搜档网
当前位置:搜档网 › 岩质高边坡开挖变形的三维离散单元法分析

岩质高边坡开挖变形的三维离散单元法分析

岩质高边坡开挖变形的三维离散单元法分析
岩质高边坡开挖变形的三维离散单元法分析

收稿日期:2006Ο10Ο26

基金项目:国家重点基础研究发展规划(973)资助项目(2002C B412707);国家自然科学基金重点资助项目(5053110)

作者简介:孟国涛(1978—),男,四川大邑人,博士研究生,主要从事工程地质、岩石力学与工程方面的研究.

岩质高边坡开挖变形的三维离散单元法分析

孟国涛1,徐卫亚1,郑文棠1,石安池2

(1.河海大学岩土工程研究所,江苏南京 210098;2.中国水电顾问集团华东勘测设计研究院,浙江杭州 310014)

摘要:对一典型的反倾向层状结构岩质高边坡进行了非连续非线性三维数值模拟.数值模型中考虑了复杂的地质条件,同时模拟了进水口高边坡的控制性结构面和陡倾节理组,实现了边坡、引水隧洞的分步开挖及锚固.运用三维离散单元法(3DEC )进行了混合不连续和蜕化连续2种方式的求解,在比较不同求解方式所得计算位移的基础上,探讨了结构面对计算结果的影响,分析了进水口边坡在开挖、加固作用下的变形状况和稳定性.

关键词:岩石力学;边坡工程;开挖;变形;三维离散单元法(3DEC )中图分类号:T U457 文献标识码:A 文章编号:1000Ο1980(2007)04Ο0393Ο05岩体是经历过变形,遭受过破坏,并赋存于一定地质环境中的地质体,其属性与人工材料有着根本的不

同.因此,岩体的固有特性可以概况为“DI ANE ”[1]

,即非连续性、各向异性、非均质性和非线性.

通常条件下,高边坡工程中的卸荷松弛低应力区在总体范围上占主导地位,岩体赋存于应力水平不高的地质环境中,结构面对岩体的潜在破坏方式起到决定性作用,此类边坡问题常表现为结构控制型问题.此外,边坡岩体结构面为成岩建造、构造改造、表生演化的产物,其特征与地质历史有关,多条结构面的几何特征通常存在统计意义上的“优势性”.当此优势性相对显著时,岩体的各向异性特征是不可忽略的.因此,从充分尊重研究对象的基本属性出发,非连续力学数值分析方法就成了解决此类问题的正确途径[2].

三维离散元程序3DEC 是处理结构控制型岩体工程问题最为成熟的技术之一[3].该程序不但允许有限位移和离散体的转动及脱离,而且在计算过程中可以自动判别块体之间可能出现的新的接触关系,因此它可以方便地实现对复杂结构体变形破坏的模拟.3DEC 针对问题的性质提供了3种求解方式:蜕化成连续力学解法(类似于F LAC 3D )、完全不连续解法和混合不连续解法.本文借助3DEC 内嵌语言FISH ,采用混合不连续解法对白鹤滩水电站进水口边坡开挖变形进行了离散单元法计算,并将计算结果与蜕化连续力学解进行了比较.

1 工程地质条件及工程作用

1.1 边坡工程地质条件

拟建金沙江白鹤滩水电站位于金沙江下游攀枝花至宜宾河段.河谷的深切侵蚀在坝区右岸形成了高差达600m 级的连续边坡(图1).地层产状总体平缓,层面反坡内倾,地层为二迭系上统峨眉山玄武岩组,以块状玄武岩、杏仁状玄武岩和斑状玄武岩为主.上覆三叠系下统飞仙关组(T 1f ),为一套紫红色河湖相沉积的砂岩、泥岩及砾岩,与下伏二迭系呈微角度不整合接触.岸坡高陡,组成工程边坡的岩石主要为玄武岩和层间错动带之凝灰岩.

进水口边坡无区域性控制性结构面通过,主要构造类型为层间错动带、断层、层内错动带和大量的构造裂隙组.其中,区内控制性构造结构面主要为层间错动带及断层,此类结构面贯通性好,延伸贯穿整个坝区,构成坝区构造及岩体结构的基本构架,如图1,2所示.层间错动带C 2~C 11为凝灰质(岩)建造,产状N30°~50°E ,SE ∠15°~25°,具有一定厚度,发育于玄武岩各岩流层之间,凝灰岩易于破碎风化崩解.控制性断层有F 16和F 4,结构面泥化、潮湿.

第35卷第4期2007年7月河海大学学报(自然科学版)Journal of H ohai University (Natural Sciences )V ol.35N o.4Jul.2007

图1 进水口边坡整体模型

Fig.1 I ntegral model of inlet

slope

图2 主要地质结构面

Fig.2 Main geological structural plane

进水口边坡岩体统计优势结构面为1组层内错动带和2组陡倾裂隙组,层内错动带的产状为N30°~54°

E ,SE ∠6°~18°,陡倾裂隙组的产状分别为N15°~40°E ,NW ∠70°~86°和N30°~50°W ,SW ∠83°~90°.其产状“优势性”明显,岩体各向异性特征显著.图3 开挖模型

Fig.3 Excavation model

1.2 进水口边坡开挖进水口布置于大寨沟口,自然边坡地形高陡,坡度多在65°~75°之间.进水口位于该陡壁中下部,底板高程约735m ,分11级开挖,开挖高度294m ,如图3所示.由于层间、层内错动带发育,NE 和NW 向断层和节理与层间、层内错动带的组合对边坡稳定不利.此外,大寨沟距坝址较近,对右岸进水口有不利影响,存在高边坡稳定问题.开挖后反倾向岩体的变形特征、陡倾裂隙组的影响以及加固支护方案的合理性是工程建设的重大技术问题.

该水电站进水口边坡是一典型的结构控制性问题,应运用非连续力学数值分析方法进行分析.因此,本文应用3DEC 程序建立了进水口开挖高边坡以及引水洞组的联合三维数值模型,并通过此三维数值模型来研

究坡、洞在开挖过程中的变形和稳定性问题[4Ο5]

.

2 计算模型和计算参数

重视地质结构面对边坡稳定性的影响,考虑结构面的作用是岩质高边坡分析的一个基本思想.由于工程问题的大型混合不连续求解对硬件配置要求太高,出于计算效率的考虑,本文仅取进水口段进行非连续数值分析.

2.1 计算模型的建立

进水口高边坡的三维计算区域包括了进水口开挖边坡的主要部分.引水隧洞考虑1号~9号机的9个引水洞的进水段.计算范围长840m ,宽240m ,最高点高程为1158m ,底面高程为550m ,模型如图4所示.

由于离散元中的结构面有明确的地质意义,即每一条节理都对应于节理地质编录过程中的一个采样参数,因此,节理编录资料可以直接移植到模型中.3DEC 程序对节理的处理是按条进行的,需要指定每一条节理的倾向、倾角、节理面任一点的坐标和节理的连通率.

本次研究开展了现场平硐节理详细地质编录,根据测线法原理求得了节理采样的倾向、倾角和位置等关键参数[3].利用3DEC 的隐藏(HI DE )功能,按区域生成长大节理;进而根据已经形成的模型块体尺寸和一般节理的长度,选择合适的连通率参数值,实现对迹长的模拟.生成的1组层内错动带和2组陡倾裂隙组如图4(c )所示.2.2 本构与参数

计算中岩体采用M ohr 2C oulomb 准则弹塑性本构方程,层间错动带及控制性断层等结构面采用C oulomb 2slip 模型.

4

93河海大学学报(自然科学版)第35卷

图4 3DEC 计算模型

Fig.4 Three 2dimensional discrete element calculation model

按照蜕化连续力学求解方式进行边坡变形、稳定计算时,岩体中的非控制次要结构面(节理)通过岩体的

宏观力学参数来反映,因此在进行边坡岩体分层概化时,主要考虑了平硐勘测所得结构面线密度特征[6].如图4(b )所示:0~40m 为弱风化上段,岩体多为碎裂~镶嵌结构;40~100m 为弱风化下段,岩体多为次块状~块状结构;≥100m 为微新岩体,岩体多为块状~整体结构.计算参数见表1,2.

表2 结构面参数取值

T able 2 P arameters of structural plane 类型法向刚度/(MPa ?m -1)

切向刚度/(MPa ?m -1)

黏聚力/

MPa 内摩擦角/

(°)

层间带

500

600112412F 16

50010001082616F 4

60015001152818层内错动带120040001183510陡倾节理组1120045001153810陡倾节理组2

1500

600

0118

3810

表1 岩体物理力学参数

T able 1 Physio 2mech anical p arameters of rock m ass 岩体

类型变形

模量/

G Pa 泊松

密度/(g ?cm -3

)

黏聚力/

MPa 内摩

擦角/(°)抗拉强度/

MPa 玄武岩弱上601272140153817015玄武岩弱下1001252150184717110微新1501222171155315115粉砂岩401302140143510018凝灰岩

1

0135

212

011

2616

010

考虑与不考虑节理条件的计算模型,其岩体完整程度不同,力学参数也不同.若模型中考虑了陡倾裂隙组,则应适当提高节理切割块体的岩体力学参数值,即岩体的参数值应大于岩体质量分级及参数估计得到的参数值,小于完整岩块的参数值.譬如:将Ⅳ级结构面作为单独地质单元模拟时,岩体的参数即为岩块与Ⅴ级结构面组合的岩体等效参数;而仅将Ⅲ级结构面进行单独模拟时,岩体的参数应该是岩块及Ⅳ级、Ⅴ级结构面组合的等效参数.对于复杂结构岩体,可以采用岩石力学试验与数值方法相结合的直接分析法来获取不同

尺度下的宏观岩体力学等效参数[7Ο8]

;而对于简单的结构岩体,可采用式(1),(2)估算岩体力学参数,且这种估算可通过编写的FISH 命令流来实现.

E r =E m K n s

K n s -E m (1)G r =

G m K s s K s s -G m

(2)

式中:E m ,E r ———岩体、岩块的弹性模量;G m ,G r ———岩体、岩块的剪切模量;K n ,K s ———结构面的法向、切向刚度;s ———节理的平均间距.

3 计算结果

3.1 位移特征

由图5可知:无节理条件下,计算位移的一致性、连续性较好,最大位移为3616mm.节理条件下,计算位移不连续特征明显,最大位移为4916mm ,位移量级较无节理情况普遍增大.

二者的位移特征亦有所差异.无节理条件下,开挖引起的变形深度较大;节理条件下,影响深度较小.无节理条件下,最大位移发生在下部;节理条件下,最大位移发生在中上部位.其原因为:节理条件下,位移特征

5

93第4期孟国涛,等 岩质高边坡开挖变形的三维离散单元法分析

693河海大学学报(自然科学版)第35卷

图5 计算位移矢量图

Fig.5 V ector diagram of calculated displacement

更多地受控于结构面的分布,而陡倾角裂隙在边坡中上部的密度更大,其各向异性特征致使中上部岩体下滑趋势更加明显.

3.2 结构面影响

区内控制性结构面F16断层和层间错动带共同切割形成的断块,具备倾倒—滑塌破坏的边界条件.但由图5可知,该块体未表现出破坏的变形趋势,可视为潜在的不稳定块体.

作为次一级结构面,陡倾角裂隙组在边坡开挖的中上部所起的作用相对突出,主要原因是该部位开挖深度不大,浅层破裂岩体未被挖除,结构面的切割有利于个别块体的失稳.

总体上,结构面的作用还没有改变边坡的总体变形状态,各断块岩体尚未出现破坏、滑离的位移特点,边坡的总体变形趋势尚保持在正常状态.

3.3 锚固效果

锚索的主要作用是限制由非连续结构面切割而成的不稳定块体的局部变形,在蜕化近似连续模型中,锚索的作用不明显.

在含节理模型中,锚固的作用相对显著.加锚使得水平向最大位移有所降低,同时使塑性区减小.在下部锚索为主的强力加固区,由于锚索水平施加,与近似水平的层间(内)错动带交角很小,进而造成部分锚索置于软弱的层间带中,因此施加的效果不甚明显.中上部浅部加固兼柔性支护区,由于模型中多采用锚杆单元,其长度小,且未设置预应力,所以锚杆单元对岩体变形的约束作用不明显,中上部断块岩体依然表现出较大位移特征.

总之,依据节理条件下的计算结果,针对中上部岩体的实际地质条件,在开挖过程中有针对性地调整加固方案,及时实施锚索支护以限制结构面张开,对维持边坡稳定有重要作用.

4 结 束 语

本文应用三维离散单元法对白鹤滩水电站右岸进水口高边坡进行了非连续非线性数值模拟.模拟结果表明:考虑节理的不连续和各向异性分布特征的计算位移比不考虑节理条件时的计算位移大,中上部岩体的下滑趋势也更明显;结构面尚未改变边坡总体变形状态,边坡整体稳定;锚固作用明显,但尚需针对实际地质条件进行中上部岩体的加固,以保证局部岩体的稳定.

本文还将蜕化连续与混合不连续2种求解方法的计算结果进行了对比分析.结果表明:在低应力条件下,结构控制性边坡问题中,节理网络几何特征的大量简化模拟会使计算结果出现显著偏差[9];考虑岩体的非连续性和各向异性,用三维离散单元法进行非连续力学数值分析,能够准确地评价节理条件下工程作用造成的岩体变形与破坏,进而正确评价高边坡的整体稳定与局部稳定.

参考文献:

[1]H ARRIS ON J P,H UDS ON J A.Engineering rock mechanics[M].Ox ford:Pergam on Press,2000.

[2]J I NGLan 2ru.A review of techniques ,advances and outstanding issues in numerical m odelling for rock mechanics and rock engineering[J ].

International Journal of R ock Mechanics &M ining Sciences ,2003,40(3):283Ο353.

[3]IT ASC A.Three dimensional distinct element code :user ’s guide[K].M inneapolis :I tasca C onsulting G roup ,Inc ,1999.

[4]张贵科,徐卫亚,石安池.三峡船闸高边坡及中隔墩变形影响因素分析[J ].河海大学学报:自然科学版,2006,34(3):315Ο

320.

[5]徐卫亚,宋晓晨,周维垣.水电站进水口岩石高边坡及坝坡与洞室相互作用的三维数值分析[J ].岩石力学与工程学报,

2004,23(16):2712Ο2717.

[6]巫德斌,徐卫亚.基于H oek 2Brown 准则的边坡开挖岩体力学参数研究[J ].河海大学学报:自然科学版,2005,33(1):89Ο93.[7]MI N K B ,J I NG Lan 2ru.Numerical determination of the equivalent elastic com pliance tens or for fractured rock masses using the distinct

element method[J ].International Journal of R ock Mechanics &M ining Sciences ,2003,40(6):795Ο816.

[8]张贵科.节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D].南京:河海大学,2006.

[9]朱焕春,BRUM MER R ,ANDRIE UX P.节理岩体数值计算方法及其应用(一):方法与讨论[J ].岩石力学与工程学报,2004,23

(20):3444Ο3449.

Analysis of excavation 2induced high rock slope deformation

with 3D discrete element code

MENG G uo 2tao 1,XU Wei 2ya 1,ZHENG Wen 2tang 1,SHI An 2chi 2

(1.G eotechnical Research Institute o f Hohai Univer sity ,Nanjing 210098,China ;

2.East China Hydropower Investigation and Design Institute ,CHECC ,Zhejiang 310014,China )

Abstract :Three 2dimensional discontinuous and nonlinear numerical simulation was performed of a typical high rock slope with anti 2dip strata structure.With com plicated geological condition taken into account ,the control structural plane and anti 2dip joint set of the high slope at inlets were simulated ,and the excavation and anchoring of the slope and diversion tunnel in stages were realized numerically.M oreover ,3D discrete element code (3DEC )was used to s olve the deformation of the high slope in the m odes of mixed discontinuousness and degenerate continuousness.The in fluence of structural plane on the calculated result was discussed ,and the stability of the high slope at inlets after excavation and rein forcement was analyzed by com paris on of the calculated results in different calculation m odes.

K ey w ords :rock mechanics ;slope engineering ;excavation ;deformation ;3D discrete element code (3DEC )

7

93第4期孟国涛,等 岩质高边坡开挖变形的三维离散单元法分析

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1 概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的

边坡变形监测技术分析

边坡变形监测技术分析 ?简介:边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施 工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才 开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工 作。 ?关键字:边坡变形监测,技术分析,边坡监测技术 边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工作。 1 边坡变形监侧的作用 在土木工程各个建设领域中,通过边坡工程的监测,可以起到以下作用。 1. 1 评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位及监理提供预报数据,跟踪和控制施工过程,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。 1.2 为防止滑坡及可能的滑动和蠕变提供及时支持。预测和预报滑坡的边界条件、规模滑动方向、发生时间及危害程度,并及时采取措施,以尽量避免和减轻灾害损失。 1. 3 监测已发生滑动破坏和加固处理后的滑坡,监测结果是评价滑坡处理效果的尺度。 1.4 为进行有关位移反分析及数值模拟计算提供参数。 2 边坡工程监测的方法 目前,我国边坡变形监测方法主要采用简易观测法、设站观测法、仪表观测法和远程监测法等。 2.1 简易观测法 简易观测法是通过人工观测边坡中地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水位变化、地温变化等现象。

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

隧洞施工期收敛变形监测方案样本

目录 1工程概况 (1) 2 执行技术规范和编制依据 (1) 3 资源配置 (1) 3.1 人员配置 (1) 3.2 设备配置 (2) 4 隧洞变形监测技术要求 (2) 5 隧洞变形监测方案 (3) 5.1 监测方案设计原则 (3) 5.2 洞内施工期变形监测 (3) 5.3 变形监测频率 (4) 5.4 变形监测方法及数据处理 (5) 6 隧洞沉降观测 (6) 6.1 沉降变形测量点的布设 (6) 6.2 沉降观测方法及频次 (7) 6.3 沉降观测精度要求 (8) 7 测量记录及资料管理 (8)

1 工程概况 吉林省中部供水辽源干线施工三标段工程项目位于四平市伊通满族自治县、辽源市东辽县。标段桩号33+949~49+657, 线路全长15.708km。主要施工内容包括: 隧洞、PCCP管道、钢管道、附属建筑物、交叉工程、出水闸工程、交通工程及其它临时工程等, 其中, 隧洞长11.347km, 成洞洞径2.6m; PCCP管道直径2.2m, 长3.937km; 钢管道( 包含钢管外包混凝土段) 直径2.2m, 长0.424 km。 本标段线路总体走向由北向南, 地势由高到低再到高, 地貌单元主要有河谷堆积地形(漫滩阶地)、剥蚀堆积地形(波状台地)和构造剥蚀地形(低山丘陵)。沿线山势起伏, 植被较发育, 洞室最大埋深135m。本标段穿越地层岩性主要有新生界第四系全新统冲积堆积层、中更新统冲洪积堆积、始渐新统泥岩和砂岩, 侵入岩为燕山及华力西期花岗岩和花岗闪长岩等。其中2#隧洞根据地质资料划分围岩类别为: Ⅱ类围占42.7%、Ⅲ类围岩占24. 0%、Ⅳ~Ⅴ类占33.3%。3#隧洞根据地质资料划分围岩类别为: Ⅱ类围占20.9%、Ⅲ类围岩占33.9%、Ⅳ~Ⅴ类占45.2% 2 执行技术规范和编制依据 施工测量依据如下: 《工程测量规范》 GB50026- 《水利水电工程施工测量规范》 DL/T5173- 《建筑变形测量规范》 JGJ8- 《铁路隧道监控量测技术规程》 Q/CR9218- 3 资源配置 3.1 人员配置 主要监测人员见表3.1。

岩质边坡稳定性设计与监测分析

岩质边坡稳定性设计与监测分析 发表时间:2019-05-23T11:29:32.640Z 来源:《防护工程》2019年第3期作者:王平 [导读] 边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。 中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛市 066004 摘要:边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。文中结合边坡地质条件,详细分析了边坡锚杆拉力的变化,使用多点位移计对边坡的变形进行长期的跟踪监测,对锚杆应力计和多点位移计的监测数据进行总结和反馈。分析结果表明:文中边坡的锚杆拉力及坡内多点位移均趋于稳定,说明该边坡整体上处于相对稳定的状态,提出的锚杆设计方法是成功的。断面的坡顶位置在雨季最为危险,在雨季存在发生滑动的风险,应作为重点监测对象。连续降雨对边坡的稳定性有重要影响。降雨会增加边坡的锚杆拉力和坡内位移。随着雨季结束,锚杆内力和坡内位移会逐渐下降并趋于稳定。 关键词:边坡;锚杆应力计;多点位移计;稳定性分析 锚杆由于其安全可靠、施工简单、成本较低,已成为当前边坡支护工程中最基本的组成部分之一,在各类边坡支护工程中得到广泛应用。它实质上是位于岩土体内部并与岩土体形成一个新的复合体。通过锚杆杆体的纵向拉力作用,克服岩土体抗拉能力远远低于抗压能力的缺点,从而使得岩土体自身的承载能力大大加强。锚杆加固边坡时,依赖其与周围岩土体相互作用传递锚杆拉力,限制岩土体变形与发展,改善岩土体的力学参数和应力状态,以使边坡保持稳定。由于边坡地质条件和锚杆荷载传递机理都很复杂,而前期的工程实地勘测不能完全准确揭示边坡的地质情况,因此对实际边坡工程的变形特征和应力状态进行检测,为认识边坡稳定性提供途径。部分学者基本是通过对锚杆受力的数值分析,来研究锚杆对边坡稳定性的影响。某市一个靠海边坡位置较为特殊,使用锚杆应力计和多点位移计的结合对该边坡稳定性进行综合评价有一定的借鉴意义。 1边坡稳定性监测方法 从目前来看,对人工边坡的整体监测可分为三大类: (1)地面监测:监测手段主要有,三角网、沉降水准和视准线测量以及收敛计、倾斜仪监测; (2)地下监测:监测手段主要有,钻孔倾斜仪、多点位移计、地下水位孔、渗压计等; (3)支护结构物监测:监测手段主要有,钢筋计、预应力锚索测力计、土压力盒、测缝计等。此外根据不同工程具体特点,尚有一些简易观测手段,如:量水堰、简易测桩、平硐底部浇低标号素混凝土观测变形和地面地质巡视等,并有部分工程边坡监测与地震监测相结合进行及常规仪与全球定位系统相结合。“八五”国家科技攻关项目《岩质高边坡勘测及监测技术方法研究》已经研制出4种先进的仪器设备和5种新的技术方法,即钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、层析成像技术、近坝库段安全监测技术、边坡监测数据处理预报软件研究、高精度大地测量监测自动化系统。这些新技术和新方法已达到世界先进水平。 2边坡稳定性计算 本工程为某市某道路扩建工程,道路全长约8km,规划为城市主干道。本路段南面临海,北侧靠山,地理位置较为特殊,设计范围内有多段边坡需进行护坡处理。C坡岩质较差,易发生破坏,故以C坡作为研究对象。C坡原始山体坡度为25°左右,坡长约178m,高度为7.3~18.8m,属岩石坡面。岩性为安山岩、硅化安山岩,可见斑状结构,块状构造。裂隙发育,发育为压扭性断裂,断裂走向N65°E,倾向NW,倾角60°~70°,宽度100~135m,延伸长度大于500m。断裂两侧岩石较破碎,风化蚀变较强,主要为高岭土化、褐铁矿化,岩石含水性差。坡体在震动和强降雨条件下有形成滑塌的可能,总体评价稳定性较低。坡体自上而下分为杂填土、强风化安山岩、中风化安山岩3个岩土层。依据《建筑边坡工程技术规范》(GB50330-2002),采用平面滑动法,对现状边坡临空面进行稳定性验算,边坡工程安全等级为二级,边坡稳定安全系数KS=1.30。 3监测结果分析。 3.1锚杆应力计分析 该边坡各处共安装了15个锚杆应力计,其应力测量值却相差悬殊,变化规律也各不相同。各锚杆应力状态与锚杆所处位置的地质、工程条件以及锚杆长度有密切关系。本文选取C2、C3、C4等3个典型断面进行分析。发现所有锚杆从2013-05-30到2014-06-27这一年多的时间里,锚杆应力逐渐上升。而在2014-06-27到2015-04-16的时间里,锚杆应力虽然基本在持续增长中,但增速缓慢,逐渐趋于稳定。 处于边坡顶部的C2C1锚杆内力最大,处于边坡中部的C2C2锚杆内力次之,处于边坡下部的C2C3锚杆应力计出现问题,没能连续测到数据。根据前两个测量数据来看,C2C2锚杆内力应该最小。C2C1锚杆内力最大时达到29kN,应力达到59MPa。此时对应20144年9月5日。根据天气记录,7月份、8月份、9月份,该市进入夏季,雨量充沛。2014年7月23日至2014年9月5日之间,雨水天气达到16d之多。特别是2014年7月25日,天气状况是大到暴雨。9月5日之前的9月2日、9月3日也是连续中雨。这种雨水天气最有可能引起断裂结构面发生滑动。由C2C2锚杆可见,2014年9月5日C2C1锚杆内力突然增加,然后随着雨季过去,层间滑移状态减弱,C2C1锚杆内力也逐渐下降。C2C2锚杆内力也于2014年10月27日突然增加,随后逐渐下降。 但总体上,锚杆应力后期逐渐稳定下来,稳定在20kN附近,说明C2断面趋于稳定。仍然是处于边坡顶部的C3C1锚杆内力最大,处于边坡中部的C3C1锚杆内力次之,处于边坡下部的C3C3锚杆内力最小。这与C2断面测量结果类似。但也有不同之处,C3C1锚杆拉力最大值为18kN,比C2C1锚杆拉力低得多。另外不同之处是,该市气候进入夏季,经过7月份、8月份、9月份雨水的作用,2014年9月5日之后的锚杆拉力值继续增加,没有下降的趋势,一直持续到2015年4月16日,锚杆内力才开始下降。 4结论 (1)岩质高边坡的稳定性监测主要包括地面监测、地下监测和支护结构物监测三个部分,随着科技的进展,新的高科技手段如钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

边坡工程监测的内容和方法

边坡工程监测的内容和方法

黄土地区公路高边坡防护技术 一、研究背景 中国黄土分布面积约为63.1万km2,约占国土面积6.6%,主要分布在北纬33°~47°,东经75°~127°之间。西部地区黄土分布面积约27. 5万km2,占中国黄土总面积的43.7%,占西部地区国土面积的50%—60%以上。 黄土分布区,沟壑纵横,黄土冲沟及河谷区谷坡陡峻,滑坡、崩塌、滑塌、泥流等地质灾害非常发育,给公路建设带来许多困难。而作为长大线状构造物的高速公路,在这沟壑纵横,谷坡陡峻的鸡爪形地貌背景下,由于一系列技术条件的限制,不可避免的要进行大量开挖,形成黄土高边坡。如:陕西省铜川~黄陵一级公路,在黄土地区路线长度15km,因开挖路基,形成高度大于30m高边坡40余处,边坡最高达88m。

我国现行的《公路路基设计规范》中,只涉及到高度小于30米的路堑边坡的设计,而大于30米的公路黄土高边坡设计没有规范可循,对公路黄土高边坡防护技术还处于探索阶段。正因如此,本课题将从西部地区非饱和黄土物理力学性质,西部地区已建成公路黄土高边坡营运现状,黄土高边坡冲刷实验,黄土高边坡可靠度概念下的优化设计,黄土高边坡防护技术等方面展开研究,以便为西部高速公路建设中黄土高边坡设计与施工提供科学依据。 二、主要研究目标和研究内容 本项目以黄土地区重大公路工程为依托,采用“点”与“面”结合、室内试验与现场试验相结合以及理论计算与实体工程验证相结合的技术手段,重点解决公路黄土高边坡稳定性评价、坡型设计、边坡防护等技术难题,提出一套适合黄土高边坡的稳定性分析、设计和防护方法,从而大大提高公路黄土高边坡设计与防护的科学性与经济性,改善公路沿线的生态环境。本项目的主要研究内容包括:公路黄土高边坡地质结构模型研究;黄土土性参数统计分析研究;非饱和黄土强度实验研究;公路黄土高边坡稳定性分析研究;公路黄土高边坡推荐设计坡型研究;公路黄土高边坡防护技术研究;公路黄土高边坡防护决策支持系统研建。 三、主要研究成果 1、基于现场调查和室内试验,总结出八类黄土高边坡地质结构模型,为黄土地区公路高边坡稳定性分析、设计与防护提供了重要依据。 2、通过直剪、控制吸力的三轴试验与先进的三轴CT试验,研究了非饱和黄土抗剪强度、结构强度与基质吸力(含水量)之间的关系及原状黄土剪切过程中的细观结构损伤规律,提出了实用的非饱和黄土抗剪强度公式和非线弹性本构模型,使非饱和黄土抗剪强度理论研究上了一个新台阶。 3、首次开展了原状黄土边坡变形破坏机理的离心模拟试验研究,结合CAT数值模拟分析,提出了黄土高边坡的变形破坏模式,得出黄土边坡起始剪切破坏发生于坡高1/3处、

高层建筑物变形监测方案设计

目录 第1章绪论.................................................................... II 1.1 建筑物变形观测的概述................................................ II 1.1.1 变形产生的原因和类型........................................... II 1.1.2 变形观测的主要任务............................................ III 1.1.3 变形观测的目的和意义........................................... IV 1.2 建筑物变形观测的概况................................................. V 1.2.1 我国的变形监测工作发展过程...................................... V 1.2.2 高层建(构)筑物的变形特点.................................... VII 1.2.3 其它建(构)筑物的主要变形特点............................... VIII 1.2.4 我国开展变形监测工作的主要内容............................... VIII 1.3 变形监测的精度和频率.............................................. VIII 1.3.1 制约变形监测质量的主要因素................................... VIII 1.3.2 变形监测的频率.................................................. X 1.3.3 变形监测频率确定的基本方法..................................... XI 1.3.4 沉降稳定期的确定............................................... XI 第2章位移观测............................................................... XII 2.1 倾斜观测的陈述..................................................... XII 2.2 一般建筑物的倾斜观测............................................... XII 2.3 特殊建筑物的倾斜观测.............................................. XIII 2.4 建筑物主体倾斜观测................................................. XIV 2.4.1 主体倾斜观测的方法............................................. XV 2.4.2 主体倾斜观测的周期............................................ XVI 2.4.3 倾斜观测实例................................................. XVII 2.4.4 建筑物水平位移观测.......................................... XVIII 2.5 裂缝观测........................................................... XIX 2.5.1 裂缝观测的概述................................................ XIX 2.5.2 裂缝观测的方法................................................. XX 2.6 挠度观测.......................................................... XXII 2.6.1 建筑物基础挠度观测........................................... XXII 2.6.2 弹性挠度观测................................................. XXII 2.6.3 建筑物主体挠度观测........................................... XXII 2.7 日照和风振变形监测............................................... XXIII

某高速公路软质岩高边坡稳定性分析

某高速公路软质岩高边坡稳定性分析 【摘要】为了确保高速公路的安全,采取经济有效的加固防护工程措施和正确进行高边坡稳定性分析是高边坡设计的两个重要方面。本文阐述影响边坡稳定性的因素,结合某山区高速公路路堑高边坡工程实例,对该边坡原有防治措施及施工过程中出现的问题进行分析评价,为类似的工程提供一定的设计和施工借鉴经验。 【关键词】高边坡软质岩稳定性 随着我国高速公路建设的发展,高速公路逐渐向山区发展。在山区高速公路工程建设过程中,作为连续带状建筑物,高速公路将不可避免地会完整穿越或部分穿越山体。其中部分穿越山体的路段需要对山体进行开挖,开挖后将形成高陡边坡,致使山体边坡应力重分布。根据以往工程经验,高陡路堑边坡可能会出现变形破坏,如滑动、边坡崩塌等,这将增大公路建设的工程总投资,甚至延误施工进度及工期,并影响日后运营安全。因此,对深挖路堑边坡的稳定性及防治措施的效果进行分析评价就有着非常重要的意义。本文以某高速公路软质岩高边坡为例,对软质岩深挖路堑的稳定性及防治措施进行简要分析,希望对类似的工程能够提供一定的借鉴经验。 1 影响边坡稳定性的主要因素 一个边坡的失稳往往是多种因素共同作用的结果,我们通常将导致边坡失稳的这些因素归结为两大类。一是外界力的作用破坏了岩土体原来的应力平衡状态,如路堑或基坑开挖、路堤填筑或边坡顶面上作用外荷载,以及岩土体内水的渗流力、地震力的作用等,改变原有应力平衡状态,使边坡坍塌;另一是边坡岩土体的抗剪强度由于受外界各种因素的影响而降低,促使边坡失稳破坏,如气候等自然条件使岩土时干时湿、收缩膨胀、冻结融化等,水的渗入、软化效应、地震引起砂土液化等均将造成强度降低。 边坡是否稳定受多种因素[1-3]的影响,主要有: (1)岩土性质。岩土的成因类型、组成的矿物成分、岩土结构和强度等是决定边坡稳定性的重要因素。由(密实)坚硬、矿物稳定、抗风化性好、强度较高的岩土构成的边坡,其稳定性一般较好;反之就较差。 (2)岩体结构。岩体的结构类型、结构面形状及其与坡面的关系是岩质边坡稳定的控制因素。岩层的构造与结构的影响,表现在节理裂隙的发育程度及其分布规律、结构面的胶结情况、软弱面和破碎带的分布与边坡的关系、下伏岩土界面的形态以及坡向、坡角等。 (3)水的作用。水文地质条件的影响,包括地下水的埋藏条件、地下水的流动及动态变化等;水的渗入使岩土体质量增大,岩土因被软化而抗剪强度降低,

边坡监测合同

变形监测合同 国家测绘局 制订 国家工商行政管理局

委托方(甲方): 承揽方(乙方): 根据《中华人民共和国经济合同法》、《中华人民共和国测绘法》和有关法律法规,经甲、乙双方协商一致签订本合同。 第一条测绘范围:(包括测区地点、面积、测区地理位置): 工程名称:; 工程地点:。 第二条测绘内容:(包括测绘项目和工作量等):附检测方案 本次监测工程内容: 1.对施工过程中进行变形观测包括水平位移及地面沉降等内容。水平位移及地面沉降观测点共布设70个。 2.观测周期及频率:①所有观测点、测试设备的安装埋设均在边坡施工前完成,并测试各项目的初始读数;②监测工期为施工完工后2年;③在施工阶段,每3~5天观测一次,遇大雨应加密监测,并进行24小时动态监测,其余情况下可延至5~7天观测一次。当结构变形超过有关标准(警戒值)或场地条件变化较大时,应加密观测。大面积开挖施工阶段工期暂按90天计,测量次数暂定为15次;④边坡施工完毕后前期每月监测一次,当数值稳定后3~5月监测一次,测量次数暂定为5次;⑤预计观测总次数为20次。 第三条执行技术标准: 第四条测绘工程费: 1.取费依据:2002年修订本《工程勘察设计收费标准》;

2.工程总价款: 82500 元 第五条甲方的义务: 1.自合同签订之日起 2 日内向乙方提交有关资料和提出技术要求。 2.自接到乙方编制的技术设计书之日起 5 日内完成技术设计书的审定工作。 3.应当负责保证乙方的测绘队伍顺利进入现场工作,并对乙方进场人员的工作、生活提供必要的条件。 第六条乙方的义务: 1.自收到甲方的有关资料和技术要求之日起,根据甲方的有关资料和技术要求于 2 日内完成技术设计书的编制,并交甲方审定。 2.自收到甲方对技术设计书同意实施的审定意见之日起 2 日内组织测绘队伍进场作业。 3.乙方应当根据技术设计书要求按合同工期确保测绘项目完成。 第七条测绘项目完成工期: 1.乙方进场时间:年月日。 2.每次观测外业完成,观测结果如有异常变化,应立即口头预警通知现场甲方代表、监

岩质边坡稳定性例题

作业题1:简单平面滑动稳定分析 边坡高度40.000m,结构面倾角30.0°,结构面粘聚力30.0kPa,结构面内摩擦角30.0°,张裂隙离坡顶点的距离10.000m,裂隙水的埋深5.000m。边坡分4级,每级设2m宽平台,坡率分别为1:0.5,1:0.75,1:1,1:1。 岩层层数4层,各层参数如下: 序号控制点Y坐标容重锚杆和岩石粘结强度 (m) (kN/m3) frb(kPa) 1 32.000 18.0 80.0 2 18.000 16.8 100.0 3 4.800 17.0 150.0 4 -10.400 20.0 200.0 试求该人工边坡安全系数,如不稳定(<1.2),则请根据边坡锚固设置原则,设计适当的加固措施。

作业题2:二广高速某楔形体边坡稳定性验算 根据现场边坡开挖情况,地层揭露岩性主要由亚粘土及白垩系砾岩组成。第一、二级边坡为强~弱风化砾岩,褐红色,巨厚层状,强度较高;第三、四级边坡亚粘土~全风化砾岩,残坡积,红褐色。节理裂隙较发育,有多条X形节理,产状分别为(1)213°∠38°、(2)305°∠52°。裂隙(1)局部岩屑与泥质充填,胶结程度一般;贯通裂隙(2)岩屑与泥质充填,胶结程度较差。两组裂隙延伸长度不等,长者达30m左右,裂隙水沿楔形体底部渗出。X节理相互切割,极易发生楔形体滑动破坏。 根据地质调查结果,初步根据砾岩结构面结合程度和夹岩屑与泥的情况,取结构面粘结强度25kPa,内摩擦角28°。坡面倾向250°,倾角55°,破顶面倾向250°,倾角18°,岩体容重取为22 kN/m3。请计算安全系数与楔形体高度之间的关系,求临界的楔形体高度。

边坡检测

隧道工程 边坡施工安全监测设置及实施方案 (现场监测)

*******有限责任公司 二O一一年三月----------------------- 页面2-----------------------

目录 一设计目标及要求 (3) 1.1 监测的内因 (3) 1.2 监测的外因 (3) 二设计原则 (3) 三主要监测项目说明 (3) 3.1 变形监测 (3) 3.2 土体松动监测 (4) 3.3 对加固用的材料进行监测 (4) 3.4 对土体压力进行监测 (4) 3.5 外部条件监测 (4)

四边坡安全管理监测设置及实施方案(现场监测) (4) 4.1 工程概况 (4) 4.2 监测方案 (4) 4.2.1 测点布置 (5) 4.2.2 远程监控系统及监控方案 (5) 4.3 其他可补充监测技术 (6) 4.3.1 测斜监测 (6) 4.3.2 以“面”为监测对象的表面变形 (6) 4.3.3 钢筋等的辅助测量 (6)

----------------------- 页面3----------------------- 滑坡体监测初设概要及具体项目实施方案 一设计目标及要求 监测的主要目的在于确保工程的安全。边坡的安全监测以边坡岩体整体稳定性监测为主,兼顾局部滑动砌体稳定性监测。由于过大变形是岩体破坏的主要形式,因此(地表和深部)变形监测是安全监测的重点。 1.1 监测的内因 边(滑)坡中存在的不利结构面常常是引起边(滑)破破坏的主要内在因素,故监测的重点对象是岩体中的这些结构面,监测测点应放在这些对象上或测孔应穿过这些对 象等。 1.2 监测的外因 开挖爆破和水的作用是影响边(滑)坡稳定的主要外因,施工期的质点振动速度、

(整理)基坑变形监测技术方案.

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。 本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1.《建筑变形测量规程》(JGJ/T8-97) 2.《工程测量规范》(GB50026-93) 3.《建筑基坑支护技术规程》JGJ120-99 4.《国家一、二等水准测量规范》(GB12897-93) 5.《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

边坡变形监测方案

XXXX标 边坡变形监测专项方案 编制: 审核: 批准: XXXXX公司 2016年12月01日 XXX标 边坡变形监测方案 一、工程概况: 我公司承建的XXX标段,桩号范围3+400~6+950。主要建设内容包括:XXXXX.。本工程等级为II等;河道堤防级别为3级,施工临时工程为5级。防洪标准:防洪标准为50年一遇。供水标准:农业灌溉供水设计保证率为95%。 二、监测内容: 本标段边坡监测主要是指路堤边坡监测,监测内容为人工巡视、裂缝观测、坡面观测观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专职安全员坚持每天进行巡视,对图纸较差处、渗水严重处、边坡较陡处进行重点巡视、检查。当坡体表面发现裂缝时安全员立即采取措施和报告监测组。

2、坡面观测:边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用GPS进行测量。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 二、监测方案的实施 1、基准控制点和监测点的布设 1.1基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍比较稳定的地方埋设工作基点,其中工作基点采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌,埋设在加固坎上,地质较为稳定,本标段工作基点选择桩号点。 变形点布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上每100m布置变形监测点,编号分别为左1-32,右1-32。以及对南岸6+581,南岸4+390、北岸5+160、4+000-4+100段附件的建筑物等进行加密监测。 1、顶部用沉降钉垂直植入混凝土中,孔深不小于50mm,基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2、监测精度及频率要求 根据设计图纸及国家相关规范要求,边坡的变形观测如下: 2.1 水平位移监测网主要技术要求为:

变形观测观测方案

“崇州市怡心花园保障性住房”变形观测 技 术 方 案 成都西南冶金测量工程公司 2011年12月

目录 一、公司简介 2 二、公司资质 (4) 三、本工程投入的仪器设备 (9) 四、本工程投入技术人员情况 (10) 五、沉降观测质量保证措施 (10) 六、监测方案 (14) 附件: 1、位移观测点、沉降观测点布设示意图。 2、基准点、观测点示意图 一、公司简介 成都西南冶金测量工程公司始建于1988年初,系国有专业测

量公司,为独立的企业法人单位。经过十几年的市场拼搏,企业在各个方面有了长足的发展,公司现有职工79名,其中:高级工程师4名;工程师13名;助理工程师30名。公司下属生产机构有:4个直属测量队,1个GPS工作站。并设有:办公室、总工办、质管部、资料室、财务部等管理部门。现为乙级测绘资格持证单位。 一、现有主要测绘仪器设备 1、拥有各类全站仪14台; 2、各类进口及国产红外测距仪10台; 3、J1级经纬仪1台,J2级经纬仪10台; 4、S1级水准仪1台,S3级水准仪4台; 5、大平板仪22台; 6、台式及便携式微机20台; 7、数字化仪1台套; 8、自动绘图仪1台套; 9、南方CASS 3.0数字化地形地籍成图软件; 10、清华山维商品化测绘专业控制网平差软件《NASEW》 11、美国TRIMBLE 4000SSE全球卫星定位系统(GPS)接收机3台套。 二、近几年来独立完成的主要测绘项目 1、梁平—万县高速公路1:500带状地形测量; 2、重庆上桥—界石段1:500带状地形测量;

3、成都市1:500基本地形图测量; 4、富顺县1:1000地形测量; 5、自贡市岷江引水项目1:2000带状地形测量; 6、射洪县1:500地籍测量; 7、上海长宁区(80km2)地下管线探测GPS控制测量; 8、广惠高速公路B标段GPS控制测量; 9、西藏莽措湖农业开发项目测绘工程; 10、射洪县柳树镇(13km2)1:500地形测量; 三、已完成的和正在监测的沉降观测工程项目一览表

相关主题