搜档网
当前位置:搜档网 › 2021新高考 数学通关秘籍 专题23 几类函数的对称中心及应用

2021新高考 数学通关秘籍 专题23 几类函数的对称中心及应用

2021新高考 数学通关秘籍 专题23 几类函数的对称中心及应用
2021新高考 数学通关秘籍 专题23 几类函数的对称中心及应用

专题23 几类函数的对称中心及应用

【方法点拨】

1.三次函数3

2

()(0)f x ax bx cx d a =+++≠的对称中心为(0x ,0()f x ),其中0()0f x ''=,即00()620f x ax b ''=+=,03b

x a

=-

. 记忆方法:类比于二次函数的对称轴方程02b

x a =-

,分母中23→. 2. 一次分式函数(或称双曲函数)()(0)cx d f x ac ax b -=

≠-的对称中心为(,)b c

a a

. 记忆方法:横下零,纵系数(即横坐标是使分母为0的值,而纵坐标是分母、分子中的一次

项系数分别作为分母、分子的值). 3. 指数复合型函数()x n f x a m =

+(01,0)a a mn >≠≠且的对称中心为(log ,)2m

a

n m

. 记忆方法:横下对,纵半分(即横坐标是使分母取对数的值,但真数为保证有意义,取的是

绝对值而已,而纵坐标是分母、分子中的常数分别作为分母、分子的值的一半).

【典型题示例】

例1 已知函数2

()231

x

f x x =-+,则满足不等式()(32)2f a f a ++>的实数a 的取值范围是 . 【答案】1,2??-∞- ???

【解析】2

31

x y =

+的对称中心是(0,1),其定义域为R 且单减 令2

()()12131

x g x f x x =-=--+,则()g x 为R 上的单调递减的奇函数

由()(32)2f a f a ++>得(32)11()f a f a +->- 即(32)()g a g a +>-

因为()g x 为奇函数,故()()g a g a -=- 所以(32)()g a g a +>-

又()g x 在R 上单减,所以32a a +<-,解之得12

a <- 所以实数a 的取值范围是1,2??-∞-

???

. 例2 (2021·江苏镇江中学·开学初)设()f x '是函数()y f x =的导数,()f x ''是()f x '的导

数,若方程()f x ''=0有实数解0x ,则称点(0x ,0()f x )为函数()y f x =的“拐点”.已知:任何三次函数都有拐点,又有对称中心,且拐点就是对称中心.设3218

()2133

f x x x x =-++,数列{}n a 的通项公式为27n a n =-,则128()()()f a f a f a +++= .

【解析】令()24=0f x x ''=-得2x =,(2)1f =

3218

()2133

f x x x x =-++对称中心为()2,1,

所以()(4)2f x f x +-=对于任意x R ∈恒成立

因为27n a n =-,所以182736454a a a a a a a a +=+=+=+=

所以18273645()()()()()()()()2f a f a f a f a f a f a f a f a +=+=+=+= 所以128()()()8

f a f a f a ++

+=.

例3 已知函数()x f =a

x x -+-2,若对*

∈?N x ,()()5f x f ≤恒成立,则a 的取值范围是 .

【答案】65<

【巩固训练】

1. 函数y=

4

2

-+-x x 的对称中心是 . 2. 已知函数2()1

ax a

f x x +-=+(其中a R ∈)图象关于点P (-1,3)成中心对称,则不等式

()1f x x >-的解集是 .

3. 设函数,数列是公差不为0的等差数列,

,则( )

A 、0

B 、7

C 、14

D 、21

4. 在平面直角坐标系中,已知直线与曲线依次交于

三点,若点使,则的值为_____. 5. 已知函数1

()21

x f x a =

+-的图象关于坐标原点对称,则实数a 的值为_____. 3

()(3)1f x x x =-+-{}n a 127()()()14f a f a f a ++???+=127a a a ++???+=xOy k kx y 22-+=x x y +-=3

)2(2C B A ,,P 2|PC PA |=+||PB

6. 已知函数

31

()2

31

x

x

f x x

-

=+

+

,则满足不等式()(32)0

f a f a

++>的实数a的取值范围

是.

【答案或提示】

1.【答案】(4,-1)

2.【答案】{}

103x x x <-<<或 【解析】函数2()1

ax a

f x x +-=

+的对称中心为(-1,a ),与P(-1,3)比较得a =3.此时

31()1x f x x -=+,不等式()1f x x >-,即3131

1(1)011x x x x x x -->-?-->++ (3)0(1)(3001

x x x x x x -?

3.【答案】D

【提示】根据函数值之和求自变量之和127a a a ++???+,很自然会去考虑函数的性质,而等式常常考查对称性,从而尝试去寻求函数的对称中心.

函数可以视为由3

(3)y x =-与1y x =-构成,它们的对称中心

不一样,可以考虑对函数的图象进行平移, 比如3

()2(3)(3)f x x x -=-+-,引入函数

3()(3)2F x f x x x =+-=+,则该函数是奇函数,对称中心是坐标原点,由图象变换知识

不难得出的图象关于点(3,2)中心对称. 4.【答案】1

【分析】过定点(2,2), 对于三次函数,令

()12(2)0f x x ''=-= 得2x =,又(2)2f =,所以也关于点(2,2)对称,

所以2PA PC PB +=,1PB =. 5.【答案】-1 6.【答案】12??

-

+∞ ???

【解析】313122

()2212313131

x x x

x x f x x x x -+-=+=+=-++++的对称中心是(0,0),其定义域为R 且单增(下略).

127()()()14f a f a f a ++???+=3

()(3)1f x x x =-+-3

()(3)1f x x x =-+-3

()(3)1f x x x =-+-k kx y 22-+=x x y +-=3

)2(2x x y +-=3)2(2

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学中的“对称图形”题型及解法浅探

高中数学中的“对称图形”题型及解法浅探 “对称性”是数学美的一种体现,也是历年高考题中的常见题型,理解和掌握“对称图形”的基本规律和解题方法是十分必要的. 一、本身具有对称性的图形 如“三角函数的图像,圆锥曲线”等,此类问题可直接应用对称轴方程加以解决. 例1:如果y=sin2x+acos2x的图像关于直线x=- 对称,那么A=() A. B.- C.1 D.-1 解:∵y=sin2x+cos2x= sin(2x+φ),其中tanφ=a ∴2x+φ=kπ+ ?圯x= + - =- ∴φ=kπ+ 即:a=tan(kπ+ )=-1,故选D. 例2:曲线x +y +2 -2 =0关于() A.直线x= 对称 B.直线y=-x对称 C.点(-2,)中心对称 D.点(,0)对称 解:将方程配方得:(x+ )+(y- )=4, ∴曲线是以(-2,)为圆心,2为半径的圆.由圆自身的对称性可知应选B. 评析:1.对于y=sinx直接应用对称轴方程x=kπ+ (k

∈Z)求解,方法简明扼要. 2.对于圆,过圆心的任意直线都是对称轴,圆心是对称中心. 3.关于y=f(x)其图像存在对称性,有一般的结论:f (x+a)=f(b-x)恒成立?圳y=f(x)的图像关于x= 对称. 二、两个图形关于点对称 两个图形关于点对称的此类问题可借中点公式极易解决. 例3:设曲线C的方程是y=x -x将C沿x轴、y轴的正方向分别平行移动T、S个单位长度后,得曲线C ,(1)写出C 的方程; (2)证明C 和C关于点(,)对称. 解析:(1)由题意:C :y-S=(x-T)-(x-T). (2)设M(x,y)是C上的任意点,M′(x′,y′)是M关于(,)的对称点, 由中点公式:x=T-x′,y=x-y′,代入C得:y′-S=(x′-T)-(x-T) ∴M在曲线C 上. 反过来,同样可以证明:C 上的任意点关于(,)对称的点也在C上. 因此,C 与C关于点(,)对称. 评析:关于成中心对称的两个图形,上例实质是求中心

高中函数对称性总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

高中数学中对称性问题

标准文档 实用文案对称性与周期性 函数对称性、周期性的判断 1.函数()yfx?有()()faxfbx???(若等式两端的两自变量相加为常数,如 ()()axbxab?????),则()fx的图像关于2abx??轴对称;当ab?时,若()() (()(2))faxfaxfxfax?????或,则()fx关于xa?轴对称; 2.函数()yfx?有()()fxafxb???(若等式两端的两自变量相减为常数,如 ()()xaxbab?????),则()fx是周期函数,其周期Tab??;当ab?时,若 ()()fxafxa???,则()fx是周期函数,其周期2Ta?; 3.函数()yfx?的图像关于点(,)Pab对称?()(2)2 (()=2(2))fxfaxbfxbfax?????或;函数()yfx?的图像关于点(,0)Pa对称? ()=(2) fxfax??( ()=())faxfax???或; 4.奇函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且2Ta?是函数的一个周期;偶函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且 4Ta?是函数的一个周期; 5.奇函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且4Ta?是函数的一个周期;偶函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且2Ta?是函数的一个周期; 6.函数()yfx?的图像关于点(,0)Ma和点(,0)Nb对称?函数()yfx?是周期函数,且2()Tab??是函数的一个周期; 7.函数()yfx?的图像关于直线xa?和直线xb?对称?函数()yfx?是周期函数,且 2()Tab??是函数的一个周期。 标准文档

高中数学中的对称性问题

高中数学中的对称性与周期性 一、函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 7函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。 二、关于点对称 (1) 点关于点的对称点问题 若点A 11(,)x y , B 22(,)x y , 则线段AB 中点M 的坐标是( 1212 ,22 x x y y ++);据此可以解求点与点的中心对称,即求点M 00(,)x y 关于点P (,)a b 的对称点' M 的坐标(,)x y ,利用中点坐标公式可得 00, 22 x x y y a b ++= =,解算的' M 的坐标为00(2, 2)a x b y --。

高中数学-函数的单调性、奇偶性、周期性、对称性及函数的图像

函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y =f (x )定义域为A ,区间M ?A ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称f (x )在区间M 上是增函数,当Δy =f (x 2)-f (x 1)<0时,就称f (x )在区间M 上是减函数. 如果y =f (x )在某个区间M 上是增(减)函数,则说y =f (x )在这一区间上具有单调性,这一区间M 叫做y =f (x )的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f (x 1)与f (x 2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y =f [φ(x )]型双重复合形式的函数的增减性,可通过换元,令u =φ(x ),然后分别根据u =φ(x ),y =f (u )在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=-f (x ),则这个函数叫做奇函数;设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=f (x ),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f (x )奇函数?f (x )的图象关于原点对称. f (x )为偶函数?f (x )的图象关于y 轴对称. 此外,由奇函数定义可知:若奇函数f (x )在原点处有定义,则一定有f (0)=0,此时函数f (x )的图象一定通过原点. 周期性: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x )成立,则函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期. 关于函数的周期性,下面结论是成立的. (1)若T 为函数f (x )的一个周期,则kT 也是f (x )的周期(k 为非零整数). (2)若T 为y =f (x )的最小正周期,则 | |ωT 为y =Af (ωx +φ)+b 的最小正周期,其中ω≠0. 对称性: 若函数y =f (x )满足f (a -x )=f (b +x )则y =f (x )的图象关于直线2 b a x += 对称,若函数y =f (x )满足f (a -x )=-f (b +x )则y =f (x )的图象关于点( 2 b a +,0)对称. 函数的图象: 函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用. (1)利用平移变换作图:

高中数学奇偶性,周期性,对称性知识点及题型讲解(全面)【精品】

课题1:奇偶性 知识点: 【例】设f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2 +2x+a(a 为常数)则f (-1)= 【答案】-1【解析】因为f(x)是定义在R 上的奇函数,则f(0)=0;f(0)=a=0,所以f(x)=x 2 +2x ;所以f (-1)=(-1)2 +2(-1)=-1. 【例】设f(x)=lg( a +x -12 )是奇函数,则使f(x)<0的x 的取值范围是( ) A.(-1,0) B.(0,1) C.(-∞,0) D.(-1,1)

【答案】A 【解析】f(x)=lg( a +x -12 )是奇函数,且在x=0处有定义则f(0)=0,即f(0)=lg( a +0 -12 )=0,则a=-1;f(x)<0,即 lg(a +x -12)<0得?????<--<±≠111201 x x ,解得-1

高中数学点线对称问题

对称问题专题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 x x y y -'-'·k =-1, 2 y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足 x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 剖析:由平面几何知识可知若直线a 、b 关于直线l 对称,它们具有下列几何性质:(1)若a 、b 相交,则l 是a 、b 交角的平分线;(2)若点A 在直线a 上,那么A 关于直线l 的对称点B 一定在直线b 上,这时AB ⊥l ,并且AB 的中点D 在l 上;(3)a 以l 为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b 的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程. 2x +y -4=0, 3x +4y -1=0, 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上

浅谈高中数学解析几何中的对称问题

浅谈高中数学解析几何中的对称问题 发表时间:2019-12-10T17:34:32.223Z 来源:《教育学文摘》2019年12期作者:龚杨熙 [导读] 新课标改革开展后,我国的教育事业也在不断发展 摘要:新课标改革开展后,我国的教育事业也在不断发展,其中高中数学也乘着改革开放的快车,发展迅猛。在高中数学中,数学解析几何中的对称问题受到了广泛的关注与讨论。研究对称问题不仅能增强我们解决问题的能力,同时可以培养发散思维,锻炼空间想象力等,而且还能提高在日常生活当中的审美能力,提高创新意识。下面我将结合自己的学习理解,对高中数学解析几何中对称问题进行简要分析,希望能在这方面为同学们的学习提供一些帮助。 关键字:高中数学解析几何对称问题 高中数学解析几何中的对称问题,是高中数学的一个重要内容,也是平时学习的难点,它的运用非常广泛,不仅体现在数学应用上,有时还会渗透到物理学科的应用方面。在对称问题中,主要研究的问题有:点关于点对称、点关于直线对称、直线关于点对称、直线关于直线对称、曲线关于点对称、曲线关于直线对称等问题。不过在对称问题中,最基础的问题为点关于点,点关于直线的对称问题,线(直线、曲线)关于点的对称问题可转化为点关于点对称。线(直线、曲线)关于直线对称的问题可转化为点关于直线对称。 一、关于点的对称问题 点与点之间的对称问题,在初步接触对称问题时,较为常见,也较为简单。在关于点的对称问题中,也有不同的类型,包括了点与点之间的关系、点与点关于直线对称的关系,线与线关于直线对称的关系,每种不同的关系之间,解题思路既有相同点,也有不同的点,均需要答题者,认真思考,得出答案。下面我将针对不同的种类进行分析。 (一)点关于定点对称问题 这类问题,一般是知道一个点A,知道A点的坐标,给出另外一个中心点Q,告诉Q点的位置坐标,最后让大家求出A点关于Q点对称的点B。这类题的求解办法较为单一统一。例如:已知点A(x1,y1),已知中心点Q(x0,y0),求出A点关于Q点对称的点B,在坐标中,这三个点的横纵坐标,应该满足怎么样的条件呢?根据条件可知,Q点为A、B点的中点,于是得2x0=x1+x2,2y0=y1+y2,由此可以得到x2,y2的值,得到B点位置坐标。关于定点对称问题,表面看上去是多个类型题中,最简单的一类题目,但是却是后续题目的基础,在许多不同类型、不一样表述的题目,表面上比较难也很有深度,但是随着理解领悟的加深,基础知识掌握牢固后,大家会发现,运用的知识,大部分仍然是定点对称问题的方法与策略,所以基础知识必须掌握牢固,才能解决其他难题。 (二)线关于点的对称问题 在线关于点的对称问题中,无论是曲线还是直线,都可以把每条线看作是满足某条件的动点的集合,看作是动点沿着一定的限制条件运动形成的轨迹,所以在遇到线关于点对称的问题时,我们不妨设对称曲线上任一点的坐标为A(x,y),点A关于中心点Q(x0,y0)的对称点为B,根据点与点对称之间的法则,求出对称点B的坐标,利用对称点B在已知曲线上坐标满足方程最终求得是对称曲线的轨迹方程。这样就成功的将线关于点的对称问题转化为点关于点的对称问题,将困难化解。在解决线的问题时,大家需要明白一个道理,就是所有的线都可以看作是满足某个条件的点的集合,无论是直线还是曲线,解题时将点关于点的对称问题掌握好即可。 二、点关于线的对称问题 在解决点关于线的对称问题中,相比较点,要复杂很多,需要利用更多几何性质,譬如轴对称的性质,在前面的学习中知道,两个图案在关于直线对称时,可以观察到,图案相应两点的连线会被该直线垂直平分,所以在解决关于线之间的对称问题时,要将此问题简化,回到线关于点,点关于点之间的对称问题中,在应用这个办法求解时,需要注意的问题是,点关于线的对称问题需要满足两个条件,第一是两个对称轴对称的点,连接起来,应该垂直于对称轴所在直线。第二是:两个对称点的中点应该在对称轴上。在解决线关于线的对称问题时,只要能将点关于线的问题处理好,线关于线的对称问题也可以迎刃而解,在高中数学对称问题中,关于曲线C,直线L的对称问题,最终都可以化归为点与点之间的对称问题,在解决此类问题时,需要打开思维,充分利用点关与点对称、点关与线对称的处理方法,融会贯通,举一反三,不断提升自己的解题能力。 三、实际应用 实践出真知,理论知识无论有多丰富,只有回归到实际问题中,才能体现其真正的价值,只有在解决问题的过程中,才能真正发现是否将理论知识熟练的掌握运用。应用举例:(线关于线对称问题)已知两直线L1,L2,两直线关于直线L0对称,L0方程为:2x-2y+1=0,其中L1的方程为3x-2y+1=0,求L2的方程?分析:在这道题目中,虽然是线关于线对称的问题,但是仍然可以转化为点关与点的对称问题,在解题过程中,可以在L1上,随意找出一点A(x1, y1)关于直线对称点设为B(x2,y2),利用A,B两点关于L0对称,求出对称点B的坐标,同理再求出一个对称点的坐标,就可以求出对称线的方程。如果是求曲线关于直线的对称曲线则可设对称曲线上任一点的坐标A(x, y), A(x, y)关于直线对称点设为B(x0,y0),利用A,B两点关于L0对称,求出对称点B的坐标,利用对称点B在已知曲线上代入曲线方程即可求得对称曲线的轨迹方程。除了这一类型题目以外,还有许多与这类题目相关的问题,但是万变不离其宗。 这篇文章主要是从点关与点对称,点关于线对称的角度出发,简要分析讨论了解析几何中对称问题。要想真正解决这类问题,首先要深刻理解基础知识,灵活把握线与点之间的对称关系,有的题目还存在图形,此时也不能忽视图形的重要性,在许多题型例如直线、圆、椭圆的对称问题中,图形均可以反映出大量的解题信息,解题时需要抓住图形中的细节,数形结合,解决难题。参考文献: [1]许悦. 高中数学解析几何中对称问题分析[J]. 2018(2). [2]苏明亮. 高三数学复习中要善于借“题”发挥——解析几何中与对称相关的试题分析[J]. 高中数学教与学, 2016(8).

高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 ②如果不等式F(x)< G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F (x)+H(x)<G(x)+H(x)同解。 ③如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x)同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

④不等式F (x )G (x )>0与不等式0)x (G 0)x (F >>或0 )x (G 0 )x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式 3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n ) a ...a a (G = 3、算术平均数: n ) a a a (A n 21n +++= 4、平方平均数: n ) a ...a a (Q 2 n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2a b b a 22 ≥+ (当且仅当a=b 时 取“=”号)

高中数学中对称性问题5

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学直线中对称问题归类解析

直线中对称问题归类解析 直线中的对称问题主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。下面谈谈各类对称问题的具体求解方法。 1、点关于点的对称 例1已知点A (-2,3),求关于点P (1,1)的对称点B (o x ,o y )。 分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。 解:设点A (-2,3)关于点P (1,1)的对称点为B (o x ,o y ),则由中点坐标公式得 ?????=+=+-12 3122o o y x 解得???-==14o o y x 所以点A 关于点P (1,1)的对称点为B (4,-1)。评注:利用中点坐标公式求解完之后,要返回去验证,以确保答案的准确性。 2、直线关于点的对称 例2求直线043:1=--y x l 关于点P (2,-1)对称的直线2l 的方程。 解法1:(用点到直线距离公式) 分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为03=+-b y x 。 解:由直线2l 与043:1=--y x l 平行,故设直线2l 方程为03=+-b y x 。 由已知可得,点P 到两条直线距离相等,得1 316134 1622+++=+-+b 解得10-=b ,或4-=b (舍)。则直线2l 的方程为0 103=--y x 评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。 解法2:(利用中点坐标法) 分析:设已知直线1l 上任意点A (a ,b ),对称点P(x 0,y 0)即为中点坐标,则对称点A ’(a x -02,b y -02)在与已知1l 的对称直线2l 上,两直线平行,可设为03=+-b y x ,带入即可求出2 l 解:设A (1,-1)在直线043:1=--y x l 上,关于点P (2,-1)的对称点A ’(3,-1) 把点A ‘(3,-1)带入直线03=+-b y x 得b=-10.则直线2l 为0 103=--y x 解法3:(利用图像平移法) 分析:取已知直线上与对称点P 相同的横坐标或纵坐标,求出点A 坐标,根据AP 之间距离可得AA ‘之间距离’,已知两直线平行,可让原直线根据方向平移既得直线

高中数学中的对称性问题

高中数学中的对称性 一、 关于点对称 (1) 点关于点的对称点问题 若点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标(,)x y ,则P 为M 'M 的中点,利用中点坐标公式可得00, 22 x x y y a b ++==,解算的'M 的坐标为00(2, 2)a x b y --。 例如点M(6,-3)关于点P(1,-2)的对称点'M 的坐标是. ① 点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标; ② 点M 00(,)x y 关于原点的对称点' M 的坐标. (2) 直线关于点对称 ① 直线L :0Ax By C ++=关于原点的对称直线 设所求直线上一点为(,)M x y ,则它关于原点的对称点为'(,)M x y --,因为'M 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=; ② 直线1l :0Ax By C ++=关于某一点(,)P a b 的对称直线2l 解法(一):在直线2l 上任取一点(,)M x y ,则它关于P 的对称点为' (2,2)M a x b y --,因为'M 点在1l 上,把'M 点坐标代入直线在1l 中,便得到2l 的方程即为(2)(2)0A a x B b y C -+-+=。

解法(二):由12l l K K =,可设1:0l Ax By C ++=关于点(,)P a b 的对称直线为'0Ax By C ++= =求设'C 从而可求的及对称直线方程。 (3) 曲线关于点对称 曲线1:(,)0C f x y =关于(,)P a b 的对称曲线的求法:设(,)M x y 是所求曲线的任一点,则M 点关于(,)P a b 的对称点为(2,2)a x b y --在曲线(,)0f x y =上。故对称曲线方程为(2,2)0f a x b y --=。 二、 关于直线的对称 (1) 点关于直线的对称 1) 点(,)P a b 关于x 轴的对称点为'(,)P a b - 2) 点(,)P a b 关于y 轴的对称点为'(,)P a b - 3) 关于直线x m =的对称点是'(2,)P m a b - 4) 关于直线y n =的对称点是'(,2)P a n b - 5) 点(,)P a b 关于直线y x =的对称点为'(,)P b a 6) 点(,)P a b 关于直线y x =-的对称点为'(,)P b a -- 7) 点(,)P a b 关于某直线:0L Ax By C ++=的对称点'P 的坐标 解法设对称点为'(,)P x y ,由中点坐标公式求得中点坐标为(,)22 a x b y ++把中点坐标代入L 中得到022a x b y A B C ++? +?+=①;再由'PP B K A =得b y B a x A -=-②,联立①、②可得到'P 点坐标。

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

高中数学对称问题

对称问题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 00x x y y -'-'·k =-1, 20y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(y ,x ),则由(2)知,P 与P ′的坐标满足 0x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 2x +y -4=0, 3x +4y -1=0, 方法一:设直线b 的斜率为k ,又知直线a 的斜率为-2,直线l 的斜率为-4 3. 则)2()43(1)2(43-?-+--- =)43(1)43(-+--k k .解得k =-112.代入点斜式得直线b 的方程为 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上.

高中数学专题讲义-函数的奇偶性与对称性

题型一:判断函数奇偶性 1.判断函数奇偶性可以直接用定义,而在某些情况下判断f (x)±f (-x)是否为0是判断函数奇偶性的一个重要技巧,比较便于判断. 【例1】 判断下列函数的奇偶性: ⑴ 1 y x =; ⑵ 422y x x =++; ⑶ 3y x x =+; ⑷ 31y x =-. 【例2】 判断下列函数的奇偶性: ⑴4()f x x =; ⑵5()f x x =; ⑶1()f x x x =+ ; ⑷21()f x x =. 【例3】 判断下列函数的奇偶性并说明理由: ⑴ 221()1x x a f x a +=-(0a >且1)a ≠; ⑵ ()11f x x x =-+-; ⑶ 2()5||f x x x =+. 典例分析 板块二.函数的奇偶性与对称 性

【例4】 判别下列函数的奇偶性: (1)31 ()f x x x =-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 【例5】 判断函数 的奇偶性. 2.由函数奇偶性的定义,有下面的结论: 在公共定义域内 (1)两个偶函数之和(积)为偶函数; (2)两个奇函数之和为奇函数;两个奇函数之积为偶函数; (3)一个奇函数和偶函数之积为奇函数. 【例6】 判断下列函数的奇偶性: ⑴ ()(f x x =- ⑵ 11 ()()( )12 x f x F x a =+-,其中0a >且1a ≠,()F x 为奇函数. 【例7】 若函数f(x)= 3 (x x)+g(x)是偶函数,且f (x)不恒为零,判断函数g(x)的奇偶性. 【例8】 函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有 ()()0f x f x +-=,()()1g x g x -=,则2() ()()()1 f x F x f x g x = +-是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数

相关主题