搜档网
当前位置:搜档网 › 聚N一异丙基丙烯酰胺硅胶键合相

聚N一异丙基丙烯酰胺硅胶键合相

聚N一异丙基丙烯酰胺硅胶键合相
聚N一异丙基丙烯酰胺硅胶键合相

Nature:肽键生成新途径

Nature:肽键生成新途径 来自中国科技大学的最新报道,美国范德堡大学(Vanderbilt University)的科研人员发现了一种生成肽键的新方法。该方法使用溴化硝基烷烃与碘活化的胺反应产生酰胺。该反应可以和不对称的aza-Henry反应连用,提供了生产非天然氨基酸酰胺和多肽的新途径。 肽键作为天然肽和蛋白的骨干普遍存在。氨基酸借肽键联结成蛋白质,肽键如同关节一样构建了蛋白质的骨架。同时肽键也广泛存在于很多药物小分子中,例如人们常用的消炎药青霉素和阿莫西林。化学家们常用的生成肽键方法是羧酸和胺的脱水缩合反应。其中羧酸为亲电试剂,胺为亲核试剂。而在《自然》(Nature)新报道的这一方法中,作者发现可以使用溴化硝基烷烃作为羧酸的替代物,与碘活化的胺反应。反应物的极性与经典的脱水缩合反应相反(umpolung)。溴化硝基烷烃的使用提供了生成肽键的一种全新的理念。 当反应分子体积增大、位阻或立体化学复杂程度增强的时候,常用的脱水缩合反应有时就难以达到要求。比如芳香基甘氨酸的肽键生成中就常会伴随一定程度的消旋(导致纯度降低)。而新报道的这一方法可以和不对称的aza-Henry反应连用,成功避免了芳香基甘氨酸的酰胺产生过程中的消旋。此方法将会对酰胺和多肽的合成产生广泛和深远的影响。 《自然》杂志为此刊发了编者按,同时还在“新闻和观点”栏目中配发了一篇署名文章来重点推荐新报道的这一方法。文章称赞这一新方法“简便,通用,激动人心。这不仅仅是一项令人满意的智力成果,还有更深远的应用价值。药物化学家可以很快地应用这一方法来合成含有肽键的具有生物活性的分子,而它们中的一些某一天也许会被用来治疗疾病。”从某种意义上来说,这一新方法无异于化学领域内的新发掘的一座金矿。 文章的第一作者沈博2003年毕业于中国科技大学,在范德堡大学获得化学博士学位后,现在在麻省理工学院(MIT)从事博士后研究。 原文出处推荐: Nature 465, 1027–1032 (24 June 2010) doi:10.1038/nature09125 Umpolung reactivity in amide and peptide synthesis Bo Shen, Dawn M. Makley & Jeffrey N. Johnston The amide bond is one of nature’s most common functional and structural elements, as the backbones of all natural peptides and proteins are composed of amide bonds. Amides are also present in many therapeutic small molecules. The construction of amide bonds using available methods relies principally on dehydrative approaches, although oxidative and radical-based methods are representative alternatives. In nearly every example, carbon and nitrogen bear electrophilic and nucleophilic character, respectively, during the carbon-nitrogen bond-forming step. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source can lead directly to amide products. Preliminary observations support a mechanism in which the polarities of the two reactants are reversed (German, umpolung) during carbon-nitrogen bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents

多肽合成中肽键形成的基本原理

多肽合成中肽键形成的基本原理 一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水. 在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B).如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。 因此,多肽合成-即每一个肽键的形成,包括三个步聚。 第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。 第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继续肽合成,选择性脱除保护基也是必需的。 由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险. 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思

聚N-异丙基丙烯酰胺的性质及其在药物控释系统中的应用

聚N-异丙基丙烯酰胺的性质及其在药物控释系统中的应用聚N-异丙基丙烯酰胺(PNIPAAm)线型聚合物在水溶液中具有独特的热行为,到某一温度时会发生相分离而产生沉淀,但降低温度时,它又可逆性地恢复到原来在低温下的状态。这一相变温度我们称之为最低临界溶解温度[或称为低相变温度——Low Critical Solution Temperature(LCST)]。 对PolyNIPAAm的研究始于1956年[ 1 ], 但当时这种聚合物并未引起太多的注意。自从Scarpa[ 2 ]于1967 年首次报道了PNIPAAm 水溶液在31 ℃具有LCST , PNIPAAm 才开始受到了广泛的关注。自Tanaka 等发现聚N-异丙基丙烯酰胺水凝胶PNIPAAm 水凝胶具有热敏现象并提出凝胶体积相变理论[ 3 ]以后,这种温敏水凝胶引起了人们极大的研究兴趣。 早期研究者的兴趣主要集中在LCST 转变的理论分析上, 20 世纪80 年代以后转向了PNIPAAm 的应用。智能型的水凝胶、微球、乳液、薄膜、分离膜、涂料等材料相继被制备出来, 且有关化学的、物理的、生物学上的特性得到了研究。利用PNIPAAm 分子链在L CS T 附近可逆性地伸展和卷曲的特点, PNIPAAm 可以设计成分子开关, 制成水凝胶膜或接枝于多孔膜上;利用其分子链亲水性疏水性的反转的性质, 可对溶质进行吸附、脱附, 用于酶、蛋白质等的富集和分离。 本文主要对PNIPAAm的相转变、性质及其在药物控释系统中的应用进行了综述。 1PNIPAAm 的LCST转变的理论分析 凝胶的膨胀度与凝胶的网络结构和溶剂的性质有关。凝胶的膨胀行为由下面几个因素决定: (1) 凝胶体系的混合自由能, (2) 高分子链的弹性压力, (3) 低分子离子产生的膨胀压力, (4)凝胶体系中特殊的相互作用力。当这些因素达到平衡时, 凝胶的膨胀呈平衡状态。一般说来,凝胶体积的变化与溶液的热力学性质成比例。可是在一定的条件下, 凝胶会因溶液性质的微小变化而引起极大的体积变化, 即所谓的凝胶的体积相变。根据Flory-Huggins 的理论, Tanaka 研究小组[ 4 ]推导了凝胶的膨胀平衡公式, 并给出了理论曲线, 如Fig. 1 所示。f 是每条高分子链带有的电荷数, 当高分子链不带电荷或只带少量电荷时, 凝胶的体积随着归一化温度S的变化作连续的变化。但高分子链上带有的电荷数增大时, 凝胶的体积随着归一化温度S的变化作不连续的变化, 发生了体积相变。1987 年

N_异丙基丙烯酰胺高分子水凝胶研究进展_史海营

N -异丙基丙烯酰胺高分子水凝胶研究进展 史海营,李瑞霞,吴大诚 (四川大学纺织研究所,四川成都610065) [摘 要]N -异丙基丙烯酰胺基高分子水凝胶的研究进展做了综述。简要介绍了该类水凝胶的合成方法,重点分析了不同共聚单体及交联剂对水凝胶溶胀性能和环境响应性的影响,尤其是快速响应水凝胶的合成方法和N -异丙基丙烯酰胺/天然大分子水凝胶的特点。本文也简单介绍了该类水凝胶在不同领域内的应用。 [关键词]N -异丙基丙烯酰胺;高分子水凝胶;快速响应;天然大分子;应用 Advance in Polymeric Hydrogels Based on N -isopropylacrylamide Shi H aiying,Li Ruix ia,Wu Dacheng (Tex tile Resear ch Institute,Sichuan Univer sity,Chengdu 610065,China) Abstract:T he adv ance in po ly meric hydrog els based on N -iso pr opylacr ylamide w as rev iewed in this paper.T he pr epar ations,the influences o f monomers and cro ss -link ag ents o n the swelling pro per ties and env ir onment sensitiv ity behaviors fo r these hydro gels wer e intro duced br iefly.Especially ,the preparations of rapid -response hy dr og els and the r esear ch o f N -isopro py lacry lamide/natura-l polymers hydr ogels wer e emphasized.T he applica -tions o f the po ly mer ic hydro gels based o n N -iso pr opylacry lamide in different fields wer e summar ized simply. Keywords:N -iso pr opylacry lamide;polymer ic hydrog el;rapid response;nat ur al polymer ;applicatio n [收稿日期]2005-11-09 [基金项目]国家自然科学基金资助项目(50473050) [作者简介]史海营(1980-),男,山东人,硕士研究生,主要研究方向:高分子材料的结构与性能。 高分子水凝胶是水溶性高分子经适度交联形成伸缩性三维交联网络与水组成的多元体系,受到环境刺激的时候随之响应,是一种智能高分子材料。根据水凝胶对环境刺激响应的不同,可分为物理刺激响应水凝胶、化学刺激响应水凝胶和多重响应水凝胶[1-3]。正是由于高分子水凝胶环境刺激响应这一智能化功能,使得其在多个领域得以广泛的研究和应用[4]。其中尤为受到关注的是N -异丙基丙烯酰胺(NI PA )为主体的高分子水凝胶。自上世纪有学者[5,6]报道了聚N -异丙基丙烯酰胺(PN IPA )水凝胶的温度响应性和临界相变以后,对这类水凝胶展开了一系列广泛的研究工作,这方面的研究报道与日俱增。本文介绍了近年来国内外这一领域取得的研究进展,综述了合成方法,组分和结构与性能的关系,以及在不同领域内的应用。 1 合成方法的研究 有关PN IP A 高分子水凝胶的合成方法很多学者做了研究,也有相关的综述报道[7,8]。水凝胶的合成主要有传统的自由基聚合、互穿聚合物网络(IP N)等方法;以及制备快速响应水凝胶的改进方法。 1.1自由基聚合法 自由基聚合成N IPA 水凝胶是比较常用的方法,可选择不同的方法引发自由基聚合,主要有引发剂引发和射线辐射引发。引发剂按照分解方式主要分为氧化还原分解和热分解两类[9]。氧化还原引发是通过引入氧化还原反应来引发体系的聚合和交联。最常用的氧化还原引发剂是过硫酸钾(AP S) 和四甲基乙二胺(T EM ED),也有学者用A PS 与亚硫酸氢钠(SBS)做为氧化还原引发剂[10-13]。用作合成N IPA 共聚水凝胶的热分解引发剂主要是偶氮二异丁腈(A IBN )[14-17]。 引发剂引发自由基聚合虽然简便易行,但水凝胶中残存的引发剂和交联剂会影响水凝胶的性质和应用。而且引发剂反应产生的热量对NI PA 水凝胶的聚合也有较大的影响[18]。为了消除这种影响,可以采用C -射线辐射引发聚合的方法合成P NI PA 水凝胶[19-21]。辐射引发聚合的方法可以通过改变辐射剂量控制交联度,易于操作;不需要引发剂和交联剂,不污染产品;合成的凝胶更均匀。这些优点有利于水凝胶在要求较高的药物控释、生物分离技术及生物医学领域的应用。 1.2IPN 法 IPN 是指将两个化学组成不同的组分分别形成各自独立的 # 8# 广 东 化 工w w w.g https://www.sodocs.net/doc/0a16846895.html, 2006年第1期 第33卷总第153期

合成酰胺键的方法

合成酰胺键的方法 在这里我们简单介绍一下多肽化学合成的方法以及常用的多肽缩合试剂。 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作

热敏性聚(N-异丙基丙烯酰胺)类材料的研究

热敏性聚(N-异丙基丙烯酰胺)类材料的研究 热敏性聚(N-异丙基丙烯酰胺)(PNIPAAm)类高分子材料属于智能高分子材料。1967年Scarpa首次报道了PNIPAAm水溶液在31℃具有最低临界溶液温度(LCST)后,PNIPAAm引起了科学工作者的广泛关注。PNIPAAm的大分子链上同时具有亲水性的酰氨基和疏水性的异丙基,使线型PNIPAAm的水溶液,以及交联后的PNIPAAm水凝胶都呈现出温度敏感特性。当溶液体系的温度升高到30℃-35℃之间时,溶液发生相分离,表现出最低临界溶液温度(LCST)。利用PNIPAAm在LCST附近发生可逆相转变的特性,可以将PNIPAAm设计成分子开关,制备多种智能高分子材料。这些高分子材料在生物医学、免疫分析、催化、分离提纯等领域都有广泛的应用。 4.1生物医学工程中的应用 近年来,国内外的研究学者对PNIPAAm聚合物及其水凝胶,在生物医学工程领域中的应用做了许多研究工作,并发现了PNIPAAm许多新的性质[76-78]。4.1.1药物控制释放 利用PNIPAAm的热敏性进行药物控制释放,研究的热点主要是PNIPAAm水凝胶和PNIPAAm纳米粒子体系。国内著名学者卓仁禧教授对PNIPAAm热敏性水凝胶的相转变理论和应用都做了许多研究工作[79-82]。 PNIPAAm对药物进行控制释放有下面三种情况:①在PNIPAAm水凝胶体系中,当体系温度在LCST以上时,水凝胶的表面会发生收缩,导致表面的水化层收缩,形成薄的致密皮层。这种致密的皮层阻止了PNIPAAm水凝胶内水分和药物向外释放;体系温度低于LCST时,水凝胶表面皮层溶胀,此时药物可以从体系中释放。②在以PNIPAAm分子链接枝的聚合物微球体系中,当体系温度在LCST以下时,PNIPAAm的接枝链会在水中伸展,彼此之间交叉覆盖,导致微球孔洞的阻塞,包裹在微球内的药物扩散释放受阻;体系温度在LCST以上时,接枝的大分子链会进行自身收缩,微球表面的孔洞会显现出来,药物可以顺利的扩散到水中,达到控制释放目的。③在低温条件下,将制得的PNIPAAm水凝胶溶于药物溶液中,通过凝胶溶胀吸附药物。高温条件下,凝胶体系发生体积收缩,药物会以向外排出的方式控制药物释放。

N-异丙基丙烯酰胺丙烯酸胆甾醇酯共聚物地地研究

N-异丙基丙烯酰胺/丙烯酸胆甾醇酯共聚物研究 曾宏波李耀邦张昊宇王晓工 (清华大学材料科学与工程研究院化工系高分子研究所北京100084) 两亲性聚合物在同一分子链中包含亲水和亲脂结构单元,具有独特的水溶液行为,在很多领域得到了广泛应用.两亲性聚合物通过水溶液的选择性溶解效应,一定条件下可以聚集成具有较窄粒径分布的聚合物胶束.胶束的典型特征是其核壳结构,亲脂单元由于疏水作用在水溶液中自组装成胶束的内核,亲水链段则包围在内核的周围形成一个较为舒展的壳层[1].由于两亲性聚合物胶束内核有较高的药物包埋能力,胶束在体内选择性分布的特点,近年来其在靶向药物传递和药物缓释领域的应用备受关注[1].携带药物的聚合物胶束在体内分布主要是由其胶束尺寸和表面(壳层)性质决定的,而受到包埋在胶束内核的药物性质的影响较少.因此,胶束壳层性质和胶束尺寸设计是聚合物胶束药物传递体系实现有效控制的关键因素.溶液中聚合物胶束内核形成的直接动力是包括疏水聚集作用,金属络合、电荷作用,及氢键作用等相互作用也会有一定的影响[2].一般而言,疏水性内核应具有生物降解性.一些非生物降解性的聚合物(如聚甲基丙烯酸甲酯[3]、聚苯乙烯[4,5])目前也用于此领域的应用研究,但这些聚合物必须无毒,其分子量较低,能够被体内正常代谢排出.聚合物胶束的壳层一般不要求生物降解性,但要具有生物相容性,如聚氧化乙烯等.近年来,具有热敏性或者pH敏感性的聚合物如聚(N异丙基丙烯酰胺)(PNIPAM)[6~8]和聚丙烯酸[9]等也被用来制备刺激响应性的壳层结构.PNIPAM在其大分子链上同时具有亲水的酰胺基团和疏水的异丙基,使得PNIPAM呈现出温度敏感性.在常温下,PNIPAM溶于水中形成均匀的溶液,当温度升高至32℃左右时,溶液发生相分离.相变点的温度定义为最低临界溶液温度(LCST).PNIPAM在LCST附近的相转变是一种温度敏感的可逆变化,所以可以利用此温度敏感效应来控制包埋在胶束内部的药物释放.胆甾醇是一种具有生物相容性但很疏水的化合物,胆甾醇类化合物在血液中主要是以载脂蛋白(Lipoprotein)的形式存在,血液中的载脂蛋白可以简单地看成由胆甾醇、胆甾醇羧酸酯、甘油三酯以及蛋白质等多种有机分子的“共聚集体”,胆甾醇和胆甾醇羧酸酯在各种载脂蛋白中的迁移、运动等行为和疏水亲脂作用密切相关[10].因此胆甾醇酯类是一种理想的聚合物胶束药物载体核层材料. 关于丙烯酸胆甾醇酯疏水化修饰聚异丙基丙烯酰胺已有文献提及[11],但只报道了在一种投料比下合成的P(NIPAMcoCHA)共聚物,未对聚合物结构(如共聚物组成比等)、聚合物性能和溶液行为等进行系统表征和深入研究.本文以N异丙基丙烯酰胺(NIPAM)为温敏结构单元,丙烯酸胆甾醇酯(CHA)为疏水结构单元,合成了一系列不同PNIPAMCHA摩尔组成比的无规两亲性共聚物.利用浊度法、荧光探针法、表面张力法等对上述两亲性共聚物的最低临界溶解温度(LCST)和胶束形成能力等进行了系统的研究,并探索这类温度敏感性聚合物胶束在药物控制释放中应用的可能性. 1 实验部分 1.1 主要原料及仪器表征 胆甾醇,天津市化学试剂公司,生物试剂.N异丙基丙烯酰胺,自制.1,4 二氧六环,北京化工厂,分析纯,减压蒸馏提纯.四氢呋喃,北京化工厂,分析纯.偶氮二异丁腈(AIBN),无水乙醇重结晶提纯.石油醚,北京化工厂,分析纯.红外光谱分析采用Nicolet560 IR傅立叶红外光谱仪;浊度分析采用PerkinElmerLambdaBio40紫外可见光谱仪;1HNMR测定采用BrukerAM500核磁共振仪;胶束和分布测定采用激光粒度分析仪Zetasizer3000HS(MalvernInstrumentsLtd,UK);溶液表面张力测定采用OCA20视频光学接触角测量仪(DataphysicsInstrumentsLtd,Germany).荧光探针分析采用F4500荧光光谱仪(HitachiHghTechnologiesCorporation,Tokyo,Japan);共聚物的分子量的测定是采用Waters150C型凝胶渗透色谱仪,以窄分布的聚苯乙烯试样为标准,四氢呋喃为淋洗液. 1.2 单体和聚合物的合成 1.2.1 丙烯酸胆甾醇酯 将12.12g(0 0314mol)胆甾醇和8mL丙烯酰氯(过量)溶解在50mL无水苯中,加入少量对苯二酚作阻聚剂,加热回流反应7h.将反应液溶于70mL乙醚,依次用饱和Na2CO3溶液,10%HCl溶液,饱和NaCl溶液洗涤;分液收集有机相,无水MgSO4干燥过夜.旋转蒸发大部分溶剂,将浓缩后的溶液再溶于一定量的无水乙醚中,加入大量无水乙醇沉淀,得白色粉末状固体,收率为78.2%.产物经过红外光谱和核磁共振测定,证实其结构符合丙烯酸胆甾醇酯[12]. 1.2.2 NIPAMCHA共聚物

N-异丙基丙烯酰胺合成的改进

N-异丙基丙烯酰胺合成的改进 吴恒1,杨慧2,李毅3,丁洪4,任科5 (四川大学华西药学院,成都,610041) 摘要:合成热敏性水凝胶聚N-异丙基丙烯酰胺(PNIPAAM)的重要单体---N- 异丙基丙烯酰胺(NIPAAM),并测定其物理性质,合成产率 以丙烯酸计为79.9% 关键词:N-异丙基丙烯酰胺合成改进 ABSTRACT: This paper describes the synthesis of N -isopropylacrylamide (NIPAAm), which is an important monomer of the thermosensitive hydrogel ---poly(N-isopropyl acrylamide) (PNIPAAm). The important monomer was identified by its physic property.And a79.9%yield of NIPAAm(from isopropylacryl acid) was obtained. KEY WORD:N–isopropylacrylamide, synthesis,improvement 1 前言 作为单体, N取代丙烯酰胺在高分子聚合与其他化工行业中发挥着重要的作用,特别是近年来发现N异丙基丙烯酰胺的聚合物所表现出的

温度敏感性,即LCST(lower critical solution temperature) 现象[1],更是引人注目。对于线性聚异丙基丙烯酰胺,其临界温度为32 ℃,当温度低于该值时,聚合物溶于水呈透明态,而温度升高到该值时,聚合物发生迅速相变,溶液呈浑浊状。同样,对于凝胶型该聚合物,也存在一转变温度,当温度低于该值时凝胶在水中呈溶胀态,而温度到达其临界温度时凝胶迅速收缩。这种LCST 现象在其他聚合物中也有发生[2],但最经典的仍是异丙基丙烯酰胺的聚合物体系,与此有关的研究非常丰富[3]。另一方面,温度敏感型聚合物因其独特的行为,被认为在许多领域有很好的应用前景,如利用其凝胶的低温溶胀与收缩的可逆行为,可分离与浓缩生物活性物质(蛋白质等) [4],利用其临界温度的透明与浑浊可逆行为来制造温敏薄膜、玻璃或显示器件[5]等。另外在生物、医药、环保等领域都有广泛的应用前景[6]。故而寻求 合适的方法来合成该聚合物的单体是一项同样重要的工作。近几年来关于NIPAAm的均(共)聚物和水凝胶的研究越来越多,对这种热敏性的应用也越来越广,可用于制作温度敏感性能的功能膜、温度控制凝胶的渗透色谱、液相色谱的填料、合成模拟生物活性的纤维蛋白胶原、易用冷水除去的皮肤粘附带、细胞培养支持材料、伤口贴、温度敏感的增稠剂、防染剂、电阻墨水、电泳母体、化妆品、用作涂层、包装和生物医用材料等。 正是由于这些广泛的用途,降低合成NIPAAm的成本的意义就尤为重要了。据文献报道,常用于合成N取代丙烯酰胺的方法大体有以下4 种: (1) 不饱和酸与胺反应或不饱和酰氯与胺反应[7]; ( 2 ) Beckmann

多肽合成方法

多肽合成中肽键形成的基本原理一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。因此,多肽合成-即每一个肽键的形成,包括三个步聚:第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在;第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没 有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一 种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一 的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护 以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑 地规划,依战略选择,可以选择性脱除 N α -氨基保护基或羧基保护基。“战略” 一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间 是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况 下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分 割成合适的片段,并确定在片段缩合过程中,它们能使能 C 端差向异构化程度最 小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最 恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成( SPPS )只是肽和蛋白质逐步合成法的一种变化,其概念是将 增长的肽链连接到一个不溶性的聚合物载体上,由 Robert Bruce Merrifield

合成酰胺键的方法

合成酰胺键的方法 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作用下,中间体不经分离直接进行反应形成酰胺键。这样就无需预先制备酰卤、酸酐和活化酯等羧基被活化的中间体,不仅简捷高效,而且可以有效地避免在活化中间体分离提纯以及存放过程中产生的一些副反应。目前已报道的多肽缩合试剂非常繁多,从分子结构的角度上主要分为碳化二亚胺类型、磷正离子或磷酸酯类型和脲正离子类型。 发展最早和最常用的碳化二亚胺类缩合试剂是DCC。但由于反应生成的二环已基脲(DCU)在大多数有机溶剂中溶解度很小,难以除去,人们对DCC的结构进行了改进,发展了副产物的脂溶性很好的DIPCDI和BDDC等和副产物水溶性很好的EDCI(Figure 1.7)。

明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性 吉静,黄明智(北京化工大学材料科学与工程学院,北京100029) 高分子凝胶是由具有网状结构的聚合物和溶剂组成的。交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。当两种相反的倾向互相抵消时,达到溶胀平衡。高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。它们的定量关系可用Flory-Huggins渗透压说明。带电的PNIPAM微凝胶因其在LCST上下分散状态的不同,可用于石油储罐中的原油回收[1]。将PNIPAM与明胶(geltin)结合制成的水凝胶不仅具有温度敏感性,明胶的两性带电,使其更具有pH敏感性[2],有望应用在更复杂的环境中。水凝胶的一个重要性质是平衡溶胀度,如分散状态、可控的释药方式可以通过水凝胶的溶胀度控制。因此,可借助高分子网络凝胶结构、形态的微观控制,来影响其宏观的溶胀度。由于水凝胶在生物医药、分离工程、石油化工等多项领域的应用[6~8],与其溶胀度的大小、变化有密切的关系,而影响水凝胶溶胀度的因素是多方面的,了解这些因素对水凝胶溶胀度的影响,可为更好地应用水凝胶提供理论指导。尽管有关PNIPAM的研究很多[3~5],但还未见这一领域结合天然高分子明胶的研究。因此,本实验的主要目的是研究影响明胶-PNIPAM水凝胶平衡溶胀度的因素。 1实验部分 1 .1材料 N-异丙基丙烯酰胺(NIPAM),化学纯;明胶,K-911216,开平明胶厂;过硫酸铵(APS),AR级,北京化学试剂三厂;N,N,N,N-四甲基乙二胺(TEMED),CP级,北京化学试剂三厂;N,N-亚甲基双丙烯酰胺(BIS),AR级,北京化学试剂公司;戊二醛溶液(GLA,质量分数25%),CP级,北京华博源科技开发中心。 1.2水凝胶的制备 将明胶、N-异丙基丙烯酰胺、TEMED、BIS溶解于去离子水中,待完全溶解后,加入APS,同时通入氮气;再加入GLA,或BIS,或BIS和GLA,并快速搅拌均匀,室温下静置2h,分别制成geltinx-PNIPAM,geltin-PNIPAMx,geltinx-PNIPAMx3种交联结构的水凝胶。将以上制备的水凝胶,置于去离子水中浸泡48h后取出,再放入40℃的去离子水中浸泡,浸泡过程不断换水,将此过程反复数次。将已处理好的水凝胶切成大小约0.7cm×0.7cm×0 25cm的小块,放入真空干燥箱中,干燥至恒重,称取干胶质量,留做溶胀实验。 1. 3溶胀度的测定 将上述制备的试样放入规定pH值、规定温度的缓冲溶液中,达溶胀平衡后取出称量湿胶质量。按下列公式计算溶胀度: 溶胀度=(mW-md)/md 式中,mW为达溶胀平衡后的湿胶质量,g;md为干胶质量,g。 2结果与讨论 2. 1明胶/PNIPAM配比对水凝胶溶胀度的影响 水凝胶是由明胶和PNIPAM大分子组成的互穿网络结构,温度对这两种大分子在水中溶胀的影响作用不同。对于明胶大分子来说,温度升高,破坏了明胶的氢键,利于明胶的溶胀。但温度达到32℃(PNIPAM的LCST值)以上时,由于PNIPAM大分子转向疏水性,导致分子收缩。所以,对于明胶-PNIPAM水凝胶而言,明胶/PNIPAM配比对水凝胶的平衡溶胀度有明显的影响且这种影响与温度有关。首先,为了排除离子对溶胀度的影响,在去离子水中,于不同的温度条件下,研究水凝胶中明胶质量分数对溶胀度的影响,见图1(交联剂加入量以各组分为基准,质量分数分别为2%)。

合成酰胺键的一般方法

合成酰胺键的一般方法 刚才浏览帖子,看到有人问如何合成酰胺键。由于本人博士论文是做多肽合成的,所以有一些经验。现将我的博士论文关于如何合成酰胺键的一段贴过来,希望能对即将从事多肽合成的人有些用。本帖原创,转载请注明出处。 在这里我们简单介绍一下多肽化学合成的方法以及常用的多肽缩合试剂。 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri 等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作用下,中间体不经分离直接进行反应形成酰胺键。这样就无需预先制备酰卤、酸酐和活化酯等羧基被活化的中间体,不仅简捷高效,而且可以有效地避免在活化中间体分离提纯以及存放过程中产生的一些副反应。目前已报道的多肽缩合试剂非常繁多,从分子结构的角度上主要分为碳化二亚胺类型、磷正离子或磷酸酯类型和脲正离子类型。 发展最早和最常用的碳化二亚胺类缩合试剂是DCC。但由于反应生成的二环已基脲(DCU)在大多数有机溶剂中溶解度很小,难以除去,人们对DCC的结构进行了改进,发展了副产物的脂溶性很好的DIPCDI 和BDDC等和副产物水溶性很好的EDCI(Figure 1.7)。 由于这类缩合试剂活性很高,往往会导致产物有较大程度的消旋,为此通常要加入HOSu,HOBt,HOAt 或HOOBt等添加剂一起使用来抑制产物消旋,同时也可有效地抑制N-酰基脲等副产物的生成。[attach]5892[/attach]

多肽合成详细解说

多肽合成详细解说 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA 脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。化学合成方法有两种,即Fmoc 和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc法合成,如图:

相关主题