变力做功的几种方法》.doc

考物理复习二轮专题《求变力做功的几种方法》 一、知识讲解 功的计算在中学物理中占有十分重要的地位, 中学阶段所学的功的计算公式 W=FScosa 只能用于恒力做功情况, 对于变力做功的计算则没有一个固定公式可用, 当 F 为变力时, 用 动能定理 W= E k 或功能关系求功,高中阶段往往考虑用这种方法求功。这种方法的依据是: 做功的过程就是能量转化的过程, 功是能的转化的量度。 如果知道某一过程中能量转化的数 值,那么也就知道了该过程中对应的功的数值。 下面是对这种方法的归纳与总结下面对变力 做功问题进行归纳总结如下: 1、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。 而恒力做功又可以用 W=FScosa 计算,从而 使问题变得简单。 例 1、如图,定滑轮至滑块的高度为 h ,已知细绳的拉力为 F (恒定),滑块沿水平面由 A 点前进 S 至 B 点,滑块在初、末位置时细绳与水平方向夹角 分别为α和β。求滑块由 A 点运动到 B 点过程中,绳的拉力对滑块所做的功。 分析与解:设绳对物体的拉力为T ,显然人对 绳的拉力 F 等于 T 。T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该 问题是变力做功的问题。 但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下, 人对绳做 的功就等于绳的拉力对物体做的功。 而拉力 F 的大小和方向都不变, 所以 F 做的功可以用公 式 W=FScosa 直接计算。 由图 1 可知,在绳与水平面的夹角由α变到β的过程中 , 拉力 F 的作 用点的位移大小为: S S 1 h h S 2 sin sin W T W F F . S Fh ( 1 1 ) sin sin 2、微元法 当物体在变力的作用下作曲线运动时, 若力的方向与物体运动的切线方向之间的夹角 不变, 且力与位移的方向同步变化, 可用微元法将曲线分成无限个小元段, 每一小元段可认 为恒力做功,总功即为各个小元段做功的代数和。 例 2 、如图所示,某力 F=10N 作用于半径 R=1m 的转盘的边缘上,力 F 的大小保持不变,但方向始终保持与作用点的切线方向一 致,则转动一周这个力 F 做的总功应为: A 、 0J B 、 20π J C 、10J D 、20J. 分析与解:把圆周分成无限个小元段,每个小元段可认为 与力在同一直线上,故 W=F S ,则转一周中各个小元段做功的代数和为 W=F × 2π R=10× 2 π J=20 π J ,故 B 正确。 3、平均力法

高中物理——磁场专题讲解+经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv qB B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

求变力做功的几种方法

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时细 绳与水平方向夹角分别为α和β。求滑块由A点 运动到B点过程中,绳的拉力对滑块所做的功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是 变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这 个力F做的总功应为: A0焦耳B20π焦耳 C 10焦耳D20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20π J,故B正确。 三、平均力法

变力做功的求解方法

变力做功的求解方法 物理与电子信息工程学院物理学 [摘要] 功是物理学中最常见的物理量,变力做功的求解方法也是贯穿大学物理的重点和难点之一,它在力学、理论力学中都占有十分重要的地位。本文分别用图像法、动能定理、功能原理、微元法、平均力法、等值法等不同方法对物理学中变力做功的求解方法进行了较全面、系统的研究,并附以实例说明这些方法的应用。通过对这些方法和实例的讨论,以使我能对变力做功的求解方法有更深刻的理解和巩固,进一步提高我灵活运用这些方法解决实际问题的能力。 [关键词] 变力功图像法等效代换法 1 前言 功是物理学中最常见的物理量,对于变力做功的求解,教材上通常采用极限的思想和微积分的方法将物体的运动轨迹分割成许多小段,因每小段很小,所以每小段可视为一方向不变的位移,而在这小位移上的力也可视为恒力。又因小位移为无穷小量,可认为它与轨迹重合,称之为元位移,而力在元位移上做的功称之为元功。这样就顺利的将求解变力做功的问题转化为了求无数多个元功之和。然而,求解变力做功的方法并不是唯一的,在很多实际问题中也可以根据实际寻找最为简便有效的方法。对此,本文将分别从图像法、微元法、等值法、平均力法、动能定理、功能原理等不同角度对变力做功的求解方法进行较全面、系统的研究,并以实例说明这些方法的应用。 2 用图像法求变力做功 功是描写力对空间的积累作用的,它的大小可以用作用力随位移变化的关系曲线,如图2.2.1力-位移图象下的一块图形面积的大小来表示。如图甲所示表示恒力的力-位移图像,横坐标表示力F在位移方向上的分量,功W的数值等于直线下方画有斜线部分的面积.如图乙所示表示变力的力-位移图像,曲线下方画有斜线部分的面积就表示变力所做的功,它近似地等于成阶梯形的小矩形面积的总和。

几种求变力做功的常用方法

几种求变力做功的常用方法 摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教 学的难点。本文举例说明在高中阶段求变力做功的常用方法,比如用等效转换、 平均值及F-s图像、动能定理及功能关系、功率的表达式W=Pt、微元法、转换参 考系等方法来求解变力做功。 关键词:変力功等效平均值图像动能定理功能关系功率微元 法参考系 对于功的定义式W=Fscosα,其中的F是恒力,适用于求恒力做功,其中的s 是力F的作用点发生的位移,α是力F与位移s的夹角。在高中阶段求变力做功 问题,既是学生学习和掌握的难点,也是教师教学的难点。求变力做功的方法很多,比如用等效转换、平均值及F-s图像、动能定理及功能关系、功率的表达式 W=Pt、微元法、转换参考系等方法来求解变力做功。 一、等效转换法 求某个过程中变力做的功,可以通过等效转换法把求该变力做功转换成求与 该变力做功相同的恒力功,此时可用功定义式W=Fscosα求恒力的功,从而可知 该变力的功。等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。 例1:如图所示,某人用恒定的力F拉动放在光滑水平面上的物体。开始时 与物体相连的轻绳和水平面间的夹角为α,当拉力F作用一段时间后,绳与水平 面间的夹角为β。已知图中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力FT 对物体所做的功。 解析:拉力FT在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。由题意可知,人对绳做的功等于拉力FT对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。 由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移为:,所以绳对物体做功:。 二、平均力法及图像法 1.如果一个过程中,若F是位移s的线性函数时,即F=ks+b时,可以用F的平均值 F=(F1+F2)/2来代替F的作用效果来计算。关键是先判断变力F与位移s是否成线性关系,然 后求出该过程初状态的力F1和末状态的力F2,再求出平均力和位移,然后由W=Fscosα求其功。 2.对于力与位移方向在同一条直线上,大小随位移变化的力,在F-x图像中,图线与坐标 轴所围成的“面积”表示功,作出变力变化的F-x图像,图线与位移轴所围的“面积”即为变力做的功。力学中叫作示功图。 例2:如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m的木块连接,放在光 滑的水平面上。弹簧劲度系数为k,开始时处于自然长度。现用水平力缓慢拉木块,使木块 前进x,求拉力对木块做了多少功? 解析:在缓慢拉动过程中,力F与弹簧弹力大小相等,即F=kx。当x增大时,F增大, 即F是一变力,求变力做功时,不能直接用Fscosα计算,可以用力相对位移的平均值代替它,把求变力做功转换为求恒力做功。F缓慢拉木块,可以认为木块处于平衡状态,故拉力等于 弹力,即F=kx。因该力与位移成正比,可用平均力F=kx求功,故W=F·x=kx2。 此题也可用图像法:F缓慢拉木块,可以认为木块处于平衡状态,故拉力等于弹力,即 F=kx,作出F-x图,求出图线与坐标轴所围成的“面积”,结果也是 W=F·x=1/2kx2。 三、动能定理法及功能关系法

五种方法搞定变力做功问题

五种方法搞定变力做功 .微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用w F ?scos来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1.用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的 质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小 不变,方向时刻变化,是变 力,不能直接用求解;但是我们可以把圆周分 成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果图1

把圆轨道分成无穷多个微元段每一段上可认为是恒力,则每一段上摩擦力做的功分别为,摩擦力在

摩擦力在一周内所做的功

、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值 L F 1 F 2 — F ------------- ,再由W FLcos 计算变力做功。如:弹簧的弹力做功 2 问题。 例2静置于光滑水平面上坐标原点处的小物块, 在水平拉力F 作 用下,沿x 轴方向运动(如图 2甲所示),拉力F 随物块所在位置坐标 x 面积表示功,由图象知半圆形的面积为 F m X 。. C 答案 4 正确. 三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3如图所示,用竖直向下的恒力 F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过 A 、 B 、 C 三点,设AB=BC ,物体经 过A 、B 、C 三点时的动能分别为 E KA , E KB , E KC ,则它们间的关系 _. r 曰 定是: A . E K B -E KA =E K C -E KB B . E KB -E KA V E K C -E KB 到X 0处时的动能为 ( ) A . 0 B . -F m X o 2 C . F m X o D . 2 X o 4 4 【精析】由于 W = F X ,所以F-x 图象与X 轴所夹的 的变化关系(如图乙所示),图线为半圆?则小物块运动 o n ~~F ? 图2乙

变力做功的计算

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然 后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元 段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用 计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少? 图3 答案:31.4J。 二、图象法 在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。如果作用在物体上的力是恒力,则其F-s图象如图4所示。经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。

相关主题