搜档网
当前位置:搜档网 › 一种跳频MSK信号检测算法及FPGA 实现

一种跳频MSK信号检测算法及FPGA 实现

一种跳频MSK信号检测算法及FPGA 实现

一种跳频MSK信号检测算法及FPGA 实现

引言

?

?采用MSK 调制的跳频通信具有主瓣能量集中、旁瓣衰落滚降快、频谱利用率高和抗干扰能力强等优点,在军事通信中应用广泛。如美军现役的联合战术信息分发系统采用的通信信号,工作带宽969~1 206 MHz,跳频速率为70000 多跳/ s,单个频点驻留时间约为13 s,信号持续时间* s,总共有51个间隔为3 MHz 的信道,码速率为5 MHz。已知在该工作频段内主要还存在单频、窄带调幅和线性调频等信号。为了准确截获并识别目标信号,针对此信号环境设计了一种MSK 信号检测识别方法,并使用FPGA 进行了设计实现。

?

?1 算法设计

?

?1.1 宽带跳频信号实时检测算法

?

?用现代技术来实现宽带数字化接收的一个实用的方法是通过信道化技术,实现信道化通常的方法是采用快速傅里叶变换(FFT)。利用FFT技术比用单个滤波器设计法更容易实现,因为FFT所需要的运算量更少。

?

?某个由FFT运算输出的频率分量,可以看成输入信号与某个脉冲函数的卷积。因此可以把FFT的每个输出看成滤波器的脉冲响应函数与输入信号的卷积。为了处理一个连续的输入信号。必须在不同时刻对各段数据进行FFT处

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

现代测试技术第6章随机信号分析简介

第六章随机信号分析简介 本章总课时理论4课时。 本章主要内容本章介绍测试技术中随机信号分析方法,主要内容包括随机信号的幅值域分析、相关分析、功率谱分析。 本章基本要求熟练掌握描述随机信号的主要数字特征参数,掌握时域与频域分析的基本方法,了解时域与频域分析的应用。 本章重点及难点本章重点为随机信号的幅值域分析、相关分析、功率谱分析的基本原理,难点为各部分相关的理论分析。 本章教学方法 1. 以课堂理论教学为主。 2. 在理论教学过程中,可利用多媒体对已有应用实例进行演示性教学,使学生对随机信号信号时域与频域分析的应用具有一定的感性认识,激发学生掌握相关基本原理与应用的兴趣。 3. 教学中要求学生在掌握基本原理的基础上,对幅值域分析、相关分析、功率谱分析进行比较,以促进对随机信号信号时域与频域分析方法的理论与

应用有比较清楚的认识。 4. 充分利用课外辅导及练习加深对所学理论知识的认识。 实验本章未安排实验课。 课外学习指导及作业 1. 名词解释随机信号的均值、方差、均方值、均方根值、相关函数、功率谱密度函数。 2. 简述题(1) 描述随机信号的主要数字特征参数有哪些?其物理意义是什么?各自描述了随机信号的什么特性? (2) 相关分析是在什么范围内分析随机信号的方法?相关系统与相关函数各自描述了随机信号的什么特征? (3) 相关分析在工程上有什么样的应用?试举例说明。 (4) 功率谱分析是在什么范围内分析随机信号的方法? (5) 功率谱分析在工程上有什么样的应用?试举例说明。 (6) 实际信号的谱分析中为什么自功率谱比幅值谱应用更为广泛? (7) 自相关函数、互相关函数、自谱、互谱各自保留了原信号的哪些特征?这对实际应用有什么影响? 3. 计算题(1) 试求三角波与方波的概率密度函数p1(x)与p2(x)。

一般高斯信号的检测

一般高斯信号的检测 ?一般高斯信号检测原理 ?确定性信号检测的贝叶斯方法

01::H H ==+z w z s w 一般高斯信号假设模型: ~(,) w N w 0C ~(,) s s N s μC 11 ()()()()T T w s s w s s T --=--+-z z C z z μC C z μμ1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 矩阵求逆定理

1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 1) C s =0 或s=μs 1'()T w s T -=z z C μ说明:确定信号检测相关情形,即广义匹配滤波器2) μs =0 11 111?'()()22 T T w s s w w T ---=+=z z C C C C z z C s 说明:随机信号检测估计器---相关器情形

1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 3) s=H θ, ~(,) N θθθμC 1 11 1'()()()2 T T T T T w w w T - --θθθθ =+++z z HC H C H μz C HC H HC H C z 说明:确定信号+随机信号线性模型检测情形 θ=C 0 θ=μ0 ~(,) T N θθs H μHC H

例1:高斯白噪声中确定/随机信号检测问题: 0:[][] H z n w n =1:[][][] H z n s n w n =+0,1,...,1 n N =-2 []~(0,) w n N σ2[]~(,) s s n N A σ1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 解: 2 w =σC I s A =μ1 2s s =σC I 2 212 2222 /1'()[] 2N s n s s NA T z z n -=σσ =+σ+σσ+σ ∑ z

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

NIST随机性检测方法及应用

NIST 随机性检测方法及应用 本科教学工程 大学生创新创业训练研究 1 引言 密码算法是构建安全信息系统的核心要素之一,是保障信息与数据机密性、完整性和真实性的重要技术。密码算法检测评估是密码算法研究的重要组成部分,它为密码算法的设计、分析提供客观的量化指标和技术参数,对密码算法的应用具有重要的指导意义.在密码算法的设计和评测过程中,需要从多个方面对其进行检测和分析。“一次一密(One-Time Pad)”是序列密码产生的思想来源,序列密码的核心是通过固定算法,将一串短的密钥序列扩展为长周期的密钥流序列,且密钥流序列在计算能力内应与随机序列不可区分。因此,分析秘钥流序列的随机性是密码算法安全性研究的重要内容,利用NIST 检测方法对密码算法进行评测可以为理论分析提供大量参考数据,从而减少理论分析者的工作量,同时可以暴露出用现有的分析方法无法发现的安全漏洞。 2 NIST 检测方法 2.1 随机性检测 随机性检测通常通过概率统计的方法考察被检测序列是否满足随机序列的某些特征以判定其是否随机。 从理论上讲,若被检测序列未通过某一随机性检测,可以肯定该序列不随机;但反之,若被检测序列能够通过某一种随机性检测,却不能肯定这个序列是随机的,即通过随机性检测是序列具有随机性的必要非充分条件。因为各检测方法中的检测项目往往都是根据随机序列所表现出的某一方面的特征而设计的。事实上,任何一个由有限种检测项目组成的集合都无法囊括随机性的所有方面。但在实际应用中,如果这个检测的设计对于随机序列使用时的具体要求而言是充分的,且被检测序列又能通过该检测,则认为该序列的随机性是“合格”的。 随机性检测利用概率统计的方法对随机数发生器或者密码算法产生序列的随机性进行描述.不同的检测项目从不同的角度刻画待检测序列与真随机序列之间的差距. 随机性检测通常采用假设检验[]的方法.假设检验就是在总体分布未知或者只知其形式但不知其参数的情况下,为了推断总体的某些性质而提出某些关于总体的假设,然后根据样本对提出的假设做出判断.随机性假设检验,就是已知真随机序列的某一方面符合一个特定的分布,那么假设待检测序列是随机的,则该待检测序列在这方面也应该符合这个特定的分布. 在实际应用中,常用来衡量随机性的方法是P value -法,这里以测试统计量X 服从2 χ分布为例来说明。 以随机序列的某种统计值V 符合自由度为n 的卡方分布为例: 原假设(零假设) 0H :序列是随机的,待测序列的统计值V 服从2(n)χ 分布; 备择假设 1H :序列不是随机的,待测序列的统计值V 不服从2(n)χ分布. 通过判断一个待测序列的统计值V 是否服从2(n)χ分布来确定是否接受原假设,从而判断该序列是否通过了该项随机性检测. 在随机性检测中判断是否接受原假设通常采用P-Value 方法[].P-Value 是一个序列比真

系统传递函数的测试方法 -随机信号实验

系统传递函数的测试方法 专业:通信工程 班级:010913 小组成员:陈娟01091312 陈欢01091264

摘要 随机信号在通信系统中有着重要的应用,信号处理技术及通信网络系统与计 算机网络的相互融合,都要求我们对研究分析电子系统受随机信号激励后的响应及测量方法有一个深入的了解。我们利用MATLAB仿真软件系统在数字信号处理 平台上进行系统仿真设计,并进行调试和数据分析,获得实验结果。 通信技术的广泛应用,也使其不得不面临各种环境的考验,本实验旨在通过matlab仿真产生理想高斯白噪声,利用互相关算法求取线性时不变系统的冲击响应,通过被测系统后的理想高斯白噪声信号与理想高斯白噪声信号进行互相关运算后产生一个信号a(t)。用matlab模拟低通滤波器和微分器,使a(t)通过该滤波器,获得线性系统单位冲击响应h(t),分析该信号的均值、方差、相关函数、概率密度、频谱密度等数字特征。通过实验,可以了解matlab在系统仿真中的重要作用,并对电子系统受信号激励后的响应及测量方法有了一定的了解及认知。 关键词:互相关线性系统matlab

目录 一、实验目的 (4) 二、实验仪器 (4) 三、实验内容 (4) 四、实验步骤 (6) 高斯白噪声的导入 (6) 通过系统 (8) 通过被测系统后的信号与理想高斯白噪声进行互相关 (12) 通过低通滤波器得输出信号 (12) 五、计算x(t)、noise(t)、y(t)信号的均值(数学期望)、方差、相关函数、概率密度、频谱及功率谱密度等 (13) 1. noise(t)(白噪声) (13) 2. x(t) (15) 3. y(t) (17) 六、小结 (19) 七、参考文献 (19)

(实验六 随机信号功率谱分析)

实验报告 实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期 实验名称:随机信号功率谱分析实验时间: 2020年9月30日星期三 学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋 一、实验预习 实验目的要求深刻理解随机信号的特性,掌握随机信号功率谱估计的基本原理,灵活运用各种随机信号功率谱估计的基本方法。 实验 仪器 用具 装有Matlab的计算机一台 实验原理 功率谱估计是随机信号处理中的一个重要的研究和应用领域.功率谱估计基本上可以非参数估计的经典方法和参数估计的近代方法.典型功率谱估计是基于FFT 算法的非参数估计,对足够长的记录数据效果较好。 在工程实际中,经典功率谱估计法获得广泛应用的是修正期图发。该方法采取数据加窗处理再求平均的办法。通过求各段功率谱平均,最后得到功率谱计P(m),即: 式中:为窗口函数ω[k]的方差。K表示有重叠的分数段。 由于采用分段加窗求功率谱平均,有效地减少了方差和偏差,提高了估计质量,使修正周期图法在经典法中得到普遍应用。但在估计过程存在两个与实际不 符的假设,即 (1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。 (2)假定数据是由N个观察数据以N为周期的周期性延拓。同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,频率分辨率较低,不适用于短系列的谱分析和对微弱信号的检测。 近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器(一步预测器)参数的估计,实现功率谱估计。由于既不需要加窗,又不需要对相关函数的估计进行如经典法那样的假设,从而减少公里泄露,提高了频谱分辨率。常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。其中AR模型是基本模型,求解AR模型的参数主要有L—D算法和Burg算法。

时频方法随机信号检测

Time-Frequency Approach for Stochastic Signal Detection Ripul Ghosh, Aparna Akula, Satish Kumar, H K Sardana Academy of Scientific and Innovative Research (AcSIR), Central Scientific Instruments Organisation, Chandigarh -160030, India ripul.ghosh@https://www.sodocs.net/doc/0a15836408.html, Abstract. The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Ville Distribution (WVD) is the most prominent quadratic time–frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal. Keywords: Stochastic, Spectrogram, Wigner Ville Distribution PACS: 43.60.Hj, 43.60.Cg, 43.60.Wy INTRODUCTION Stochastic signals are random and unpredictable. M any signal processing approach have been used for the accurate detection of these signals spanning from diverse domains, optics, seismology and bio-medical to name a few. The analysis of signals is widely performed in frequency domain rather than time domain approach using classical Fourier transform. The Fourier spectrum gives the frequency components of the signal. However, it lacks information regarding the frequency components present at any particular time. Therefore time-frequency representations like spectrogram are used. The most common is windowed Fourier Transform also known as Short Time Fourier Transform (STFT) [1]. However, STFT suffers from the problem of time frequency resolution. So the need of quadratic signal processing arose and extensive research using Cohen’s class has been carried out[2]. The mos frequen ly used Cohen’s class is Wigner Ville Distribution (WVD). By using WVD one can solve the time and frequency resolution problem. TIME FREQUENCY DISTRIBUTION Time-frequency distributions (TFD) are appropriate tools for non-stationary signal analysis, synthesis, and processing. Time-frequency signal representations characterize signals over a time-frequency plane. They thus combine time-domain and frequency-domain analyses to yield a potentially more revealing picture of t he t emporal localiza t ion of a signal’s spec t ral components. Different types of TFD have been developed for that purpose. Two early forms of time-frequency analyses are: Short-Time Fourier Transform (STFT), used to generate the spectrogram [1], and the Wigner-Ville distribution (WVD) [3]. The TFD describes how the energy is distributed, and allows us to estimate the fraction of the total energy of the signal at time t and at frequency ω. The uncertainty principle restricts us from achieving arbitrarily fine resolution simultaneously in both time and frequency domains [4].Uncert aint y principle st at es ΔtΔω>1/4, where Δt (t ime resolut ion) and Δω (frequency resolution). An optimum trade between the two parameters is needed for achieving the desired resolution. SHORT TIME FOURIER TRANSFORM The STFT is an integral transform of a signal f(t) is defined as. (1) Equation (1) represents the Fourier Transform of the signal which has been operated through a sliding Optics: Phenomena, Materials, Devices, and Characterization AIP Conf. Proc. 1391, 350-352 (2011); doi: 10.1063/1.3643546? 2011 American Institute of Physics 978-0-7354-0960-6/$30.00

随机信号分析理论的应用综述

随机信号分析理论的应用综述 (结课论文) 学院: 系别:电子信息工程 班级: 姓名: 学号: 指导老师:

目录 第一章概述 1.1 随机信号分析的研究背景 1.2 随机信号分析的主要研究问题 第二章随机信号分析的主要内容 2.1 随机信号分析的主要研究内容 2.2 随机信号分析的基本研究方法 第三章随机信号分析的应用实例 3.1均匀分布白噪声通过低通滤波器 3.2语音盲分离 3.3系统辨识 3.4基于bartlett的周期图法估计功率谱 3.5基于MATLAB_GUI的Kalman滤波程序第四章展望 参考文献

第一章概述 1.1随机信号分析的研究背景 在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实验的方法重复实现。 随机信号是客观上广泛存在的一类信号,它是持续时间无限长,能量无限大的功率信号,这类信号的分析与处理主要是研究它们在各种变化域中的统计规律,建立相应的数学模型,以便定性和定量的描述其特性,给出相关性能指标,并研究如何改善对象的动静态性能等。随机信号分析内容涉及线性系统与信号、时间序列分析、数字信号处理、自适应滤波理论、快速算法、谱估计等方面的知识。 我们所学的是从工程应用的角度讨论随机信号的理论分析和研究方法,主要以分析随机信号与系统的相互作用为主要内容。 近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一。 1.2主要研究问题 对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。 随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。

1信号检测与估计理论打印版

第1章 信号检测与估计概论
信号检测与估计概论
教 材:信号检测与估计(张立毅) 信号检测与估计理论(赵树杰 ) 清华大学出版社
引言 信号处理发展概况 信号的随机性及其统计处理方法 信号检测与估计理论概述 内容编排和建议
一种抓彩的游戏:四种颜色的彩色玻璃球,如黄、红、黑、白,每 种五粒,四种二十粒。把二十粒球放到一个口袋里,游玩者信手去 抓十粒。 如果你抓出来的玻璃球四种颜色的比例是5500,你将得到重奖; 如果你抓出来的玻璃球四种颜色的比例是5410或5320,奖品可观; 如果你抓出来的玻璃球四种颜色的比例是4411,是小奖品; 如果你抓出来的玻璃球四种颜色的比例是4321,罚一元人民币; 如果你抓出来的玻璃球四种颜色的比例是3322,罚五元人民币。 乍一看,得奖的机会似乎比受罚的机会更多; 结果是:十个人里至少有七个人抓出来的是3322,可能有一两个人 是4321,至于得重奖的,理论上是可能的,实际上却几乎是不可能。 其实,这只是一个最简单的概率或者叫做几率的问题,能够算得出 来,很精确的。四种颜色的球的数量不会相差太远。
1.1 引言
信号检测与估计的概念、理论和方法是 随机信号统计处理的理论基础; 本节主要内容:发展概况、待处理信号 的随机性及其统计处理方法的含义 统计信号处理的理论基础:信号的统计 检测理论、估计理论、滤波理论等
1.2 信号处理发展概况 理论
? 检测 ? 估计 ? 滤波 ? 多维阵列信号处理 ? 自适应信号处理 ? 自适应滤波
1.2 信号处理发展概况
面临很多新的应用问题。 如我国载人航空航天中的应用 (原位探测、信息处理,对我国 科技工作者而言,将是全新的 领域;火星探测、嫦娥工程、 夸父计划)
应用
? 电子信息 ? 自动化工程 ? 模式识别 ? 生物医学工程 ? 航空航天 ? 地球物理
1.2 信号处理发展概况
类别 比较 时域背景特性 平稳随机过程、高斯分布 平稳、非平稳随机过程; 高斯、非高斯分布 频域背景特性 均匀功率谱、高斯功率谱 信号特性 系统特性 数学工具 实现技术 简单信号,编码信号 均匀、非均匀功率谱; 高斯、非高斯功率谱 编码信号,扩频信号, 线性、非线性调频信号 线性时不变最小相位系统 线性时不变,时变系统, 非线性时变、非最小相位系统 随机过程、傅立叶变换 随机过程、傅立叶变换、高阶谱高 阶累积量、时频分析、小波变换 统计信号处理基础 现代信号处理
1.2 信号处理发展概况
统计信号处理基础所研究的内容是现代信号处理必备的理论 基础知识,二者没有严格的界限 信号统计理论研究的日益进步和完善,以及信号处理技术应 用领域的不断深入和扩展,使信号处理,特别是随机信号处 理得到人们十分广泛的重视 随机信号属于随机过程,应采用数学上的统计方法进行处理 因此,从事信号处理的科技工作者应有的素质: ? ? ? ? 建立随机信号统计处理方法的基本概念 掌握扎实的统计信号处理的理论基础 具有运用统计的方法研究分析随机信号处理问题的能力 具有运用统计的方法解决工程技术问题的能力
1.3 信号的随机性及统计处理方法
采用现代模拟器件为主的模拟处理技术 采用DSP为核心器件的数字处理技术
图1.1 无线通信系统原理框图
1

随机信号实验报告(微弱信号提取)

实验十微弱信号的检测提取及分析 1.实验目的 ⑴了解随机信号分析理论如何在实践中应用。 ⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。 ⑶掌握随机信号的检测及分析方法。 ⒉实验原理 ⑴随机信号的分析方法 在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。我们在这里引入了随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。随机过程可分为平稳的和非平稳的、遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的

几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。以下算法都是一种估计算法,条件是N要足够大。 ⑵微弱随机信号的检测及提取方法 因为噪声总是会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的就是消除噪声,将有用的信号从强噪声背景中提取出来,或者用一些新技术和新方法来提高检测系统输出信号的信噪比。 噪声主要来自于检测系统本身的电子电路和系统外的空间高频 电磁场干扰等,通常从两种不同的途径来解决: ①降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。 ②采用相关接收技术,可以保证在被测信号功率< 噪声功率的情况下,仍能检测出信号。 在电子学系统中,采用低噪声放大技术,选取适当的滤波器限制系统带宽,以抑制内部噪声和外部干扰,保证系统的信噪比大大改善,当信号较微弱时,也能得到信噪比> 1 的结果。但当信号非常微弱,比噪声小几个数量级甚至完全被噪声深深淹没时,上述方法就不会有效。当我们已知噪声中的有用信号的波形时,利用信号和噪声在时间特性上的差别,可以用匹配滤波的方法进行检测。但当微弱信号是未知信号时,则无法利用匹配滤波的方法进行检测。经过分析,白噪声

随机信号分析基础

《随机信号分析基础》 期末论文 题目:随机信号分析理论的应用综述 学院:电子信息工程学院 班级: 姓名: 学号: 指导老师:武晓嘉 2015年12月13日

随机信号分析理论的应用综述 电子131502班 李泓 1、概述 随机现象的科学研究使于17世纪中叶,到1933年苏联数学家柯尔莫哥洛夫出版了《概率论基础》一书,奠定了将随机现象的科学研究作为数学的一个分支的基础。随机信号分析作为随机现象的研究方向之一,是一门研究随机变化过程的特点与规律性的学科。 2、主要内容 随机信号分析理论主要研究随机信号以及与系统的相互作用,是随机与信号分析的结合。随机性的分析运用概率论的理论,信号分析运用信号与系统的理论。随机信号分析是信号处理的基础理论之一,广泛应用与雷达、声呐、通信、语音信号处理、图像信号处理、自动控制、随机振动、气象预报、生物医学、地震信号处理等领域。 随机信号分析理论的基本分析方法包括:研究信号的数字特征(数学期望值、方差、矩、相关函数等),用实验手段研究随机过程的统计特性,傅立叶变换、谱分析、功率谱估值,窄带随机过程,随机信号通过非线性系统小波分析等。需要用统计的观点来看待随机问题,还要注重物理概念的理解。 3、应用实例 (1)用反相关法实现随机信号雷达 反相关法随机信号雷达实现框图 频率调制发射信号的瞬时频率为)()(00t N D W t W W ?+=+,其中0W 为载频,D 为调制指数,)(t N 为随机信号。而目标回波相对于发射信号的瞬时频率为)()(00f t N D W f t W W -?+=-+。所以瞬时频率差为)()(f t W t W W --=?。由于

相关主题