搜档网
当前位置:搜档网 › 地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法
地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法

中铁二局股份有限公司城通公司

1.前言

在深基坑侧墙施工时,侧墙多采用定型竹胶板、木模板+钢管支撑组合体系,使用过程中存在耗费工时长,材料利用率低,表观质量差、渗漏水现象较严重等缺点。

在施工武汉市轨道二号线一期工程第十八标18A 分标段工程【洪山广场站】时,根据施工工艺、基坑深度、支护要求和土质情况,选择了移动模板台车,代替传统的组合式模板,减少了劳动力投入,提高了工作效率。

2.工法特点

2.1成本低廉; 2.2 安全可靠; 2.3 操作方便; 2.4工作效率高; 2.5节能环保;

3.适用范围

适用于地下车库、地下室、地下车站等单侧墙体系工程。

4.工艺原理

4.1工艺原理

1、加固原理:借助预埋的地脚螺栓+台车自重+台车斜向可调节钢锭进行加固;

2、行走原理:在台车底部设置万向轮行走装置,利用人工推动行走;

3、工作原理:模板制安、脚手架搭设一次成型,侧墙墙体分段整体浇筑,侧墙刹尖部分预留契口,后期通过注浆的方式,保证该部位砼密实度。

4.2侧压力计算

混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值:

2

/121022.0V t F c ββγ=

H

F c γ=

式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取25 kN/m3

t0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用

t=200/(T+15)计算;t=200/(20+15)=5.71

T------混凝土的温度(°)取20°

V------混凝土的浇灌速度(m/h );取2m/h

H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取4.0m Β1------外加剂影响修正系数,掺外加剂时取1.0; Β2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。取1

2

/121022.0V t F c ββγ=

=0.22x25x5.71x1.0x1x21/2 =44.4kN/m2

H

F c γ=

=25x4.0=100kN/ m2

取二者中的较小值,F=44.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:

q=44.4x1.2=53.28kN/ m2 4.3架体承受压力

单侧支架主要承受混凝土侧压力,取混凝土最大浇筑高度为4.0m ,侧压力取为F=53.28KN/ m2,有效压头高度h=1.78 m ;有效压头中由水平荷载产生的侧压力为4x1.4=5.6 kN/ m2(见图4.3-1:侧墙台车受力检算简图)

图4.3-1 侧墙台车受力检算简图

4.4支架受力计算

单侧支架按最大间距1.24m 布置;顶部单根拉杆最大承载力按50KN (每1000mm 放置一根)计算;

F1=0.5X1.78X1.24X53.28=58.8KN F2=2.22X1.24X53.28=146.67KN F3=1.78X1.24 X5.6=12.36KN

1、分析支架受:取o点的力矩为0,则:

3.761×R+4×50=F1×(1.78×1/3+2.22)+F2×2.22×1/2+ F3×(1.78×1/2+2.22)

R=44.26KN

2、支架侧面的合力为:F合=F1+F2 +F3=217.83KN ;由图4.4-1《支架侧面合力检算简图》

图4.4-1 支架侧面合力检算简图

F锚 =154KN

F锚 =154KN 共有5/2个埋件承担(每块模板有2个架体,5个地脚螺栓)

其中单个埋件最大拉力为:F=154 /(5/2)= 61.6KN

4.5埋件强度验算

预埋件为Ⅱ级螺纹钢d=25mm,埋件最小有效截面积为:A=3.14×102=314mm2

轴心受拉应力强度:σ=F/A=61.6×103/314

=196.2MPa

4.6埋件锚固强度验算

对于弯钩螺栓,其锚固强度的计算,只考虑埋入砼的螺栓表面与砼的粘结力,不考虑螺栓端部的弯钩在砼基础内的锚固作用。

锚固强度:F=πdhτb=3.14x25x550x3.5

=151.1kN> F锚=61.6KN 符合要求

其中:

F锚-锚固力,作用于地脚螺栓上的轴向拔出力(N)

d-地脚螺栓直径(mm)

h-地脚螺栓在砼基础内的锚固深度(mm)

τb-砼与地脚螺栓表面的粘结强度(N/mm2)

5.施工工艺流程及操作要点

5.1 施工工艺流程

施工准备→零部件验收→预埋地脚螺栓→台车拼装→台车就位调试→台车验收→平台搭设→砼浇筑→进入下道工序。

5.2 操作要点

5.2.1零部件验收

设备进场后,对模板主要材料进行验收,主要材料质量验收表见5.2.1,主材验收见5.2.1-1和5.2.1-2.

序号项目允许偏差(mm)检验方法

1面板截面尺寸+8,+5钢尺检查

2全高垂直度H/1000且≤30经纬仪或吊线、钢尺检查

3层高(全高)±10水准仪或钢尺检查

4平整度10水准仪及2m靠尺检查

5相邻两板高差10钢尺检查

≤5m8经纬仪或吊线、钢尺检查6

层高垂直度

7>5m10经纬仪或吊线、钢尺检查

图5.2.1-1 面板验收图5.2.1-2 背楞验收

5.2.2预埋地脚螺栓

楼板砼施工前,测量定位侧墙边口线,沿侧墙纵向每300mm预埋Ф25的钢筋;待楼板砼浇筑完成后,用Ф25的接驳器+精扎螺纹钢,接长,形成地脚螺栓。

5.2.3 台车拼装

台车组装时以2.4m为台车单元组,组装直接利用结构顶板吊钩和手动葫芦挂装。每组台车配一块2440x3800mm进口标准模板、2榀桁架结构和对应的接高模板,桁架和模板之间采用螺栓固定连接。单元台车组挂装完成后,根据施工段落长度再将单元台车组组装,台车组之间连接采用Ф48脚手架钢管连接,台车组装完成后将模板表面涂刷脱模剂,台车组装效果见图5.2.3-1。

图5.2.3-1 台车组装效果图

5.2.4台车就位调试

台车横向和纵向移位均依靠人工牵引,桁架下方设置万向轮,直接在混凝土面上走行。台车组装完成或拆模后,先利用千斤顶将台车升起,收起螺旋支撑后将千斤顶降下,让万向轮直接接触地面承受台车重量;然后采用人工牵引方式将台车移动到预定位置,台车平面布置图见5.2.4-1。

图5.2.4-1 台车平面布置图

1、台车就位调试方法及步骤主要有:

1)台车就位前先在矮边墙上用墨线画出模板下口控制线,同时检查矮边墙的水平位置是否符合设计,对不符合设计部分采用打磨、修补等方法进行修正调直。

2)将台车移动并紧贴矮边墙上,利用螺旋支撑将模板下口调整至控制线位置。

3)利用线锤或水平尺检查模板的垂直度。若模板不垂直,则利用台车上的旋转支撑进行调节,使模板达到垂直方向的要求。调整时通常将模板上口向混凝土一侧预留1~1.5cm倾斜变形量,以调节混凝土浇筑时模板向外倾斜。

4)模板调整到位,利用螺杆拉地锚和背向加支撑等方式加固台车,防止砼浇筑过程台车移动跑位。

2、砼浇筑

1)墙体浇注应采取长条流水作业,分段浇筑,分层振捣,均匀上升。

2)侧墙砼浇筑前,先铺一层5—10cm 厚的与墙体砼同标号的水泥砂浆,采用铁锹入模,不应用料斗直接灌入模内。

3)侧墙浇筑施工时,两侧应交叉对称进行,一侧墙浇筑一层后进行另一侧墙同层混凝土浇筑,浇筑高度应大致相同,以免对模板支撑体系产生侧压。

4)混凝土浇筑振捣过程中,不可随意挪动钢筋,要经常加强检查钢筋保护层厚度及所有预埋件的牢固程度和位置的准确性。

5)侧墙砼分层浇筑,分层振捣,分层厚度应不大于50cm,使用心Ф48振捣棒插入振捣,插入振捣时移动间距不宜大于作用半径的1.5 倍,距离模板不应大于振捣器作用半径的l/2。

6)振捣时间一般为15—30s,并且在20—30min后对其进行二次复振。砼振捣不得碰撞钢筋、模板和预埋件,以免模板变形或预埋件偏移、脱落。

7)侧墙砼初凝后凿平杀肩部位多余砼,采用同标号水泥砂浆抹光收面,刹肩部位砼效果见图5.2.4-2。

图5.4.2-2 刹肩部位砼效果

3、模板台车常见问题的原因及处理

模板台车常见问题原因及处理措施见表5.4.2-1。

表5.4.2-1 模板台车常见问题的原因及处理

现象产生原因处理方法

烂根

1、砂浆摊铺不均;

2、振捣不到位。

1、边墙施工前,将侧墙外边线内收1cm,并在模板底

部贴双口胶,依靠砼自重(侧压力),充填密实;

2、加强根部砼振捣。

错缝

模板拼装后,整体加固

拧紧螺栓过紧

1、模板拼装后,严格执行验收程序,通过检查模板

垂直度、模板断面有效控制;

2、砼浇筑过程中,派专职看模工。

蜂窝、麻面

1、砼坍落度过小;

2、振捣时间过短。

1、严格控制商品砼坍落度,将设计坍落度值调大;

2、严格控制振捣时间,每1.5米增设30*30cm浇筑

孔。

6.材料与设备

6.1 材料

1、移动模板台车以2440x3800mm为一个单元,共10组,单元重1200kg;

2、其中面板采用芬兰进口维萨板(1220x2440mm),可双面倒用80次;

3、主背楞采用木工字梁代替传统的工字钢,木工字梁规格为工20cm;

4、移动模板台车底部安装万向轮,供台车行走使用。

6.2设备

本工法采取的机具设备见表6.

表6 机具设备表

序号机具名称规格型号单位数量用途

1模板1220x2440套50支模

2支撑φ48m35加固

3精扎螺纹钢φ25套350加固

4电焊机BX3-500台10钢筋工程图6-1 维萨(WISA)板图6-2 木工字梁

7.质量控制

7.1工程质量控制标准

侧墙施工质量执行GB50299-1999《地下铁道工程施工及验收规范》,允许偏差见表7 。

表7 允许偏差表

7.2质量保证措施

7.2.1模板顶板预留50mm的契口,砼施工至此时,在结构墙外侧支300mm高的木模,形成砼工作窗,后期通过预埋的注浆管注浆保证刹肩部位砼的密实度。

7.2.2立模过程中,每一模支模均须吊线垂控制,须保证模板拼装垂直度。

7.2.3对于侧墙模板有蜂窝,出现漏水现象的,及时用快干水泥堵漏补强。

7.2.4侧墙砼配料时,严格按照试验室配合比进行,保证侧墙砼的塌落度满足浇筑要求。

8.安全措施

8.1模板台车行走过程中,防止万向轮失稳造成人员伤害,使用前仔细检查台车零部件完整度;

8.2侧墙砼浇筑过程中,浇筑速度不宜过快,防止模板倾覆。

8.3施工现场应搭设工作梯,作业人员不得爬支架上下。

8.4模板顶部高空临边要有足够的操作平台和安全防护。

9.环保措施

环境保护是我国的基本国策,结合行业标准《节能减排监督管理暂行办法》,我部主要采取以下措施:

9.1侧墙砼浇筑后,砼余料和垃圾及时清理;

9.2将建筑垃圾分类存放进指定垃圾站;

9.3模板堆放场地干净无污染。

10.效益分析

10.1本工法将工程施工由地面转入地下,避免了地面施工产生的大量场地占用,消除了对城市交通的严重影响,施工产生的振动、噪音、粉尘等公害也得到了最大限度的降低。工程建设时,周围的居民及企事业单位能正常生活及工作。超近距离安全穿越高层居民楼房的成功,为以后城市地下工程在类似情况下的规划建设提供了可靠的决策依据和技术指标,新颖的工法技术将促进地下工程施工技术进步,社会效益和环境效益明显。在造价上,侧墙施工模板节约成本为0.088万元/延米。成本效益分析见表10。

表10 项目效益分析表

10.2本工法侧墙采用移动模板台车施工,多段侧墙可一批同时施工。这样,在保证业主要求的节点工期和工程总工期上,较其他工法施工,有较大的优势。

10.3本工法施工,自钢筋绑扎、模板立模、砼浇筑。采用人工施工较多,较之机械施工。在噪音和废气污染上,都有明显的优势。

11.应用实例

11.1工程概况

武汉市轨道交通二号线一期工程洪山广场站位于洪山广场西侧广场下,该广场是武汉市重要的城市中心广场,属武汉地铁2#线与4#线的换乘车站。洪山广场站为地下三层多柱多跨箱型结构(物业开发部分为地下二层),车站基坑主体平面呈楔形,建筑面积为10300m3;基坑最大开挖深度达26.81m。

因车站结构平面跨度大,地面条件受限制,且需及早恢复路面交通,故结构采用盖挖逆作法施工,侧墙采用φ800的C35P8混凝土。采用盖挖逆作法施工,平面位置见图11.1-1。

图11.1-1 洪山广场平面图

本工程侧墙施工于2011年1月1日开工,竣工日期为2011年12月25日,总工期360日历天。本工程使用移动模板台车施工范围内侧墙共计900余米,累计施工侧墙40次,侧墙施工工期节约200天。考虑侧墙施工与其他工程的流水作业,采用移动模板台车施工,对该工程的总工期节约近20天。

侧墙采用地脚螺栓和支撑斜杆定位,两道工序均为人工作业,通过精确安装、反复校核,减小

误差,确保侧墙定位精度满足设计及规范要求。

11.2结果评价

本施工方法发明工艺简单,可操作性强,耗费工时少,材料利用率高,表观质量好、防水效果好,防水效果图见图11.2-1。

图11.2-1 侧墙防水效果图

本工法施工与常规模板工艺偏差对比表见表11。

序号项目常规模板施工差值

(mm)

本工法施工差值

(mm)

1平整度0~100~5 2错台0~100~5

地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法 中铁二局股份有限公司城通公司 1.前言 在深基坑侧墙施工时,侧墙多采用定型竹胶板、木模板+钢管支撑组合体系,使用过程中存在耗费工时长,材料利用率低,表观质量差、渗漏水现象较严重等缺点。 在施工武汉市轨道二号线一期工程第十八标18A 分标段工程【洪山广场站】时,根据施工工艺、基坑深度、支护要求和土质情况,选择了移动模板台车,代替传统的组合式模板,减少了劳动力投入,提高了工作效率。 2.工法特点 2.1成本低廉; 2.2 安全可靠; 2.3 操作方便; 2.4工作效率高; 2.5节能环保; 3.适用范围 适用于地下车库、地下室、地下车站等单侧墙体系工程。 4.工艺原理 4.1工艺原理 1、加固原理:借助预埋的地脚螺栓+台车自重+台车斜向可调节钢锭进行加固; 2、行走原理:在台车底部设置万向轮行走装置,利用人工推动行走; 3、工作原理:模板制安、脚手架搭设一次成型,侧墙墙体分段整体浇筑,侧墙刹尖部分预留契口,后期通过注浆的方式,保证该部位砼密实度。 4.2侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2 /121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取25 kN/m3 t0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用

移动模架法施工

下行式移动模架造桥机施工 1、前言 国内外移动模架(造桥机)使用状况 移动模架造桥机是一种自带模板、利用两根纵梁支撑、对混凝土桥梁进行逐孔向前现场浇筑的施工机械。该技术于20世纪50年代起源于西欧,1959年在阿尔卑斯山修建桥梁时首先创用,周期达到两周一孔;1963年西德斯特拉巴格公司采用穿巷导梁(两次走行型)现浇31m跨简支桥梁;1969年德国PZ公司首先使用桥面下支撑双梁一次走行的现浇方案,用于德国Amsinck立交桥,于1973年定型,该工法亦称PZ法,其最大适用跨度为55m。现在发展到了60米。 桥面上支承实例有瑞士如根托贝桥,此桥用MSU60/90型桥面上支承移动模架法施工,其外模为悬挂式;葡萄牙瓜迪亚纳河高架桥,其桥跨为50m+5×60m+50m,采用桥面上支承柔性悬挂法。 移动模架造桥技术,日本于1968年引进,美国在1977年使用。如美国亚特兰大的马耳他高架桥,其跨度为23.4m~44mPC单箱单室连续梁。 我国交通部门1975年援外时采用。1991年在国内最早被应用于厦门高集海峡大桥。该桥全长2070m,45m等跨距连续PC梁,采用PZ公司研制、瑞士LOSINGER公司生产的移动模架造桥机施工。台湾省在20世纪90年代后大量引进或制造了该类造桥机达40台。 国内第一台拥有自主知识产权、自行研制成功的移动模架造桥机,在1998年成功投入使用于厦门海仓大桥东引桥1000t/42m单箱PC梁的施工;1999年京珠高速公路武汉打靶堤立交桥采用自行研制的1000t/2×30m型移动模架造桥机;2000年至2001年深圳通香港之东深供水改造工程采用自行研制的500t/24mU型渡槽移动模架造桥机;2002年丹拉高速公路磴口黄河桥采用自行研制的简易式1200t/50m型移动模架造桥机。这些实践提供了国内移动模架造桥机可靠的施工技术研究并总结了成熟的施工工法。 ; 根据现场条件和施工组织比选,本桥采用下行式移动模架。下行式移

移动模架逐孔施工工法

移动模架逐孔施工工法 丄、八、亠 1冃I」言 1.0特大桥南引桥设计为5mx 40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板 结构,箱梁高2.4m,顶宽16m,底宽7m,梁长有32m 40m 48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一 致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2工法特点 2.0.1 本工法操作方便,安全可靠,机械化程度高,劳动力投入少,缩短工期。 2.0.2 本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3 本工法荷载通过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高; 模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简支箱梁、连续箱梁的施工。使 用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要 性能参数表见表3。

4工艺原理 4.0.1 移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,通过自立行走、模板开合,

对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模 及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图 4.0.2-1,图4.0.2-2。 4 3 图4.0.2-1 移动模架造桥机侧面结构图 图4.0.2-2 移动模架造桥机正面结构图 1——主梁;2——横联系统; 3――前导梁;4――后导梁;5――墩旁托架6――支承台车;7――底模;8――侧模平台;9――侧模支撑;10――中扁担梁 11――防风装置;12――托架支撑;13 ――配重;14 ――液压系统 4.0.3 造桥机工作时,整个模架在靠墩旁托架支撑的支承台车作用下,可通过竖移、横移、纵 移分别实现脱模、模架横向分离或合拢、过孔。底模在横移油缸作用下,实现开合并可通过底模螺杆调整高程。

移动模架工法

一、前言 随着桥梁建设的飞速发展,预应力混凝土连续箱梁由于具有整体刚度大、施工质量容易保证、养护成本低等优点,已广泛应用于城市高架桥和大型桥梁的引桥建设中。而混凝土连续箱梁的施工方法,在国内却基本局限于采用满堂支架现浇。相比之下,移动模架法施工具有以下明显的优点:第一是工序简单,施工周期短,同时移动模架逐孔施工,具有明显的经济效益;第二是不需进行基础的处理,适用范围广;第三是移动模架对于高墩桥梁,尤其是城市高架桥,具有显著的安全性,同时可不影响桥下的通车要求。 针对润扬长江大桥北引桥的现场环境和混凝土连续箱梁的结构特点,路桥集团公路二局研制开发了YZ40/1500下行式移动模架造桥机,该造桥机适用于混凝土箱梁的逐孔现浇施工及先简支后连续的预制拼装施工。 二、工法特点 1、本工法使用的移动模架造桥机结构简单,部件尽量选用常用周转材料,加工量相对较小,节省成本。 2、一孔梁段施工完成后移动模架整体行走至下一孔,无需多次拼装模板及预压,施工周期短且所需人员少。 3、调整主梁之间的距离和模板顶托高度即可适应不同几何尺寸梁段的浇注,设备通用性好。 4、结构受力明确,理论计算结果与实际发生情况极为吻合,结构安全可靠,而且有利于箱梁的施工控制,保证良好的线形。 5、本工法跨中无任何支撑,因此跨间地基不需处理,同时在施工时不影响通车通航,具有显著的社会经济效益。 三、适用范围 本工法适用于45米左右跨径预应力混凝土连续箱梁逐孔现浇,也可用于混凝土箱梁节段拼装法施工。特别是墩身超过一定高度搭设支架有困难时,施工现场地基软弱或桥下有通车通航要求时,以本移动模架造桥机施工具有很大的优越性。本工法主要以陆上施工为主,水中施工时应根据现场情况作适当变动。

移动模架施工工艺工法

移动模架施工工艺工法 (QB/ZTYJGYGF-QL-0503-2011) 桥梁工程有限公司赵红来刘涛 1 前言 1.1 工艺工法概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~60m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,钢箱主梁式移动模架与桁架主梁式移动模架原理基本相同,本工法主要内容为桁架主梁式移动模架。 图1 钢箱主梁式移动模架构造图 钢箱主梁式移动模架结构系统主要有:钢箱主梁、桁式鼻梁、横梁、模板系统、平台支架系统、支承移动模架主梁的支承系统、移动模架前移及横梁模板开合调整的液压控制系统。

图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 1.2 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱或支承于桥梁承台上,通过支撑键及预埋键盒,将施工荷载全部转移至墩柱或承台之上,不再设置临时支墩。 1.2.2 每组桁梁通过可收折横联形成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵及竖向移动装置,完成横移、纵移及高度调整。 2 工艺工法特点 2.1 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 2.2 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 2.3 模架前移及横梁、模板收折均可采用同步液压系统,操作简便、连续,工效高。 2.4 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走的施工需要。 2.5 标准化作业、施工周期快、质量好。 3 适用范围 3.1 高墩现浇箱梁施工。 3.2 复杂地形现浇梁施工。

移动模架施工工艺工法模板

移动模架施工工艺 工法

移动模架施工工艺工法 1 前言 1.1 概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~40m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,本工法主要内容为后者。 图1 钢箱主梁式移动模架构造图

图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 1.2 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱上,经过支撑键及预埋键盒,将施工荷载全部转移至墩柱之上,不再设置临时支墩。 1.2.2 每组桁梁经过可收折横联行成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵移装置,完成横移及纵移。 2 工艺工法特点 2.1 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 2.2 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 2.3 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走。

移动模架施工工法

移动模架施工工法 1.前言: 移动模架法制梁最早于1955年在德国使用,国内从20世纪90年代在公路桥梁施工中开始采用移动模架制梁。移动模架是一种自带模板可在桥位间自行移位,逐孔完成箱梁现浇施工的大型制梁设备,制梁不受桥下地质条件的限制,适应深谷、软基、水中等各种工况的要求,避免大吨位提、运、架设备和预制场的一次性投入;近年来我国铁路客运专线及高速铁路建设中得以迅速发展和广泛应用。 本工法是在参照有关技术标准的前提下,在沈丹铁路客运专线TJ-3标简支现浇箱梁施工过程中,经总结和完善而形成。通过应用本工法,保证了工程施工质量和安全,创造了良好的社会效益和经济效益。 2、工法特点: 2.1受环境影响较小,可在复杂地形条件下施工。 2.2能保证安全质量,施工速度快。 2.3施工方法简单,易于施工人员掌握。 2.4功能完备,机械化程度高。 3.适用范围: 本工法适用于客运专线32m及24m现浇梁施工。 4.工艺原理: 移动模架造桥机主梁在支承油缸及托辊轮箱的作用下,可实现升降及纵移动作;模架及模板在模架开启机构的作用下完成底模架横移开启及闭合的动作;模架通过挑梁、吊臂及吊杆悬挂在主箱梁底面,利用可调撑杆调节模板的预拱度,按设计要求调整梁底的线型高程。 5.施工工艺流程及操作要点: 5.1工艺流程: 移动模架系统在现场拼装成型,进行模板调整、预拱度设置及预压。钢筋在加工场集中加工、专用运输车运输到施工桥位、吊车吊装到

桥上作业面后进行绑扎;预应力孔道塑料波纹管成孔;底、腹板钢筋绑扎完成后,安装内模,最后进行顶板、翼缘板钢筋绑扎;混凝土在拌合站集中拌和、混凝土输送车运输,混凝土泵车泵送入模,插入式振动器进行梁体混凝土振捣,桥面采用悬空式整平机整平;梁体养护采用自然养生;预应力筋张拉采用两端整拉工艺,真空压浆、封端;移动模架落架、脱模,纵向前移至下一浇筑孔位。 图5.1-1 移动模架造桥机施工工艺框图

移动模架逐段施工法

移动模架法逐段施工等截面连续箱梁 三航江苏分公司杨伯崇 1 工程概况 移动模架是一个可沿桥梁纵向移动的机械化程度很高的“桥梁工厂”,国内俗称“造桥机”。该设备的模板支撑系统支撑在移动模架的主承重梁上,根据主承重梁对模板系统的支撑方式,移动模架可以分为两种,主承重梁在模板系统的上方,并借助已成型箱梁位移的称为上行式移动模架,主承重梁在模板系统的下方,并借助桥敦台位移的称为下行式移动模架。移动模架系统适用于滩涂、峡谷高墩身、城市高架桥等场地的连续梁或简支梁的现浇混凝土桥梁的施工,随着国内交通基础设施建设的高速发展,本世纪以来,按照移动模架施工设计的桥梁也越来越多,逐渐得到广泛应用。 242省道临洪河特大桥全长2313.2m,区域地势低洼,地形较平坦,沟、塘、河、池纵横密布,缺乏施工场地。根据地质勘探,该项目穿越了大面积的海相沉积的淤泥、淤泥质粘土地段,厚度普遍较大,软土厚度一般为8.0~16.0m,软土具含水量高(最高达75%)、压缩性大、强度低、天然孔隙比大等特征。加之大桥横跨素有“洪水走廊”之称的临洪河,汛期来临时,施工基本上就要中断,因此,该桥现浇箱梁采用了移动模架法施工技术,施工跨度为50m、48m、38m,48m 为标准跨。 2 移动模架构造形式 移动模架造桥机由承重主梁、导梁及横联、前中后支腿、挑梁和吊臂、外侧模板及底模、底模架、外侧模架、拆装式内模、爬梯及走道结构、液压及电气系统等几部分组成,构成一个完整的承载结构体系。总装后的下行式移动模架如图1所示。 图1

2.1主箱梁 临洪河特大桥使用的移动模架主箱梁由两组多节钢箱梁组成,每节长度10m,通过节点板用高强度承剪螺栓连接,底板下两边有供台车前移的轨道。主梁端部安装桁架式导梁,辅助移动模架整机过孔使用。横联为两侧钢箱梁及导梁间的连接桁架,通过横联,将钢箱梁及导梁组成一个整体框架,共同受力。图2为主箱梁标准节段及主箱梁间横联。 图2 2.2 前、中、后立柱支腿 支腿是移动模架主梁的直接支承结构,对整机起到支撑作用,并将所有施工荷载传递到已施工的结构上。 对于上行式移动模架,前支腿支承于前墩墩项,是移动模架工作状态的前支点,前支腿整体为门式结构,由支腿立柱、支腿横梁、托辊轮箱、吊挂轮、液压系统等构成。中支腿在后跨已浇筑的混凝土箱梁顶面安装,是移动模架的中支点,中支腿在浇筑首跨时需在墩顶盖梁上设支腿立柱结构,中间跨及尾跨时无需支腿立柱。后支腿位于主梁尾部,只用于整机过孔作业。 下行式移动模架支腿由立柱和托架组成,立柱直接支承到承台上,立柱上端与托架的底部通过法兰相联。为了增加立柱的压杆稳定性,立柱设计有顶紧支座及拉紧支座,使立柱紧紧抱住桥墩。下行式移动模架配备三组支腿,两组工作,一组辅助过孔。图3、图4分别为上行式和下行式模架支腿及托架。

地铁车站侧墙模板技术交底

施工技术交底记录 年月日

施工技术交底记录 年月日 模板拼装流程:放置背楞→竖肋组装→钢板上弹线下料→铺面板→弹线铺竖肋上槽钢背楞和吊钩→模板吊升靠在堆放架上。 模板及支架安装流程:钢筋绑扎并验收→弹出外墙边线→拼装好单元模板吊装到位→模板到位后用芯带及插销连接好各单元模板→吊装架体到位,并用钢管连接好相邻架体,利用架体尾部的调节螺栓使模板上口向墙体侧倾斜5mm→紧固好一次性埋件系统→验收合格后进行混凝土浇筑 图2.1 侧墙模板工艺流程

施工技术交底记录 年月日 交底单位:*市轨道交通5号线 二标五工区项目部 接收单位:项目部工程技术人员 接收人:

施工技术交底记录 年月日

施工技术交底记录 年月日 (四)阳角、阴角连接节点 阳角处模板通过45度的斜拉杆连接,角部合成企口形式,因为斜拉杆为45度方向受力,能有效保证角部不开模、不漏浆。(如下图) 阴角处模板通过定型角模连接,角模和直墙模板用直芯带连接。可以保证接口处的严密、不开模、不漏浆。(如下图) 图??阳角连接节点图??阴角连接节点 (五)混凝土工程 1.钢筋、模板报验合格后进行混凝土浇筑,每个班组8-10人,配置3根振动棒(1根备用) 2.砼浇筑前做好砼塌落度试验,也应在模板上标出各层顶面标高,混凝土的振捣使用插入式振捣棒,浇筑分层进行,每层厚度为300~400mm。 3.混凝土的浇筑连续进行,如必须间歇时,其间歇时间应尽量缩短,并应在前层混凝土初凝前,将次层混凝土浇灌完毕。混凝土运输、浇筑及间歇的全部时间,不得超过210 分钟,当超过时须设置施工缝。 4.混凝土运至浇筑地点后,经坍落度检验合格后,应立即浇筑入模。砼卸出时,其自由倾落高度不宜超过2m,若超过2m,应采用斜槽、溜槽等下料。混凝土下料应均匀、适量,边振捣边下料。

移动模架法

移动模架法 摘要:随着社会经济建设的飞速发展,桥梁建设水平也得到了很大的提高,山区的桥梁建设事在必行,现浇桥又以自身整体性好、结构形式多样等优点正在被广泛采用,那么高墩现浇技术也就成了施工重点和难点。现以某山区高墩现浇立交桥为例,简述一下移动模架法的施工,为以后此类工程的施工做一参考。 关键词:高墩移动模架 一、移动模架法方案选定 此立交区地形起伏较大,主线桥多为高墩高架连续梁桥,桥墩最大高度达50m。对于高墩现浇箱梁,采用传统的满堂红支架法,显然不合理,施工工期长、难度大、造价又高。鉴此地势情况采用移动架空平台施工较为合理。 主线桥桥墩多为双柱和三柱圆形墩,针对这种桥墩的特点,采取了在墩柱施工过程中预埋键盒,在键盒内安装支承键的方式支承平台的墩柱牛腿,牛腿由平梁、斜撑及抱箍构成,支承键则分为上支承键和下支承键,上支承键直接支承牛腿的横梁,下支承键则支承抱箍并通过抱箍和斜撑最终与上支承键共同支承牛腿横梁。 上部箱梁的标准桥宽为16.75m,平台由6组收折式桁梁及组间横联构成,异形段最大桥宽为28m,布置了10组收折式桁梁。不同桥宽平台桁梁的组数随之增减,左右线桥各采用一套3跨移动支承平台同步推进施工。

为了方便拆卸模板及设置纵横坡、竖曲线、预拱度等,在移动支架上预留一定高度(1.5-2.0m)搭设满堂支架,支架上的模板施工与满堂支架相同。内模采用组合钢模板或木胶板。 二、移动模架法施工工艺 1、在起始跨的桥墩柱上安装牛腿和横梁; 2、在横梁上安装架空平台; 3、在平台上铺模板系统; 4、在模板上安装主梁钢筋与预应力钢束; 5、用输送泵浇筑主梁砼; 6、浇水养生砼; 7、张拉预应力钢束; 8、落架(砂筒卸落); 9、预应力钢束灌浆; 10、平台推进行走(施工下一跨),详见下图:

移动模架逐孔施工工法

移动模架逐孔施工工法 1 前言 1.0特大桥南引桥设计为5m×40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板结构,箱梁高 2.4m,顶宽16m,底宽7m,梁长有32m、40m、48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2 工法特点 2.0.1本工法操作方便,安全可靠,机械化程度高,劳动力投入少,缩短工期。 2.0.2本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3本工法荷载通过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高;模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3 适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简支箱梁、连续箱梁的施工。使用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要性能参数表见表3。

表3 造桥机主要性能参数表 4 工艺原理 4.0.1移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,通过自立行走、模板开

合,对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图4.0.2-1,图4.0.2-2。 4 3 11 图4.0.2-1 移动模架造桥机侧面结构图 图4.0.2-2 移动模架造桥机正面结构图 1——主梁;2——横联系统;3——前导梁;4——后导梁;5——墩旁托架6——支承台车;7——底模;8——侧模平台;9——侧模支撑;10——中扁担梁11——防风装置;12——托架支撑;13——配重;14——液压系统 4.0.3 造桥机工作时,整个模架在靠墩旁托架支撑的支承台车作用下,可通过竖移、横移、纵移分别实现脱模、模架横向分离或合拢、过孔。底模在横移油缸作用下,实现开合并可通过底

地铁车站主体结构施工

第一章主体结构施工 第1节主体施工准备 1、车站主体结构施工前准备工作 (1)首先编制结构施工专项方案,报有关部门审批后实施。方案中包括设备、机具、劳动力组织、混凝土供应方式、现场质量检查方法、混凝土浇筑流程、路线、工艺、混凝土的养护及防止混凝土开裂等的各项措施。 (2)基坑开挖至设计标高后,仔细进行测量、放样及验收,严禁超挖。 (3)结构施工前,对围护结构表面进行有效的防水处理,确保围护结构表面不渗漏。 (4)在每一结构段施工前首先进行接地网施工,接地网施工结束后,再施做垫层。 (5)对侧墙、立柱、中楼板、顶板模板支撑系统进行设计、检算,并经安全专项论证、报审批准后,根据施工进度提前安排进料。 (6)对结构施工顺序、施工进度安排、施工方法及技术要求向工班及全体管理人员进行认真交底。 2、施工节段划分 车站主体结构施工遵循“纵向分段,竖向分层,从下至上”的原则,满足车站质量要求及工期里程碑节点安排,结构施工由车站两端向中间方向施作,竖向从车站底板开始自下而上施作。主体结构共划分为17个节段,每段20m左右,施工队伍分别分段同时展开流水作业,施工节段的划分主要考虑以下因素: (1)墙体纵向施工缝不应留在剪力与弯矩最大处或底板与侧墙的交接处,应留在高出底板表面不小于30cm的墙体上。 (2)明挖结构施工缝的间距宜为15~20m。

(3)环向施工缝应避开附属结构及一些设备房间的距离要求设置。 3、主体结构施工流程 车站主体结构施工工艺流程见图4-4-1-1。

图4-4-1-1 主体结构施工工艺流程图

每施工段的施工流程见表4-4-1-1所示。 主体结构每施工段施工流程表4-4-1-1

移动模架施工工艺工法

移动模架施工工艺工法 1 前言 概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~40m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,本工法主要内容为后者。 图1 钢箱主梁式移动模架构造图 图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支

承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱上,通过支撑键及预埋键盒,将施工荷载全部转移至墩柱之上,不再设置临时支墩。 1.2.2 每组桁梁通过可收折横联行成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵移装置,完成横移及纵移。 2 工艺工法特点 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走。 标准化作业、施工周期快、质量好。 3 适用范围 高墩现浇箱梁施工。 复杂地形现浇梁施工。 水上多跨现浇梁施工。 4 主要技术标准 《铁路架桥机架梁规程》TB10213 《钢结构设计规范》GB50017 《钢结构工程施工质量验收规范》GB50205 《铁路混凝土工程施工技术指南》TZ210 《客运专线铁路桥涵工程施工技术指南》TZ213 5 移动模架施工方法 移动模架作为主要承重结构,利用桥墩为支点临时支承梁体自重,在移动模架上完成模板调整、预拱度设置、绑扎钢筋、浇筑混凝土、张拉预应力索筋等,

移动模架施工方案

中铁一局武广客专第五项目队 32m箱梁移动模架施工方案 一、编制依据: ⑴施工承包合同书 ⑵施工图及设计文件 ⑶《客运专线铁路桥涵工程施工技术指南》 ⑷《铁路试验规程》 ⑸《客运专线铁路桥涵工程施工质量验收暂行标准》箱梁采用纵向预应力体系,单根钢绞线直径d=15.2mm,管道采用波纹管成孔。 二、工程概况 中铁一局武广客运专线第五项目队管段共有桥梁6座,上部结构形式为32m、24m和(40m+56m+40m)箱梁。其中跨径32m现浇梁采用单箱单室断面,梁高3.05m等高度梁;箱梁顶板宽度13.4m,底板宽度5.5m,悬臂长度3.35m,悬臂板根部厚65cm,端部20cm,箱梁内顶板厚度30cm,底板厚度28cm,腹板厚度45~105cm。 三、主要机械设备配备 主要施工机具配备表

四、施工方案及施工计划安排 1、施工方案 本管段32m简支箱梁,设计采用纵向预应力体系。箱梁施工时采用两套移动式钢梁模架。箱梁每一段施工都是一次浇注成型,灌注后必须进行覆盖养生,达到100%的强度及相应弹性模量和龄期要求后按要求施加预应力并压浆后模架方可前移。 2、施工周期及作业程序 每孔施工周期为13~15d,其程序与作业时间如下: ①钢梁模架卸落、拆底模,将模架移至下一孔位置 1d ②安装底模、整修模板、调整标高、预拱度 0.5d ③绑扎底板、腹板钢筋,敷设预应力管道,安装锚具 3d ④内模就位、管道内穿钢绞线、绑扎顶板钢筋 1d

⑤浇注混凝土,养生 7~10d ⑥施加预应力,压浆 0.5d 3、施工计划安排 茅栗铺特大桥计划从2007年4月初开始梁部施工,在3月将移动模架进场进行组拼。由于工期要求,本桥计划从第26跨开始上移动模架,向广州台方向施工,共计16跨,其余梁跨采用支架现浇法施工,施工横道图附后。 黄洋水库特大桥计划于2007年4月初开始梁部施工,在3月将移动模架进场进行组拼。由于工期要求,本桥计划从第9跨开始上移动模架,向广州台方向施工,共计16跨,其余梁跨采用支架现浇法施工,施工横道图附后。 五、施工方法 1、施工准备 ①先对结构物的图纸设计位置、几何尺寸、标高进行认真细致的审核,审核无误后,方可施工。 ②对施工所用的一切原材料,砂石料、水泥、外加剂等材料严格按照规范和监理要求的检测频率和检测手段进行检测,确保原材料合格,并准备充足数量。 ③与本项工程有关的机械设备提前完成检查和调试,并确保在施工中能够正常运作;施工便道、大型临时设施在梁体施工的基础上进一步完善优化,并采取有效防汛防雨措施,确保雨季正常施工。 ④试验室在32m现浇梁开工前完成主梁C50砼配合比设计,并提供备用配合比,上报驻地监理工程师批准。 ⑤做好滑移模架拼装前的准备工作,拼装模架的所有工具必须准备齐

移动模架逐孔施工工法模板

移动模架逐孔施工 工法

移动模架逐孔施工工法 1 前言 1.0特大桥南引桥设计为5m×40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板结构,箱梁高 2.4m,顶宽16m,底宽7m,梁长有32m、40m、48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2 工法特点 2.0.1本工法操作方便,安全可靠,机械化程度高,劳动力投入少 ,缩短工期。 2.0.2本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3本工法荷载经过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高;模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3 适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简

支箱梁、连续箱梁的施工。使用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要性能参数表见表3。 表3 造桥机主要性能参数表

4 工艺原理 4.0.1移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,经过自立行走、模板开合,对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图4.0.2-1,图4.0.2-2。

地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法 中铁二局股份有限公司城通公司 1.前言 在深基坑侧墙施工时,侧墙多采用定型竹胶板、木模板+钢管支撑组合体系,使用过程中存在耗费工时长,材料利用率低,表观质量差、渗漏水现象较严重等缺点。 在施工武汉市轨道二号线一期工程第十八标18A 分标段工程【洪山广场站】时,根据施工工艺、基坑深度、支护要求和土质情况,选择了移动模板台车,代替传统的组合式模板,减少了劳动力投入,提高了工作效率。 2.工法特点 2.1成本低廉; 2.2 安全可靠; 2.3 操作方便; 2.4工作效率高; 2.5节能环保; 3.适用范围 适用于地下车库、地下室、地下车站等单侧墙体系工程。 4.工艺原理 4.1工艺原理 1、加固原理:借助预埋的地脚螺栓+台车自重+台车斜向可调节钢锭进行加固; 2、行走原理:在台车底部设置万向轮行走装置,利用人工推动行走; 3、工作原理:模板制安、脚手架搭设一次成型,侧墙墙体分段整体浇筑,侧墙刹尖部分预留契口,后期通过注浆的方式,保证该部位砼密实度。 4.2侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2 /121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取25 kN/m3 t0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(20+15)=5.71 T------混凝土的温度(°)取20° V------混凝土的浇灌速度(m/h );取2m/h

地铁车站出入口地连墙破除施工方案

目录 第一章编制说明............................................... - 0 -编制依据..................................................... - 0 -编制范围..................................................... - 0 -编制原则..................................................... - 0 -第二章工程概况............................................... - 0 -工程简介..................................................... - 0 -工程地质及水文地质情况....................................... - 1 -工程地质情况................................................. - 1 -水文概况..................................................... - 1 -第三章施工筹划部署........................................... - 2 -施工准备..................................................... - 2 -施工技术准备................................................. - 2 -劳动力准备................................................... - 2 -施工机械、物资准备........................................... - 3 -工期计划...................................................... - 3 -第四章施工方法............................................... - 3 -脚手架搭设................................................... - 4 -出入口混凝土分块............................................. - 5 -凿除作业顺序................................................. - 5 -第五章质量保证措施........................................... - 5 -制度保证..................................................... - 5 -脚手架质量保证措施........................................... - 6 -施工测量精度保证措施......................................... - 6 -第六章施工安全保证措施....................................... - 8 -

地铁车站结构施工方法

地铁车站结构施工方法 (一)接地网施工 (1)施工方法 在每段基坑开挖至基底设计高程时,测放出水平接地极、垂直接地极、水平连接带、接地引入线及自然接地体位置,开始进行接地网施工。 水平接地极、水平 连接带、接地引入线均 一般采用50mm×5mm扁 铜,材质为T2紫铜,垂 直接地极一般采用连铸 铜包钢接地极。水平接 地网采用人工平铺埋设;对于接地引入线在采用专门的接地引入装置,保证钢筋与引出线之间的绝缘要求及防水要求;垂直接地极采用人工进行打入,打入至设计标高后,采用III 型热熔扁接头与水平接地极进行焊接;自然接地体采用风镐将钻孔桩主筋凿出,然后与之焊接。 为使接地体形成连通回路,水平接地体交叉、水平均压带的对接均采用普通铜焊,保证牢固、无虚焊。接地网施工时,以尽量减少接地体的连接点为宜。 (2)施工技术措施 接地网在车站底板以下,若接地网穿越下翻梁时,仍保

持梁底以下的相对关系。 接地网的引出线引出车站底板以上,为防止结构钢筋发生电化学腐蚀,用接地引入装置进行绝缘处理和防渗处理。 接地网施工过程中根据现场进度进行接地电阻测试,暂定测试三次,确保接地电阻≤0.5Ω,整个接地装置的接地电阻应满足国家相关标准规定及设计有关规定,如测试后算出接地电阻不能满足要求,根据现场情况采取加大接地网面积、深打垂直接地极等补救措施。 施工完成后,接地引入线需要妥善保护,以免丢失、断裂。 在垫层施工期间,不仅对接地引出线进行绝缘处理,而且采取有效的保护装置并设立明显标志保证其不受损坏。 (二)垫层及底板施工 (1)垫层施工 垫层浇筑前及结构施工期间,将地下水位控制到垫层底以下0.5m。灌注前认真检查、核对接地网线。采用商品混凝土泵送入模,振捣密实,分段对称连续浇注。 因为底板直接在已做好的垫层上施工,所以为给底板施工创造条件,在垫层施工时注意以下几点:①机械开挖尽量一次成型,避免二次开挖扰动原状地基,增加回填数量和施工难度。②垫层向底板施工分段外延伸2.0m以上。 根据预先埋设的标高控制桩控制垫层施工厚度满足设

浅谈明挖地铁车站主体结构施工方法及工艺流程

浅谈明挖地铁车站主体结构施工方法及工艺流程摘要:随着我国城市建设的飞速发展,交通堵塞等城市问题日益突出。 地铁是解决城市公共交通和实现城市可持续发展的途径之一,近十几年来,我国大中城市纷纷兴起了建造地铁的热潮。而建造地铁车站,大都采用明挖施工形式。本文以大连地铁南关岭车站明挖施工为例,简述明挖地铁车站施工工艺。 关键词:地铁施工,明挖法,结构 一、工程概况 大连市地铁一期工程204标段包括姚家站、南关岭站、姚家站-南关岭站区间。全长1.9km,其中南关岭车站为地下二层结构,站台宽度2*14m+12m,车站主体长度708.8m,宽64.9m。车站基坑深度8m~19m,建筑面积约79200平米,共设置6个人员出入口5个疏散口,3组风亭,均采用明挖施工。 二、主体结构施工流程 1)主体结构施工分段 南关岭站,分为站前段、站后段和车站主体等五个部分进行施工,主体施工分段进行,每段长度根据设计情况初步确定为20米左右,共12节段。每节段的施工时间为25天,考虑到各阶段的搭接施工时间,节段施工按20天计算,南关岭车站主体结构采用“纵向分段、竖向分层”的原则施工,施工分段的原则是施工缝位于两个中间柱跨距的1/4~1/3处,并结合其它因素一并考虑。 2)施工前准备工作 (1)基坑开挖到设计标高,仔细进行测量、放样及验收,严禁超挖。(2)掌握车站结构浇筑和支撑拆除的要求及操作程序,对侧墙、中(顶)板模型支撑系统进行设计、检算、报监理业主审批后,根据施工进度提前安排进料。 (3)对内部结构施工顺序,施工进度安排,施工方法及技术要求向工班及全体管理人员进行认真交底,做到人人心中有数。

(4)垫层浇筑前,认真做好接地网等的施工。 三、钢筋施工 3.1钢筋加工制作 (1)钢筋必须有质保书或试验报告单。 (2)钢筋进场时分批抽样物理力学试验。使用中发生异常(如脆断、焊接性能不良或机械性能显著不正常时),要补充化学成份分析试验。 (3)钢筋加工的形状、尺寸必须符合设计要求。钢筋的表面保持洁净、无损伤,油渍、漆污和铁锈等在使用前清除干净。不使用带有颗粒状或片状老锈的钢筋。 (4)钢筋的弯钩或弯折按国标GB规定执行。 3.2钢筋焊接 (1)钢筋焊接使用焊条、焊剂的牌号、性能以及接头中使用的钢板和型钢均必须符合设计要求和有关规定。 (2)焊接成型时,焊接处封锁水锈、油渍等。焊接后在焊接处无缺口、裂纹及较大的金属焊瘤,用小锤敲击时,应发出与钢筋同样的清脆声。钢筋端部的扭曲、弯折必须校直或切除。 (3)钢筋焊接的接头形式、焊接工艺和质量验收,按国家现行标准《钢筋焊接及验收规程》的有关规定。 (4)轴心受拉和小偏心受拉杆件中的钢筋接头,均采用焊接。 普通砼中直径大于22mm的钢筋和轻骨料砼中直径大于20mm的I级钢筋及直径大于25mm的Ⅱ、Ⅲ级钢筋的接头,均采用焊接。 3.3钢筋绑扎与安装 (1)所配置钢筋的级别、钢种、根数、直径等必须符合设计要求。

移动模架逐孔施工工法

. 移动模架逐孔施工工法言前 1 的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹40m特大桥南引桥设计为5m×1.0箱梁自重48m48m三种,,梁长有32m、40m、2.4m板结构,箱梁高,顶宽16m,底宽7m 移动模架造桥机制梁采用ZQM1590采用了下承式移动模架造桥机施工1590t。,施工安全可靠。跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受、48m施工工法施工的32m、40m ,并在进一步完善工艺的基础上形成了本工法。到业内人士的一致认可和好评工法特点2 缩短工期。,本工法操作方便,安全可靠,机械化程度高,劳动力投入少2.0.1 本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.2本工法荷载通过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高; 2.0.3 模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。适用范围3 以下的公路简支箱梁、连续箱梁的施工。1590T48m跨度以下,多孔相连且梁重在适用于使用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主3。要性能参数表见表 专业资料

. 表3 造桥机主要性能参数表

专业资料 . 工艺原理4 移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,通过自立行走、模板开合,4.0.1 对混凝土梁进行逐孔原位现场浇筑的施工设备。下承式移动模架造桥机自下而上可分为墩旁托

架、支承台车、主梁、底模及横联、侧模4.0.2 。4.0.2-2及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图4.0.2-1,图3411移动模架造桥机侧面结构图图4.0.2-1 专业资料 .

相关主题