搜档网
当前位置:搜档网 › 一体化的高分子载体材料及其递送系统

一体化的高分子载体材料及其递送系统

一体化的高分子载体材料及其递送系统

4)新型无机功能材料

主要研究方向:基于微观物理模型和物理图像的高温超导机理研究与应用;多铁性材料的合成和磁电耦合机理与应用;超材料的结构设计原理及其新效应器件;阻变材料的物理机制和器件忆阻行为的可调控性及原型器件研究。

(5)高分子材料加工的新原理和新方法

主要研究方向:高分子材料加工中结构演变的物理与化学问题;高分子材料非线性流变学,以及高分子加工不稳定现象的机理;高分子材料加工的多尺度模拟与预测;高分子材料加工的在线表征方法;微纳尺度加工等新型加工方法,以及基于原理创新的加工技术。

(6)生物活性物质控释/递送系统载体材料

主要研究方向:生物启发型和病灶微环境响应载体材料;疾病免疫治疗药物载体材料;核酸类药物载体材料及其递送系统;具高灵敏度、组织和细胞高靶向性及信号放大功能的分子探针,以及诊-治一体化的高分子载体材料及其递送系统。

(7)化石能源高效开发与灾害防控理论

主要研究方向:实钻地层物化特性和岩石力学;油气藏开发,复杂工况管柱与管线,复杂油气工程相互作用及流动;开采条件下岩体本构关系,多相、多场耦合的多尺度变形破坏机理;极端条件下开采机器人化的信息融合与决策。

(8)高效提取冶金及高性能材料制备加工过程科学

主要研究方向:冶金关键物化数据;选冶过程物相结构演变;反应器新原理与新流程,低碳炼铁;高效转化与清洁分离,二次资源利用,高效连铸;高性能粉末冶金材料;多场作用下的金属凝固;界面科学;冶金过程高效利用。

聚合物的相容性-高分子物理化学(高聚物结构和性能)论文

聚合物的相容性 高莉丽PB02206235 摘要:从共混来研究聚合物的基本特点,相容性的表征方法和测定方法。 关键词:相容,共聚,溶度参数,Huggins-Flory相互作用参数。 聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。 从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。 相容与否决定于混合物的混合过程中的自由能变化是否小于0。即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。 还应指出,聚合物之间的相容性还与分子量的分布有关。一般,平均分子量越大,聚合物之间的相容性就越小。 以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。 1.溶度参数 对于非极性分子体系,混合过程无热效应或吸热。由Hildebrand的推导,混合焓 △Hm =Vm(∑12/1-∑22/1)2&1&2 ∑1,∑2分别为溶剂与高聚物的内聚能密度,&1,&2分别为溶剂与高聚物的体积分数,Vm为混合后的总体积。 定义溶度参数δ=∑2/1,则上式可写为: △Hm =Vm(δ1-δ2)2&1&2 当δ1与δ2越接近,则△H越小,△G越小,越有利于相容,据此可以根据溶度参数来选择聚合物的溶剂,但以上溶度参数仅考虑了分子之间的色散力,仅适用于非极性分子的情况。当聚合物之间有强的极性作用或氢键时上述规则不适用。鉴于这种情况,采用三维溶度参数。即假定液体的蒸发能为色散力、偶极力和氢键三种力的贡献,这三种力对蒸发能的贡献分别为Ea, Ep和Ed。即 E=Ea+Ep+Ed.于是有:δ2=δ2 a +δ2 p +δ2 d 仅当两种聚合物的δa,δp和δn都分别相近是才能很好地溶解。如PVC的δ值与氯仿和四氢呋喃的δ值都很相近,但PVC与氯仿的δp和δn相差较大,所以两者不相容,PVC与四氢呋喃的δp,δa,δn都相近,所以可以很好地相容。 2 Huggins-Flory作用参数Χ1,2

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成 摘要:催化剂可以分为均相催化剂和多相催化剂。均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。新的均相催化体系的应用使得一些新的生产工艺应运而生。这些工艺操作条件温和,选择性高。然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。 关键词:催化剂;配合物;高分子;合成;高分子效应 1、简介 近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。近年来,高分子负载型催化剂得到了迅猛发展。高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。 研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。此为高分子的基体效应。本文主要介绍高分子金属催化剂的合成、

脱硫催化剂

脱硫催化剂 曲万山 一、背景 国内已建的燃煤锅炉烟气脱硫装置,在建设脱硫装置时,设计煤的含硫量较低(0.5-1.0%),近年来,工业发展速度快,煤资源紧张,煤种变化大,含硫量大(高硫煤1%-4%)的产量逐年增多,原设计煤的含硫量在(1%-4%)的脱硫装置,已不能满足高硫煤(1%-4%)的脱硫的需要,SO2不能达标排放。现脱硫装置必须加大投资,进行扩容改造。才能满足高硫煤脱硫达标排放的需要。目前的烟气脱硫装置,存在的最大问题是:技术复杂,造价高,运行费用大,脱硫设施的运行费用一年的耗电量费用,脱硫剂费用,用电和人工等运行费用,摊到每度电的脱硫费用约0.03元,而上网电的脱硫补贴只有0.015元。现几十吨的锅炉多数用双碱法脱硫,近年来由于用碱作脱硫剂的销售价格成倍提高,脱硫运行费用随之升高,在煤价升幅50%多和竞价上网的双重压力下,加上脱硫补贴缺口大,高成本的脱硫设施能否坚持正常运行面临严峻的考验。我国脱硫行业常常面临脱硫运行成本高,国家补贴的脱硫电价无法使脱硫装置保本运行,采用本技术后,能使目前的脱硫系统因运行成本过高而停用的SO2净化设备进行运转,大幅度降低运行费用。并可使含硫量(1%-4%)的高硫煤达标排放,不需对现有脱硫设备进行改造,大量节约资金。 二、脱硫催化剂的主要成分 烟气脱硫催化剂,主要有高分子物质为主要原料,经物化加工,激化或物化改性,应用高新技术强化改性后与其它无机高分子材料充分混合,具有稳定结构和性能的新型催化氧化烟气脱硫催化剂,其主要成份大部分为高分子催化剂,与有很强的反应活性,由于烟气脱硫催化剂的稳定性很好,完全符合脱硫过程SO 2 的要求。 三、脱硫催化剂的反应机理 (1)石灰石法脱硫原理

医用高分子材料

医用高分子材料 1

摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着 极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗 一、医用高分子材料的概念及简介 医用高分子材料是依据高分子材料的某些特性及特征,如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求来研制与生物体结构相适应的、在医疗上使用的材 2

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

纳米二氧化钛催化剂载体的种类

纳米二氧化钛催化剂载体的种类 纳米二氧化钛催化剂载体的种类 出处:万景纳米科技报 目前,国内外研究较多的纳米二氧化钛(VK-TA18)催化剂载体有:纳米二氧化硅,纳米三氧化二铝、玻璃纤维网(布)、空心陶瓷球、海砂、层状石墨、空心玻璃珠、石英玻璃管(片)、普通(导电)玻璃片、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、木屑、膨胀珍珠岩、活性炭等。 天然矿物类 天然矿物类物质本身具有一定的吸附性和催化活性,且耐高温,耐酸碱,常被用作催化剂的载体。目前已被用作二氧化钛载体的有硅藻土、高岭土、天然浮石和膨胀珍珠岩等。刘勋等研究了几种不同天然矿物(硅藻土、蛭石、高岭土、膨润土、硅灰石和海泡石)与纳米二氧化钛(VK-TA18)的复合。结果表明,在6种天然矿物所制得的复合材料中,以海泡石光催化降解效率最高,作用6h后,对甲基橙光降解率达到98%。其次是硅藻土和硅灰石,分别达到87%和85%。且光催化降解效率与天然矿物吸附能力呈一一对应关系。陈爱平等以轻质绝热保温建筑材料膨胀珍珠岩作载体,制得了能长时间漂浮于水面的纳米二氧化钛(JR05)负载型光催化剂,用于水面浮油的太阳光光催化降解。周波等采用天然浮石为载体负载纳米二氧化钛作光催化剂,利用高压汞灯为光源对有机磷农药的光催化降解进行了研究。结果表明,浓度为1.2×10-4 mol·L-1的农药光照2h左右可完全被光催化氧化为PO4。

吸附剂类 这类载体为多孔性物质,比表面积较大,是使用最为广泛的一类载体。用作负载纳米二氧化钛(VK-TA18)的吸附剂类载体主要有活性炭、硅胶、多孔分子筛等。吸附剂类载体可以获得较大的负载量,可以将有机物吸附到纳米二氧化钛粒子周围,增加界面浓度,从而加快反应速度。崔鹏等将活性炭负载到纳米二氧化钛膜作为光催化剂对甲基橙水溶液进行了光催 化降解试验。结果表明,与商品化的纳米二氧化钛微粉光催化剂的降解性能相比,其降解速率较高,由于纳米二氧化钛/C光催化剂中活性炭良好的吸附性能,使得光催化反应体系内产生了吸附-反应-分离的一体化行为,提高了光催化速率。国外的V.M.GuNk等研究表明,在不同负载量下,纳米二氧化钛在硅胶表面均没有形成连续涂层;纳米二氧化钛和SiO2之间的作用力包括氢键、静电力和少量的Si-O-Ti键,SiO2抑制了纳米二氧化钛从锐钛型向金红石型的相变。国内的郑光涛等采用溶胶-凝胶法将改性后的高效纳米二氧化钛光催化剂负载于球形硅胶上,得到了具有混晶结构、大比表面积、高活性的纳米纳米二氧化钛光催化剂。负载后的催化剂在紫外区具有强的吸收,比表面积达到379.8m·g-1。郑珊等合成了纳米二氧化钛呈单层分散或双层分散状2态的多孔分子筛MCM-41。结果表明,负载后,MCM-41孔道表面的SiO2以化学键相连生成Si-O -Ti键。 玻璃类 玻璃价廉易得,具有良好的透光性,便于设计成各种形状,引起了研究者的重视。用于纳米二氧化钛光催化剂的载体有玻璃片、玻璃纤维网

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟,20100221276 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文: 一、医用高分子材料的概念及简介:医用高分子材料是依据高分子材料的某些特性及特征, 如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求

医用用高分子材料

医用用高分子材料

医用用高分子材料 壳聚糖 1 甲壳质和壳聚糖的性质 2 甲壳质和壳聚糖的制备 3 甲壳质和壳聚糖的应用 3.1 医用纤维和膜材料 3.2 药物载体 3.3 凝血作用 3.4 抗肿瘤作用 3.5 增强免疫力 3.6 降低脂肪和胆固醇 3.7 其他方面 4 甲壳素、壳聚糖的化学改性及应用4.1 酰化改性及应用 4.2 烷基化改性及应用 4.3 醚化改性及应用 4.4 酯化改性及应用 4.5 Shiff碱反应及应用 4.6 壳聚相季铵盐 4.7 接枝反应及应用 4.8 交联及应用 4.9 其它反应和应用

5 壳聚糖与再狭窄 聚乳酸 1 聚乳酸的基本性质 1.1 物理机械性能 1.2 生物降解性 2 PLA的制备 2.1 直接缩聚法 2.2 丙交酯开环聚合法 3 PLA在医药及医用制品中的应用 3.1 药物控释载体 3.2 医用缝合线 3.3 外科生物植片 4 在预防在狭窄方面的应用 4.1 聚乳酸作为支架涂层 4.2 聚乳酸作为生物可降解性支架 4.3 制备纳米微球用于再狭窄的防治 4.3.1 纳米粒子 4.3.2 纳米粒子在治疗血管再狭窄中的应用 聚羟基乙酸及其共聚物 1 简介 2 聚羟基乙酸的性质

3 聚羟基乙酸的制备 4 羟基乙酸的共聚物 4.1 乙交酯与丙交酯的共聚物(PGA-co-PLA,PLGA) PLGA的制备和性质 4.2 乙交酯与ε-己内酯(ε-CL)的共聚物(PGA-co-PCL) 4.3 乙交酯/丙交酯/己内酯三元共聚物(PGLC) 4.4 聚(羟基乙酸-co-氨基乙酸)和聚酯酰胺(PEA) 4.5 乙交酯与2-氢-2-氧1,3,2-二氧磷杂环己烷的开环共聚物(聚磷酸酯/乙交酯 4.6 其它 5 羟基乙酸均聚物及其共聚物的应用 (1)生物体吸收缝合线 (2)缝合补强材料 (3)骨折固定材料 (4)药物控制释放系统 (5)组织工程 6 PLGA载体的制备方法

医用高分子载体材料

医用高分子载体材料 Medical polymer carrier materials 摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。 关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用 Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect. Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application 1. 引言 20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。载体药物技术的关键是

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

聚合物表面性能与相容性

第二节聚合物表面性能与相容性 一磨擦性能 在塑料中常遇到磨擦性质的问题。如在注塑中物料在螺杆加料段的磨擦机理,磨擦系数对其螺杆的输送效率有重要影响。物料从料斗进入螺杆之后在螺杆旋转下,使物料沿螺槽向前输送颗粒料首先被压成固体塞,在输送过程中塑料固体塞和料筒及螺杆产生相对运动,各面承受着磨擦力的作用。这时磨擦将受到许多因素的影响,如塑料的物料性能,颗粒形状及大小,料筒及螺杆表面的光洁度及材质,相对运动的速度,塑料与金属的接触压力及作用时间等等。 不同的聚合物其磨擦系数是不同的。当塑料与金属磨擦时,磨擦系数与磨擦中的接触面积,与塑料对金属的附着力以及剪切强度有关。因此磨擦系数不仅与高聚物的物理性质有关,而且与影响物理—机械性质的外界压力,速度和温度有关。 在高压高速下塑料的热传导性能很差产生的热量不易散出,使塑料发生大的变形表面破坏,因此压力和速度对磨擦系数均有影响。 一般情况下,塑料的磨擦系数随载荷的加大而稍许降低。聚合物材料的干磨擦系数,随着相对速度的提高有增加的趋势。 二相容性 相容性是指两种不同品级的聚合物在熔融状态下能否相互混溶的一种性质。相容性不好的聚合物混熔在一起,制品会出现分层现象。不同类型聚合物的相容性是不一样的,这与分子结构有一定关系;分子结构相近者易相容;反之难容。例如,借助于聚碳酸酯和聚乙烯之间的互容性,在聚碳酸酯中加入30~50%聚乙烯可使伸长率提高30%,冲击强度提高4倍,并使熔体的粘度降低。近年来,利用聚合物之间的相容特性,使共混料品级日益增多,受到人们的普遍重视。 三表观密度 大多数热塑性塑料致密状的相对密度为0.9~1.2g/cm3而粉料或颗粒料的表观密度是0.3~0.6g/cm3。如果物料的表观密度低,使均匀加料发生困难,就易出现“架桥”现象。这样会影响输送效率和塑化质量的稳定性。为此有的在料斗中设置有搅拌器,或者采用定量的加料调节装置,对进料量调节和控制,保证连续,均匀地加料。 第三节聚合物的力学特性 1形变与应力关系 材料的力学特性是指材料在外力的作用下,产生变形,流动与破坏的性质,反应材料基本力学性质的量主要有两类;一类是反应材料变形情况的量如模量或柔度,泊桑比;另一类是反应材料破坏过程的量,如比例极限,拉伸强度,屈服应力,拉伸断裂等作用。从力学观?憧矗牧掀苹凳且桓龉潭皇且桓龅恪?BR>2应力与时间的关系 应力对其作用时间的依赖性,这是聚合物材料主要特征之一。聚合物在较高温度下力作用时间较短的应力松驰行为和在温度较低力作用时间较长的应力松驰行为是一致的。 3形变与时间关系 聚合物材料在一定温度下承受恒定载荷时,将讯速地发生变形,然后在缓慢的速率下无限期地变形下去。若载荷足够高时变形会继续到断裂为此。这种在温度和载荷都是恒定的条件下,变形对时间依赖的性质,即称蠕变性质。 第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体

医用用高分子材料(精)

医用用高分子材料 壳聚糖 1 甲壳质和壳聚糖的性质 2 甲壳质和壳聚糖的制备 3 甲壳质和壳聚糖的应用 3.1 医用纤维和膜材料 3.2 药物载体 3.3 凝血作用 3.4 抗肿瘤作用 3.5 增强免疫力 3.6 降低脂肪和胆固醇 3.7 其他方面 4 甲壳素、壳聚糖的化学改性及应用4.1 酰化改性及应用 4.2 烷基化改性及应用 4.3 醚化改性及应用 4.4 酯化改性及应用 4.5 Shiff碱反应及应用 4.6 壳聚相季铵盐 4.7 接枝反应及应用 4.8 交联及应用 4.9 其它反应和应用 5 壳聚糖与再狭窄 聚乳酸 1 聚乳酸的基本性质 1.1 物理机械性能 1.2 生物降解性 2 PLA的制备 2.1 直接缩聚法 2.2 丙交酯开环聚合法 3 PLA在医药及医用制品中的应用 3.1 药物控释载体 3.2 医用缝合线 3.3 外科生物植片 4 在预防在狭窄方面的应用 4.1 聚乳酸作为支架涂层 4.2 聚乳酸作为生物可降解性支架 4.3 制备纳米微球用于再狭窄的防治 4.3.1 纳米粒子 4.3.2 纳米粒子在治疗血管再狭窄中的应用 聚羟基乙酸及其共聚物 1 简介 2 聚羟基乙酸的性质

3 聚羟基乙酸的制备 4 羟基乙酸的共聚物 4.1 乙交酯与丙交酯的共聚物(PGA-co-PLA,PLGA) PLGA的制备和性质 4.2 乙交酯与ε-己内酯(ε-CL)的共聚物(PGA-co-PCL) 4.3 乙交酯/丙交酯/己内酯三元共聚物(PGLC) 4.4 聚(羟基乙酸-co-氨基乙酸)和聚酯酰胺(PEA) 4.5 乙交酯与2-氢-2-氧1,3,2-二氧磷杂环己烷的开环共聚物(聚磷酸酯/乙交酯 4.6 其它 5 羟基乙酸均聚物及其共聚物的应用 (1)生物体吸收缝合线 (2)缝合补强材料 (3)骨折固定材料 (4)药物控制释放系统 (5)组织工程 6 PLGA载体的制备方法 6.1 微球 (l)溶剂挥发法 (2)复乳法 (3)相分离法 (4)喷雾干燥法 (5)超临界流体新技术 6.2 纳米球 6.3 植入剂 脂质体 1 脂质体发展 2 脂质体的基本性质 2.1 脂质体结构及性质 2.2 脂质体的作用特点 (1)脂质体的靶向作用 (2)脂质体提高被包封药物的稳定性 (3)脂质体降低药物毒性 (4)脂质体的长效作用 3 脂质体的制备 3.1 薄膜分散法 3.2 注入法 3.3 超声波分散法 3.4 冷冻干燥法 3.5 冻融法 3.6 逆相蒸发法 3.7 复乳法 3.8 熔融法 3.9 表面活性剂处理法

关于高分子负载催化剂的研究进展

关于高分子负载催化剂的研究进展 陈凯高材1301 摘要:高分子催化剂作为功能高分子的重要一个分支,具有稳定性高、溶剂适用性广、易于产物分离纯化、对环境影响小、易从反应体系中分离回收和重复使用等优点,受到人们极大的重视。本文以高分子负载催化剂的结构,应用等为线索,着重介绍高分子负载金属络合物催化剂,可溶性高分子金属络合物的优缺点及其研究进展,并作出了总结与展望。 关键词:高分子负载催化剂金属络合物结构应用 1.引言: 近几十年来,均相催化反应得到很大的发展,但这些均相反应的催化剂一般来说存在价格昂贵、反应活性低、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,催化剂又难于回收,总的合成效率也大为降低,因此寻找能够重复使用且回收操作简单的催化剂或配体就成为有机催化反应领域的研究热点之一。自1963年R.B.Merrifield和R.Letziger等人首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例,随之聚合物试剂的研究和在有机合成中的应用得到了很大的发展。其中高分子催化剂更受人们的重视。高分子催化剂又叫聚合物催化剂,它是聚合物试剂中的一类,也是功能高分子的一个重要分支。将具有催化活性的金属离子或金属配合物以化学作用或物理作用方式固定于聚合物载体上所得到的具有催化功能的高分子材料称为高分子负载金属或金属络合物催化剂,简称高分子负载催化剂。高分子负载催化剂由于负载高分子的特殊性,具有:1.可以简化反应步骤。2. 提高了催化剂的稳定性。3.腐蚀性小。4.易于分离,反应后的催化剂可以回收重复使用。4.催化的重现性高。同时,高分子载体不仅仅是作为金属活性中心的惰性支持体,由于其特殊的高分子效应,及其与催化中心、反应底物和产物之间的相互作用,可极大地影响催化剂的催化性能,提高反应的活性和选择性,这正是引起人们研究高分子负载催化剂的兴趣所在。本文以高分子负载催化剂的组成,结构,应用等为线索,着重介绍高分子负载金属络合物催化剂,可溶性高分子金属络合物的优点及其研究进展,并作出了总结与展望。 2 高分子负载金属络合物催化剂: 金属酶催化剂具有高效、专一和无污染等特点. 受金属酶催化作用的启发, 在金属有机化学中均相催化取得辉煌成就的背景下,20世纪60年代末,70年代初开始了设想通过高分子负载的方法, 转化均相催化剂为复相催化剂, 使之兼具二者的优点和避免相互缺点的探索。根据高分子负载催化剂作用方式的不同,将其分为物理吸附催化剂和化学键联催化剂。物理吸附催化剂是指催化活性物质通过物理吸附力直接吸附在高分子上;化学键联催化剂是通过化学键的作用与高分子联接在一起。由于物理吸附催化剂稳定性较差,在使用过程中金属离子或配合物容易流失,高分子骨架或其配合物功能基团也会被破坏,有时金属离子还会形成微晶,因此该类催化剂回收次数不理想。而化学键联催化剂不仅具有较高的稳定性,可回收重复使用多次,而且还具有较高的催化效率,成为高分子负载催化剂的主要研究方向。化学键联的高分子负载催化剂的合成方法主要有以下3种类型:(1) 通过有机反应先对高分子进行官能化,形成新生官能团,然后再与催化活性中心连接。(2)通过具有催化活性单体共聚形成高分子负载催化剂,可以通过控制聚合的条件,以得到合适的孔径、粒度、强度的凝胶或粉末。(3) 高分子骨架中已具备有效官能团,可以通过与催化剂前体进行亲核取代或亲电加成等反应,直接将催化活性物质通过共价键链接到高分子上。 高分子负载催化剂与传统小分子催化剂相比具有如下特点:简化操作过程;活性高;易与

高分子化工

高分子化工 高分子化学工业的简称,为高分子化合物(简称高分子)及以其为基础的复合或共混材料的制备和成品制造工业。按材料和产品的用途分类,高分子化工包括的行业有塑料工业、合成橡胶工业、橡胶工业、化学纤维工业,也包括涂料工业和胶粘剂工业。由于原料来源丰富、制造方便、加工简易、品种多并具有为天然产物所无或较天然产物更为卓越的性能,高分子化工已成为发展速度最快的化学工业部门之一。 沿革:高分子化工经历了对天然高分子的利用和加工;对天然高分子的改性;以煤化工为基础生产基本有机原料(通过煤焦油和电石乙炔)和以大规模的石油化工为基础生产烯烃和双烯烃为原料来合成高分子等四个阶段。远在公元前已经开始应用木材、棉麻、羊毛、蚕丝、淀粉等天然高分子化合物。天然橡胶的硫化、赛璐珞(改性的天然纤维素,增塑的硝酸纤维素)的生产迄今已有 100余年之久,但有关高分子的涵义、链式结构、分子量和形成高分子化合物的缩合聚合和加成聚合反应等方面的基本概念,则迟至20世纪30年代才被明确。1907年,美国人L.H.贝克兰研制成功最早的合成树脂──酚醛树脂;20世纪初期,出现了甲基橡胶(聚2,3-二甲基丁二烯)、聚异戊二烯和丁钠橡胶;30年代末,实现了第一个合成纤维──尼龙66的工业化。从此,高分子合成和工业蓬勃发展,为工农业生产、尖端技术以及人们的衣食住行等,不断地提供许多不可缺少的、日新月异的新产品和材料。 成型加工:多数聚合物(或称树脂)需要经过成型加工的过程才能成为制品,有些在加工时尚需加入各种助剂或填料。根据材料的性质和制品的要求,选择适宜的加工方法和助剂或填料。热塑性树脂的加工成型方法有挤出、注射成型、压延、吹塑和热成型等;热固性树脂加工的方法一般采用模压或传递模塑,也用注射成型。将橡胶制成橡胶制品需要经过塑炼、混炼、压延或挤出成型和硫化等基本工序。化学纤维的纺丝包括纺丝熔体或溶液的制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。与高分子合成工业相比,高分子加工工业的生产比较分散,但制品种类繁多,花色品种不胜枚举。目前,高分子加工已逐渐形成为一个独立的工业体系。 产品分类:按主链元素结构分类,产品可分为碳链(主链全由碳原子构成)、杂链(主链除碳原子外尚有氧、氮、硫等)和元素高分子(主链主要由硅、氮、氧、硼、铝、硫、磷等元素构成)。按形

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

高分子载体材料

高分子载体材料 载体是指能载带微量物质共同参与某种化学或物理过程的常量物质。高分子载体则是以高分子聚合物来充当反应中此类常量物质。随着科技飞速发展高分子载体日益备受关注,广泛应用于医药载体、载体催化剂、固相组合合成技术、固相萃取等领域。 高分子载体材料十分广泛, 按来源可分为天然高分子材料、半合成高分子材料、合成高分子材料。常用的天然高分子载体材料稳定、无毒、成膜性较好, 特别是适合作为药物载体材料。其中主要包括胶原、阿拉伯树胶、海藻酸盐、蛋白类、淀粉衍生物。近年来研究较多的是壳聚糖、海藻酸盐, 而源于蚕丝的丝素蛋白则显示出巨大的潜力[ 2]。半合成高分子包括羧甲基纤维素、邻苯二甲酸纤维素、甲基纤维素、乙基纤维素、羟丙甲纤维素、丁酸醋酸纤维素、琥珀酸醋酸纤维素等, 其特点是毒性小、粘度大、成盐后溶解度增大, 由于易水解, 故不宜高温处理, 需临时现用现配《资料》。合成高分子材料如聚碳酯、聚氨基酸、聚乳酸、聚丙烯酸树脂、聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚氰基丙烯酸烷酯、乙交酯一丙交酯共聚物、聚乳酸一聚乙二醇嵌段共聚物,e一己内酯与丙交酯嵌段共聚物、聚合酸酐及羧甲基葡萄糖等,其特点是无毒、化学稳定性高。《资料》 按应用范围来分,可分为药物高分子载体、催化剂高分子载体、固相反应高分子载体及固相萃取高分子载体。 药物高分子载体 高分子载体药物是指将本身没有药理作用、也不与药物发生化学反应的高分子作为药物的载体,依靠二者间微弱的氢键结合形成、或者通过缩聚反应将低分子药物连接到聚合物主链上而得到的一类药物。其中高分子化合物充当低分子药物的传递系统,而发挥药理作用的仍是低分子药物基团。《资料》高分子载体不会在体内长时间积累,可排出或水解后被吸收。《资料》 以高分子作为药物载体的主要目的是为了提高药物的选择性。通常采用三种方法提高高分子药物的选择性:①通过改变小分子药物与高分子载体的连接方式和连接基团,达到有选择性的目的。例如身体某一部位具有亲核性的细胞壁或含有氨基(巯基)等,都可以水解连接小分子药物的酯基,从而可在靶区内把小分子药物从高分子载体上接下来;②给高分子载体装上“导向装置”,从而使高分子药物直接进攻靶区。例如身体正常组织的pH值为7. 2,而某些肿瘤组织的pH值为5.9~6.9。利用这种差别,给高分子药物安上磺胺衍生物侧基,则聚合物在pH≈6. 6时沉淀,从而实现了药物专门进攻靶区的目的;③利用高分子药物的高分子量能引起体内某些细胞对它的特异吸取,使具有活性的高分子在病变区积聚,达到有选择性的目的[3] 《资料》将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。接枝主要分为两种类型:通过偶联将一种聚合物接枝到另一种聚合物表面;将带功能基团的单体接到聚合物表面,然后引发单体聚合(也叫原位聚合)。而工艺方法又可分为:氧化处理(表面涂饰,火焰电晕放电或酸蚀等);等离子固定法;高能辐射法;光化学方法等。《资料》} 催化剂高分子载体 均相催化剂的固载化是催化剂研究的方向之一,将具有催化活性的低分子负载于高分子上可制成固载化催化剂.与一般低分子催化剂相比,具有以下优点:(1)对设备无腐蚀性; (2)催化剂容易处理和储存;(3)反应后易与反应液分离;(4)易实现生产的连续化;(5)可消除废酸的环境污染;(6)稳定性良好,能够重复使用.因此,在有机合成中日益受到人们的关注.高分子载体Lewis酸催化剂具有催化活性高、性能稳定、使用方便、无污染、制备简便、成本低廉、重复使用性能优越、可回收再生等一系列优点,是一类良好的环境友好催化剂,对于资源综合利用和环境友好具有重大意义.高分子载体Lewis酸是将Lewis酸固载于高分子载体上的一种固体酸催化剂,是高分子金属催化剂中的一种,是利用高分子骨架中的不饱和pai键配位的金属高分子催化剂如:三氟化硼型催化剂:聚苯乙烯一三氟化硼复合物

相关主题