搜档网
当前位置:搜档网 › 化学沉铜

化学沉铜

化学沉铜
化学沉铜

化学沉铜

化学铜被广泛应用于有通孔的印制线路板的生产加工中,其主要目的在于通过一系列化学处理方法在非导电基材上沉积一层铜,继而通过后续的电镀方法加厚使之达到设计的特定厚度,一般情况下是1mil(25.4um)或者更厚一些,有时甚至直接通过化学方法来沉积到整个线路铜厚度的。化学铜工艺是通过一系列必需的步骤而最终完成化学铜的沉积,这其中每一个步骤对整个工艺流程来讲都是很重要。

本章节的目的并不是详述线路线路板的制作过程,而是特别强调指出线路板生产制作中有关化学铜沉积方面的一些要点。至于对那些想要了解线路板生产加工的读者,建议参阅其它文章包括本章后的所列举一部分的参考书目。

镀通孔(金属化孔)的概念至少包涵以下两种含义之一或二者兼有:

1.形成元件导体线路的一部分;

2.形成层间互连线路或印制线路;

一般线路板都是在非导体的复合基材(环氧树脂-玻璃纤维布基材,酚醛纸基板,聚酯玻纤板等)上通过蚀刻(在覆铜箔的基材上)或化学镀电镀(在覆铜箔基材或物铜箔基材上)的方法生产加工而成的。

PI聚亚酰胺树脂基材:用于柔性板(FPC)制作,适合于高温要求;

酚醛纸基板:可以冲压加工,NEMA级,常见如:FR-2,XXX-PC;

环氧纸基板:较酚醛纸板机械性能更好,NEMA级,常见如:CEM-1,FR-3;

环氧树脂玻纤板:内以玻璃纤维布作增强材料,具有极佳的机械性能,NEMA级,常见如:FR-4,FR-5,G-10,G-11;

无纺玻纤聚酯基板:适合于某些特殊用途,NEMA级,常见如:FR-6;

化学铜/沉铜

非导电基材上的孔在完成金属化后可以达到层间互连或装配中更好的焊锡性或二者兼而有之。非导电基材的内部可能会有内层线路---在非导电基材层压(压合)前已经蚀刻出线路,这种过程加工的板子又称多层板(MLB)。在多层板中,金属化孔不仅起着连接两个外层线路的作用,同时也起着内层间互联的作用,加入设计成穿过非导电基材的孔的话(当时尚无埋盲孔的概念)。

现在生擦和许多线路板在制程特点上都采用层压基板下料,也就是说,非导体基材的外面是压合上去一定厚度电解法制作的铜箔。铜箔的厚度是用每平方英尺的铜箔重量(盎司)来表示的,这种表示方法转化为厚度即为表13.1所示:

表13.1基材铜箔常见厚度对照:

OZ/ft2 铜箔厚度

0.5 0.7mil(17.5um)

0.25 0.35mil(8.75um)

1 1.4mil(35um)

2 2.8mil(70um)

非导体基材有不同厚度因为要求不同,可能会要求很强的刚性也可能要求很薄的以致柔性也很好的基材.

在加成法生产加工中,使用的是无铜箔基材.这样化学通的作用不仅是孔金属化,而且同时也是为后续电镀创造一个表面基材导体化电镀基底,或者甚至完全靠化学铜沉积至特定厚度并形成整个表面的线路图形.

现在好多板子是采用不同基材生产加工的,无论是双面板还是多层线路板.对不同基材类型的前处理加工也稍有不同,值得加以注意和讨论. 在讨论化学铜槽本身的原则方法对于

化学铜前处理也是同样适用的.

减成法工艺

因为在多层线路板采用化学铜做穿孔镀工艺处理时,有一些特殊的因素需要考虑,这里需要对多层板工艺的相关部分做一个简要介绍.完全详细的多层板生产加工的描述不在本章范围内.

一般,生产流程从一块双面覆铜箔的基材开始,基材内可能含有也可能没有内层或线路层(先前制作好的).

第一步是在特定位置孔的加工,使用钻孔或冲孔的方法穿透铜箔和非导电基材.无论是钻孔还是冲孔,取决于三明治式结构的基材的厚度,特别是非导电基材钻孔或冲孔加工的简易性,两种加工方法的可能得到质量水准.在一些情况下,也要考虑成孔方式的批量加工性(失败成本的分摊等).

一旦孔加工成型,在进入镀铜孔化学铜沉积的湿流程处理前,有几件事情需要特别注意.

首先,在钻孔或冲孔加工后,三明治式结构的外层铜箔会有披锋/孔口毛刺存在.在进入后续流程前,这些毛刺需要被处理干净,以免造成毛刺位置的电镀镀瘤,贴膜碎膜产生和撕裂问题,或者在丝网进行图形转移时破坏丝网等.这些毛刺经常采用研磨性的聚合物毛刷的湿沙法处理.

在湿沙法处理过程中,要特别注意对磨刷压力的控制.避免孔口处刷出铜园角化甚至暴露孔口非导电基材,影响后续沉积在此处的化学铜的结合力,以及后续明显的边缘孔破产生.

第二,镀通孔的目的是使两外层铜层通过非导电基材孔导通化,对多层板来说,内层铜箔也是一样的需要通过这个孔导通互连.在钻孔或冲孔加工通过铜-聚合物-铜三明治式结构的过程中,特别是对多层板三明治结构的内层铜层来说,聚合物胶渣沾污内层铜环的可能性很高.这种胶渣/钻污必需除去,特别孔内内层铜环上的,以保证内层和最终孔铜之间的电气完整性.

有时候甚至要”回蚀”少量树脂,使内层铜环在孔内有一个微小的突出,由此和孔内铜有更好的结合强度.

除胶渣/去钻污可以通过回蚀使用的方法来完成.单独的去钻污可以通过湿法喷沙或蒸汽法;这些方法一般使用胶细的研磨剂如玻璃珠或氧化铝研磨材料.在湿浆法过程中是采用喷嘴喷浆处理孔.一些化学原料无论在回蚀和/或除胶渣工艺中用来溶解聚合物树脂.通常的(如环氧树脂系统),浓硫酸,铬酸的水溶液等都曾经被使用过.无论哪种方法,都需要很好的后处理,否则可能造成后续湿流程穿孔化学铜沉积不上等诸多问题的产生.

浓硫酸法:

槽液处理后要有一个非常好的水洗,最好是热水,尽量避免水洗时有强碱性溶液.可能会形成一些环氧树脂磺酸盐的钠盐残留物产生,这种化合物很难从孔内清洗除去.它的存在会形成孔内污染,可能会造成很多电镀困难.

铬酸法:

孔内六价铬的存在会造成孔内化学铜覆盖性的很多问题.它会通过氧化机理破坏锡钯胶体,并阻碍化学铜的还原反应.孔破是这种阻碍所造成的常见结果.这种情况可以通过二次活化解决,但是返工或二次活化成本太高,特别在自动线,二次活化工艺也不是很成熟.

铬酸槽处理后经常会有中和步骤处理,一般采用亚硫酸氢钠将六价铬还原成3价铬.中和剂亚硫酸氢钠溶液的温度一般在100F左右,中和后的水洗温度一般在120—150F,可以有清洗干净亚硫酸盐,避免带入流程中的其他槽液,干扰活化。

其它系统:

也有一些其它的化学方法应用于除胶渣/去钻污和回蚀工艺。在这些系统中,包括应用有机溶剂的混合物(膨松/溶胀树脂)和高锰酸钾处理,以前也用于浓硫酸处理的后处理中,

现在甚至直接取代浓硫酸法/铬酸法。

此外还有等离子体法,还处于试验应用阶段,很难用于大规模的生产,且设备投资较大。

无电化学铜工艺

前处理步骤的主要目的:

1.保证化学沉铜层与非导电基材之间的结合力

2.保证化学沉铜沉积层的连续完整性;

3.保证化学铜与基材铜箔之间的结合力;

4.保证化学铜与内层铜箔之间的结合力

以上是对化学铜/无电铜前处理作用的简要说明。

下面简述无电化学铜典型的前处理步骤:

一.除油

除油的目的:

1.除去铜箔和孔内的油污和油脂;

2。除去铜箔和孔内污物;

3.有助于从铜箔表面除去污染和后续热处理;

4.对钻孔产生聚合树脂钻污进行简单处理;

5。除去不良钻孔产生吸附在孔内的毛刺铜粉;

A.除油调整

在一些前处理线中,这是处理复合基材(包括铜箔和非导电基材)的第一步,除油剂一般情况下是碱性,也有部分中性和酸性原料在使用。主要是在一些非典型的除油过程中;除油是前处理线中的一个关键的槽液。除油不足可能会导致一些如下的质量问题的产生:被污物沾染地方会因为活化剂吸附不足即而造成化学铜覆盖性的问题(亦即微空洞和无铜区的产生)。微空洞会被后续电镀铜覆盖或桥接,但是此处电铜层与基地的非导电基材之间没有任何结合力而言,最终结果可能会造成孔壁脱离和吹孔的产生。

沉积在化学铜层上的电镀层产生的内部镀层应力和基材内被镀层包裹的水分或气体因后续受热(烘板,喷锡,焊接等)所产生的蒸汽膨胀涨力趋向于将镀层从孔壁的非导电基材上拉离,可能会造成孔壁脱离;同样孔内的毛刺披锋产生的铜粉吸附在孔内在除油过程中若是不被除去,也会被电镀铜层包覆,同样该处铜层与非导电基材之间没有任何结合力而言,这种情况最终也可能会造成孔壁脱离的结果。以上两种结果无论发生与否,但有一点无可否认,该处的结合力明显变差而且该处热应力明显升高,可能会破坏电镀层的连续性,特别是在焊接或波焊过程中,结果造成吹孔的产生。吹孔现象实际上是从结合力脆弱的镀层下的非导电基材出产生的蒸气因受热膨胀而喷出造成的!

假若我们的无电铜沉积在基材铜箔的污物上或多层板内层铜箔圆环上的污染物上,这样无电铜和基底铜之间的结合力也会比清洗良好的铜箔之间的结合力差很多,结合不良的结果可能会产生:假若油污是点状的话,可能造成起泡现象的发生,;假若污物面积较大时,甚至可能造成无电铜产生脱离现象;

除油过程中的重要因素:

1.如何选择合适的除油剂-清洗/除油剂的类型

2.除油剂的工作温度

3.除油剂的浓度

4.除油剂的浸渍时间

5.除油槽内的机械搅拌;

6.除油剂清洗效果下降的清洗点;

7.除油后的水洗效果;

在上述清洗操作中,温度是一个值得关注的关键的因素,许多除油剂都有一个最低的温度下限,在此温度以下清洗除油效果急剧下降!

水洗的影响因素:

1.水洗温度应该在60F以上;

2.空气搅拌;

3.最好有喷淋;

4.整个水洗有足够的新鲜水及时更换;。

除油槽后的水洗在某种意义上与除油本身一样重要,板面和孔壁残留的除油剂本身也会成为线路板上的污染物,继而污染后续其他的主要处理溶液如微蚀和活化。一般在该处最典型的水洗如下:

a。水温在60F以上,

b.空气搅拌;

c。在槽内装备喷嘴时板件在水洗时有新鲜水冲洗板面;

条件c不经常使用,但是ab两项是必需的;

清洗水的水流量取决于如下因素:

1.废液带出量(ml/挂)

2.水洗槽内工作板负载量

3.水洗槽的个数(逆流漂洗)

二.电荷调整或整孔:

典型的除油后采用电荷调整工艺,一般在一些特殊板材和多层板生产中,因为树脂本身的电荷因素,在经过除胶渣凹蚀的过程后,需要在电荷方面作调整处理;调整的重要作用就是对非导电的基材进行“超级浸润”,换句话来说,就是将原先带微弱负电荷的树脂表面经过调整液处理后变性为带微弱正电荷活性表面。在一些情况下提供一个均匀连续正电荷极性表面,这样可以保证后续活化剂可以被有效充分的吸附在孔壁上。

有时候调整的药品会被加到除油剂中,于是也会称为除油调整液,尽管单独的除油液和调整液会比合二为一的除油调整液效果更佳,但是行业的趋势已将二者合二为一,调整剂其实就是一些表面活性剂而已。调整后的水洗极为重要,水洗不充分,会使表面活性剂残留在板铜面上,污染后续微蚀,活化液,以致可能影响最终铜铜之间的结合力,结果降低化学铜和基材铜之间的结合力。此处应该注意清洗水的温度和有效清洗的水流量。调整剂的浓度应该要特别注意,应该避免太高浓度的调整剂的使用,适量的调整剂反而会起到更明显的作用。

三.微蚀

无电铜沉积的前处理的下一步就是微蚀或微蚀刻或微粗化或粗化步骤,本步骤的目的是为后续的无电铜沉积提供一个微粗糙的活性铜面结构。如果没有微蚀步骤,化学铜和基材铜之间的结合力会大大降低;

粗化后的表面可以起到一下作用:

1.铜箔的表面积大大增加,表面能也大大增加,为化学铜和基材铜之间提供根多的接触面积;

2.假若一些表面活性剂在水洗时没有被清洗掉,微蚀剂可以通过蚀去其底部基材铜面上的铜基而清除掉基材表面的表面活性剂,但是完全依靠微蚀剂取出表面活性剂是不太现实的和有效的,因为表面活性剂残留的铜面面积较大时,允许微蚀剂作用的机会很小,经常会微蚀不到大片表面活性剂残留处的铜面;

3.为后续活化剂的吸附提供一个良好的锚点,使后续的活化胶体钯可以很好的吸附在基材铜的表面;

4.后续的无电铜层可以通过粗化良好的表面与基材铜紧密地结合在一起;

5.其实此处的微蚀还有一个作用:除去板面铜箔上和内层铜箔面上的吸附的作为调整剂的表面活性剂分子,因为在基材铜和化学铜之间存在有机分子层会影响二者之间的结合力)为了达到理想的效果,微蚀要达到一定的深度。通常情况至少要微蚀到1微米以上,一般在1--2。5微米左右,微蚀厚度不足即使在后续条件理想条件下,也不一定会有一个满意的结果。单纯的从基材铜箔上蚀去铜不是我们的真正目的,微蚀剂微蚀后产生的鲜艳粉红色的活性铜面才是我们的真正的所要求的,由此可以得到一个微粗化的活性表面。微蚀剂作用的好坏会受到槽液里铜含量的高低的影响。

温度也是微蚀液的一个重要参数。温度太低,微蚀不足甚至铜面依然光亮;温度太高,槽液失控分解报废,板件孔口露基材,多层板内层铜箔的反回蚀等;

多层板的内层铜箔会因为微蚀过度造成回缩,这种现象称为反回蚀,这样会降低无电铜和内层铜箔之间的结合面积及结合力(因为反回蚀后的部分树脂表面没有经过除油调整而会造成此处的沉铜的连续和沉积性问题,影响板子的连接可靠性信赖度等问题)这是我们不希望看到的。无电铜和基材铜箔之间的结合力不良一般都是由于微蚀不足和表面清洁度问题造成的。沉铜后的结合力的拉力试验可以每天一到两次作为沉铜质量控制的手段之一,可以帮助我们及时地发现问题,但是很多工厂只是在问题发生后才去做此检验,这样拉力试验只是作为人们对担心的问题的验证方法而已!

拉力试验一般使用约6英寸长宽约0。5-1英寸的胶带紧紧压贴在铜面上,用力快速的拉起,胶带应贴在有部分孔的地方,用拇指或硬币按压结实,撕后观察胶带板面有无铜箔被拉起撕掉。

孔口铜皮翻起的可能原因:

板子孔内残留的清洗剂流出而清洗未净;

过活化;

无电铜沉积不良;

孔口铜皮翻起可能会因为过微蚀和上述的原因;

微蚀前的水洗很重要,水洗充分可以确保残留除油剂不带入微蚀槽内或污染铜面。对所有的微蚀剂来讲,碱性有机物是一种毒化剂,会严重破坏微蚀剂的功能;

微蚀的维护预防措施:

用单独的槽子用于无电铜挂具/篮的铜褪镀;

水洗充分---避免铜的带出

化学铜用的挂篮应该用一个单独的槽子去褪镀,不能放在微蚀槽中,因为微蚀剂对金属的带入特别是钯的存在敏感性特别明显,可能会导致槽液的分解;微蚀后良好的水洗也是为了不带入铜离子污染其他化铜前处理液。常见的可作为微蚀剂的化学品主要有以下几种:过硫酸铵,过硫酸钠,其他如硫酸双氧水氧化剂(一般双氧水1---1。5磅/加仑1%硫酸)以及其他的过硫酸盐微蚀剂,氯化铜不可用做微蚀剂,因为微蚀铜面会残留氯化亚铜,难于清洗去除。

微蚀剂

过硫酸盐型硫酸双氧水型

1.除油剂/调整除油/调整

2.水洗水洗

3.微蚀浸硫酸溶液

4.水洗水洗(最好)

5.浸硫酸溶液微蚀

6.水洗水洗

采用硫酸双氧水作为微蚀剂,需要在一个较高的操作温度下,一般经常在微蚀槽前除油后增加一个硫酸浸洗液主要是为减少碱性材料特别是一些表面活性剂的带入,因为对于硫酸双氧水体系的稳定剂来讲,除油和调整的一些表面活性剂是毒性剂。若采用其他的微蚀剂体系,则要求在微蚀后增加一硫酸浸洗液,以除去微蚀残留物,,但这并不是必需的,特别是对过硫酸盐体系微蚀剂来讲。

采用过硫酸盐体系微蚀剂,微蚀槽一般使用1-3%的稀硫酸溶液来除去微蚀残留物并伴有一个良好的水洗槽。因为无电铜生产线主要是酸性槽液,需要特别注意重金属离子对槽液的污染,这可能会影响化铜的结合力。

活化前处理液/预浸液/预活化液

除去表面氧化物,减少铜离子对活化液的污染;

避免其他粒子的带入和对活化槽液PH值的冲击;

就是作为一个牺牲奉献槽;

位于活化液前的预浸液在标准制程SOP上很常见,主要为了减少污染粒子对活化液污染,预浸后生产板件不经水洗直接进入活化槽。因为大部分活化液是氯基的,所以预浸液液是氯基的。在这种情况下,工件带入到活化槽的残留物对活化液来讲都是一种离子污染!

每一次覆铜板进入水槽中浸洗,表面都会发生轻微的氧化,特别是在酸性浸洗后,浸入到一些弱酸液中可以将表面的轻微的氧化物除去,因而减少铜离子对槽液的污染。活化液都有一定程度酸性,弱酸性的预浸液将铜离子溶解在自身溶液内在某种程度上也延长了活化液的寿命。许多活化剂对铜离子污染很敏感。

预浸液需要经常性更换(与活化液相比价格相对低廉的)。随着时间而带入预浸液的铜离子的不断升高,一般铜含量在超过1克/升前即要更换。

因为强酸性预浸液会攻击多层板内层的黑氧化层甚至残留在内层铜箔的盐酸会加大反回蚀的发生,因此近年来,预浸趋向于降低酸强度(1-2%的盐酸),同样活化液液是如此!(现在的胶体钯多数是盐基的,少数是酸基的,高盐酸型的目前已经被淘汰出线路板行业)活化/催化

良好的活化在化学铜制程中甚至比化学铜本身还要重要。尽管如此,之前的槽液处理也必须良好的处理状态。

活化的胶体钯微粒主要是通过粒子的布朗运动和异性电荷的相互吸附作用分别吸附在微蚀后产生的活性铜面上和经清洗调整处理后的孔壁的非导电基材上。

活化液/催化液主要是有二价的亚锡离子包围钯原子核组成的胶体的溶液。该溶液中含有较高浓度的氯离子和适量的酸,比五到十年前的酸含量已大大降低,以尽量避免或减少多层板反回蚀和粉红圈现象的发生。这种活化性的胶体颗粒会吸附在所有的工件上,包括铜箔表面,非导电基材等,经活化处理后一般情况下非导电基材呈现褐色。

一般情况下,胶体微粒内亚锡离子的数目是钯原子数目的50-100倍左右,胶体颗粒在配制过程当然是越小越好。没有亚锡离子的存在,钯原子会失去活性被氧化为没有活性的钯离子。槽液的活化能力不仅取决于活化液中钯的含量,同时也取决于胶体微粒的复合物结构。活化液在一般情况下是典型的深棕黑色。可以通过分析控制槽液中的亚锡离子含量来保证槽液中有足够的亚锡离子以防止槽液失去活性,维护槽液的稳定性。活化槽本身不可进行空气搅拌,因为会氧化亚锡离子和活化钯颗粒而使之失去活性。

因为活化剂是一层介于化铜层和基材铜箔或非导电基材上的物质,它可有效的增强铜-铜之间的结合力和化学铜与非导电基材之间的结合力。一般情况下,活化液的活化强度不宜太高,避免在活化槽处理时间过长,活化液中钯含量一般是微量的,但是作用效果却很明显!

活化不良,结果可能会造成铜-铜之间的结合力变差,当然钯的消耗和由此产生的成本也会很高!

生产板从活化液中提出时应该充分的滴液时间。在很多工厂,钯的消耗主要不是生产板件的消耗,而是板件的带出消耗。锡钯胶体溶液对于外来污染中的一些金属离子特别是铜离子和锑离子很敏感。一般情况下,10-20ppm的锑离子存在可以造成化学沉积层微空洞的产生。但对于铜离子来说,活化液的敏感性稍有不同:对多层板来说,当活化液内的铜含量达到800ppm左右,经过Desmear除胶渣处理后的非导电基材可能会出现一些孔内空洞的问题,;相对于双面板来说,同样的情况只有在活化液的铜含量达到1500-2000ppm甚至更高才会出现。

如何保证活化液污染的最小化:

一般情况保证活化时间在4-6分钟即可;

定期的更换预浸液;

避免工件提出槽液后再重新浸入槽液;

活化后的水洗

应该避免太长水洗时间;

充分的清洗水流量;

避免空气搅拌或尽量使用很小的空气搅拌;

清洗水水质要好;

太长的水洗时间会造成活化剂的缓慢破坏,导致活性的降低;同时也会导致表面铜的氧化。

活化后的第一个水洗槽一般会变得很浑浊,是因为锡的氢氧化物的生成。水洗不充分,可能会造成大量的锡的氢氧化物污染活化的表面。(可能会造成化学铜粗糙甚至镀层的结合力)

空气搅拌虽有利于生产板件的清洗效果,但是也可能氧化活化颗粒,使之降低甚至失去活性,这主要看空气搅拌的大小。

此处的清洗水如果采用再生循环水清洗可能会在此处以及还原/加速后的水洗中产生一些问题。这要看是采用何种循环系统再生和哪些清洗水用于循环再生的,可能会产生一些偶然的问题:因为再生循环水可能会含有一些润湿剂或者络合剂或者氧化剂等,这些物质可能会降低活化剂的活性甚至使之完全失去活性,继而造成化学铜的孔内空洞。一旦活化颗粒在处理过程中吸附于生产工件之上后,所有的预防措施都是围绕着如何保证持化颗粒的活性状态而展开的。

水洗槽中的水呈黄色和有泡沫产生意味着活化可能出了问题。这种情况下,应该立即关掉水阀,完全放掉水槽内的水,换成新鲜的市水(自来水)方可。

一些良好清洗方法应该做到,详情请参阅《Rinsing,recycle and recovery of plating effluents》作者D.A.Swalheim.这个专题中的建议对所有水洗制程都有好处!

加速(有时也称为后活化/解胶等)

目的主要是提高或增强活化颗粒的活性。

我们可以设想一下胶体钯颗粒的结构:像一个花蕾,中间是钯原子,周围被层层的亚锡离子包围,最外围是氯离子和氢氧根离子。加速的目的就好像拨开花蕾,除去亚锡离子(也可能会有一些钯颗粒)从而使内部的钯颗粒可以暴露在后续的化铜液中并在后续的沉铜槽液中可以更好的发挥催化活性。

假若不经过加速处理,化学铜槽内的沉积反应会减慢,同时也可能冒着这样的风险:一些疏松吸附在板面孔壁的胶体钯活性颗粒会污染沉铜液,造成槽液的稳定性变差甚至分解。同时氢氧化亚锡会在活化的水洗过程中形成(正如我们在水洗槽中看到的混浊的状况)会覆

盖在活性的钯颗粒上,遮蔽钯颗粒并影响它的活性。氢氧化亚锡在水溶液呈明胶状,覆盖住钯活性颗粒。加速的目的也是为了溶解这些亚锡的化合污染物,使之从钯活性颗粒上去除。

一些亚锡被去除同时一些附着不良的钯活性颗粒也会被速化在加速液中。加速后的活性颗粒具有更强的活性,可以快速的诱发化学铜的沉积。

大多数加速也是酸性的,可以溶解在活化和加速之间水洗过程中产生的铜的氧化物。一般情况下,当加速液中的铜含量达到1克/升则需要及时更换。

加速液通常都是由一些可溶解锡的化学药品组成,正因为如此,所以要注意生产工件不能再此溶液中停留过长时间。在极端的条件下,加速过度,槽液在溶解锡时,也会从底部将钯颗粒从孔壁板面上速化掉,这样会使这些表面失去活性颗粒。

另外,一般的加速液都是以含氟的化合物为原料的,尽管可能氟的含量很低。氟离子的存在会攻击孔壁中的玻璃纤维,继而使吸附玻璃纤维上的钯活性颗粒除掉,这样可能会造成电镀铜后玻纤断面处的镀层空洞(又叫截点)。

一些加速液可能会含有还原剂,可以吸附在生产板表面内带入沉铜槽与活化钯颗粒一起快速启动无电铜的沉积反应。

我们花费大量的时间讨论前处理而非化学铜本身,原因是为了保证化学铜的沉积,许多处理步骤都要小心的执行。化学铜是化学铜制程的最终结果,正是因为如此,一些意想不到的结果的发生,往往是由于许多无法控制的因素造成。

包括附表一也是我们讨论的生产工艺简图。

无电铜槽/化学铜槽/沉铜槽

槽液的组成:

1.铜盐

2.还原剂(甲醛)

3.络合剂(EDTA,QUADROL,TART等)

4.稳定剂,

5.光泽剂等

6.润湿剂

化学铜:甲醛和氢氧根离子为金属铜的沉积提供了化学还原力。沉积反应必须由吸附生产板件表面的催化颗粒诱发而启动,这就是我们为什麽一定要经过活化处理的原因。

化学铜的化学反应:

Cu2+(CHEL)+2HCHO+4OH-→Cu0↓+2HCOO-+(CHEL)x+2H2O+H2↑

反应之所被称为可以自身催化的氧化还原反应,是因为诱发后的新生成的铜原子和氢原子,可以继续作为催化剂促使反应的继续进行。也就是说,假若我们将一片干净的铜片放入槽液,并不会有反应发生。沉积反应只会在活化后的铜面上或者有其他的活化基材在该铜片附近反应并释放出氢气继而引发该铜片的反应进行。假如板件经活化后,放入无电铜槽而没有镀层沉积,最大的可能是表面氧化了。活化或催化引发了这个反应。附录二将会对化学铜反应有一个简要的概括。

沉积条件

1.低速沉铜液

室温

1- 2微英寸/分钟

2.高速沉铜液

室温 21-32度(70-90F)

2-6微英寸/分钟

3.高速沉铜液

高温 38---60度(100-140F)

2-6微英寸/分钟

选择何种沉铜液主要考虑以下因素:

如果我们只是为化学镀后的电镀全板铜的原因或沉铜后电镀0。1-0。3mil的电镀铜以保证板子在经过后续图形转移和图形电镀通孔仍保持孔铜覆盖率(例如在一些贵重得多层板生产加工中)无电铜的厚度最低只需要10-20微英寸即可。易于控制的低速化铜槽将会是最好的选择。

由于一些经济成本方面和功能性的原因,印刷线路板的发展趋势更倾向于舍弃全板电镀而采用图形电镀,也趋向于改进或改革一些工艺。在图形转移前在化学铜层上闪镀(快速电镀)一层电镀铜并通过在图形转移后和图形电镀前选择合适的清洗/除油,一定厚度和完整的化学铜镀层也可耐受住清洗液的攻击,这样只要单独的无电铜也可达到令人满意的效果。

假若不需清洗/除油或清洗/除油对化学铜的攻击非常小,那末相对较薄的化学铜层也就可以满足要求(20-40微英寸);如果刻意追求高产能的话,高速化铜也可作为选择。

如果在图形转移后和图形电镀前需要较强的清洗/除油和化学品,那麽沉积更厚的化学铜将是必需的,以保证镀层在经过清洗/除油后还可以保证其良好的完整覆盖性。这种情况下,化学铜的厚度一般要求在60-100微英寸。出于时间效率方面考虑,高速沉铜将是不错的选择。

对于高速沉铜来讲,高温型化铜变得越来越普遍。它的槽液的增加量(一些药水必需的补充添加)是最小的,因为高温槽液水分的蒸发,同时也可相对经济维持在一个较为恒定的温度,而温度对于沉积速率影响极大。在加温型槽液中只需要加温。但对于室温型高速槽液来讲,在我国的大部分地区的一年四季中,不仅需要加温,同时也需要冷却来保持相对恒定的槽液温度。

假若我们想抛弃闪镀铜工艺,在选择商业化的化铜液时,化学铜层的物理结构也会是我们考虑的一个方面,因为大家知道,化学铜和电镀铜的镀层结晶结构是不一样的,如下事实可以说明这种情况:

化学铜的密度大约比电镀小约2-5%;

相同厚度的化学铜层和电镀铜层,化学铜层溶解的较快,显示化学铜层的结构相对较为疏松;

因此,假若60微英寸的厚度的电镀铜层能够耐受的清洗/除油溶液的攻击,而对于化学铜来讲,则需要100微英寸。但是化学铜相对来讲则更为经济。当然单纯的比率不是最佳选择的决定条件。

另外一个影响我们对化学铜选择的因素就是槽液的有效寿命

所有的化学铜在生产的过程中对会产生副产物。所有的化学铜槽都需要在生产过程中不停地添加补充铜离子,甲醛,氢氧化钠和其他必需的原料(取决所用槽液的类型)。这些补充物料有些是可以共存的,有些也许是不可以共存的,有些是根本无法共存的。多数情况下,铜离子和甲醛配制在一个浓缩液中,而氢氧化钠则在另一个浓缩液中。

通常情况下,槽液需要掏出部分废液,以便于及时补充新液。而淘出量的多少取决于补充液的浓度和槽液的操作温度。假若不及时掏出废液,槽液中的副产物会快速增加,大大降低槽液的寿命。假如掏出量恰当,槽液中的副产物的产生就不会有明显增加,槽液的寿命也就会相对较长些。无论我们是否连续掏出整个槽液或者部分槽液甚至极少掏出槽液这取决于长期一段时期内的总掏出量,槽液操作及其本身特点和一段长期时间内的沉积的状况。

每个槽液都有一个所谓基于沉积一定厚度的镀层所付出的成本方面的“收支平衡点”的考虑。其中开缸成本也被槽液的使用过程逐步的分解承担,当然也包括一些随着槽液老化而带来的不良成本(随着沉积时间的延续,槽液老化带来的空内无铜及其他的不良问题产生的机

会都大大增加等)。

如何保持槽液运作在“收支平衡点”以上是基本的但并不是经济的。温度控制对化学铜来说,可能是一个非常重要的物理参数,它直接影响到对沉积速率的控制和沉积层的质量,也是大家经常提到的可能最为关心的参数。无论哪种化学铜槽的化学反应都是在一定的温度范围内进行的。低温型槽液一般具有较为宽广的操作温度范围。

低于最低温度,所有的槽液都不能充分的启动,结果可能造成孔内无铜的大量产生。高于某一个设定温度,沉积速率加快,超过一定速度,镀层质量开始下降,同时一些副反应加剧并成为主要的化学反应,最终导致槽液稳定性降低。

加强对无电铜槽液温度控制是极为重要的。

需要关注的一些物理操作参数和项目:

空气搅拌

循环过滤

槽液负载 1---1.5平方英尺/加仑

摇摆机械震动

挂篮或挂具的材质

镀槽的清洁/清洗

1.空气搅拌:

有一些化学铜是依靠空气搅拌来保持槽液稳定性和沉积连续性的.机理是它可以帮助快速除去槽液中反应产生的氢气,作为槽液中的第二种还原剂,它的存在会导致局部槽液的活性过强,稳定性变差.

对于其他的化学铜槽液,较为简介的说法是空气的引入会破坏槽液在活性表面沉积的能力.

至于空气搅拌量的大小主要根据供应商的详细说明而定.

目前市场上已经开发出不需要空气搅拌的化学铜配方;

2.过滤:

对与薄铜来讲,使用1微米的PP滤芯进行每天一次至少每周一的定期过滤是必要的,主要是滤去槽液中悬浮的活性的铜微粒。当然,连续的溢流过滤会更好,但也不是要求一定要。

对于高速化学铜槽液来讲,采用10-25微米的PP滤芯进行连续过滤是非常需要的。

溢流过滤简介如下:

一般槽液从反应槽溢流出来经过过滤袋后进入辅助槽,再从辅助槽内用泵打入到反应槽内。反应产生大量高活性氢气,副反应产生的一些铜颗粒悬浮在槽液内液较为突出,相比低速槽,高速化学铜更需要连续过滤。

一些需要控制的项目和物理参数:

1。槽液负载量:1-1.5平方英尺/加仑

2。机械摆动/摇摆穿孔方向的摇摆

3。挂篮或挂具的材质:不锈钢316

4。槽体:定期的清理/清洗

1。槽液的负载量:

浓缩液的补充量一般与槽液在一定温度下的平均负载量有关(单位槽体积所能够处理的工件的表面积)。在一定的温度和时间作用下,一些副反应特别是甲醛和氢氧化钠之间的副反应会在特定的温度下按照一定的速率进行。双液型的浓缩液按一定的比率补充铜含量是根据设定的槽液负载来添加的。

当槽液中的板面积低于供应商给定的负载量时,我们会发现槽液中甲醛和氢氧化钠的浓

度降低,需要额外补充。假若槽液中板面积超过供应商给定的数据,甲醛和氢氧化钠的含量会随着时间而逐渐升高。

同时,早一些高温槽中,当槽液的负载量较低时,槽液的蒸发量可能会超过了槽液的补充添加量,槽液的体积会随时间慢慢减少,可能需要另外补充纯水。

一般情况下,化学铜槽液的负载量一般在1-1.5平方英尺/加仑工作液,如上所述最适的负载量也是基于如上考虑的.

4.机械摇摆:

一般说法是在化学铜槽液中穿孔方向的摇摆可及时更新孔内和反应区域内的槽液,帮助去除沉积过程中产生而吸附在工件上的氢气.

当然要注意板子之间不可以互相碰撞,也不可以接触槽壁以及其他设备和鼓气管等.当活化后的生产板件进入槽内,她表面的活性粒子可能会污染/沾附在其他表面上,从而使其它表面也具有了催化活性,继而在其表面发生化学铜反应并沉积铜层.

5.挂具的材质

无电铜挂具一般都采用不锈钢316制作.化学铜会沉积在挂具材料上.我们希望的是沉积在挂具上的化铜具有一定的结合力而不至于脱落在槽液中而继续反应.插入式挂具如塑料(PVC)或铁弗龙TEFLON在吸附一些活化剂后最终也会沉积上铜,但是结合力疏松,铜皮经常会脱落掉入到槽液内。

6.槽体的清洁/清洗

每个槽子始终都会有化学铜析出在槽壁上(槽底,槽壁,溢流口等),因为一些活化剂带入污染和槽液中一些悬浮活性粒子的沉淀。正因为如此,槽体需要定期彻底的清洁和清洗以除去析出的化铜,特别是过滤泵也要做必要的清洁清理工作,然后再将槽液倒回到干净镀槽中。(也就是所谓的翻/倒槽)。

初中化学与铜相关知识汇总

铜 铜是一种较常见的金属,具有金属典型的性质,可以与氧气反应,因为在金属活动性顺序表中排在氢的后面,不能与稀盐酸(稀硫酸)反应放出氢气,可以与排在它后面的金属盐溶液反生置换反应。 1.铜在空气中加热 化学方程式:2Cu+O22CuO;实验现象:红色铜片表面逐渐变黑。 2.铜与硝酸银发生置换反应 化学方程式:Cu+2AgNO3=Cu(NO3)2+2Ag;实验现象:铜表面慢慢生成了银白色金属。 3.铁与硫酸铜溶液发生置换反应 化学方程式:Fe+CuSO4=FeSO4+Cu;实验现象:铁片逐渐消失,并有红色金属生成。 4.氢气还原氧化铜 化学方程式:H2+CuO Cu+H2O;实验现象:固体由黑色逐渐变成红色,同时有水珠 生成。 5.一氧化碳还原氧化铜 化学方程式:CuO+CO Cu+CO2;实验现象:固体由黑色逐渐变成红色,同时生成使澄清石灰水变浑浊的气体。 6.碳还原氧化铜 化学方程式:2CuO+C 2Cu+CO2↑;实验现象:生成使澄清石灰水变浑浊的气体。 7.五水硫酸铜加热 CuSO4.5H2O CuSO4+5H2O↑;实验现象:固体由蓝色变为白色(注意该变化属于化 学变化)。 8.碱式碳酸铜加热分解 化学方程式:Cu2(OH)2CO3 2CuO+H2O+CO2↑;实验现象:固体由绿色逐渐变成黑 色,同时生成使澄清石灰水变浑浊的气体。

9.氧化铜与硫酸(盐酸)反应 化学方程式:CuO+H2SO4=CuSO4+H2O;CuO+2HCl=CuCl2+H2O;实验现象:黑色固体溶解,生成蓝色溶液。 10.氢氧化铜与(硫酸)盐酸反应 化学方程式:Cu(OH)2+H2SO4=CuSO4+2H2O;Cu(OH)2+2HCl=CuCl2+2H2O;实验现象:蓝色固体溶解,生成蓝色溶液。 11.氯化铜与氢氧化钠反应 CuCl2+2NaOH=Cu(OH)2↓+2NaCl;实验现象:生成了蓝色絮状沉淀。 补充反应: 铜在氯气中燃烧:Cu+Cl2 CuCl2; 铜与浓硫酸反应:Cu+2H2SO4(浓) CuSO4+SO2+2H2O; 铜与稀硝酸反应:3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O; 铜与浓硝酸反应:Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O;

铜及铜合金的金相组织分析

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

化学沉铜工艺.

化学沉铜工艺 化学沉铜工艺 随着电子工业需要更可靠、性能更佳、更为节约的电镀添加剂产品,J-KEM 国际公司为未来的电子产品开发了一种新型化学沉铜工艺。通过引入最新一代的化学技术到整个的工艺过程中,是针对新的终端用户的可靠性需求而专门设计的。 从一开始,你就会发现新型J-KEM 整孔剂与传统的整孔剂相比迈进了一大步。普通的整孔剂的选择性不高并且在内层形成光屏蔽(轻微势垒)从而只能生成弱Cu-Cu键。J-KEM 整孔剂的化学活性和前者是完全不同的,它具有极高的效率,可使之形成100%Cu-Cu结合力和高的环氧树脂和玻璃纤维吸收。 在整个J-KEM工艺过程中,J-KEM有机钯活化剂是一个关键性的改进。通过创新的使用有机添加剂,新型钯活化剂配方与传统钯活化剂相比显示出绝对优越的催化性能。 因此,即使工作液中钯的浓度极低,如30ppm,大多数高的纵横比材料,以薄铜沉积后,进行背光测试仍可得到极佳的效果。 J-KEM化学沉铜技术操作稳定、易于控制,沉积层结晶细致、结构致密。沉积显示出侧面增长性能,可使铜在孔洞中很好覆盖。 J-KEM化学沉铜镀液可以提高铜沉积层和孔壁以及线路板表面的结合能力。 J-KEM化学沉铜镀液使用独特的有机钯活化剂配制而成,既可用于垂直电镀,又可用于水平电镀。 J-KEM碱性催化体系是一个独特的优化工艺过程,为柔性印刷电路板最大程度的降低了碱度和高温,并且结合了整孔体系高吸收性能、有机钯活化剂特性以及化学沉铜自催化性能等几个特点,J-KEM化学沉铜液是用于P.I.结合的尤为突出的工艺过程。 工艺特征:

? 在所有基体表面的深孔壁均可很好的覆盖; ? 对于HARB’s、基层板和盲孔具有优越的性能;? 极为而突出的孔壁结合力; ? 新一代钯活化剂可在极低浓度下(30 ppm)使工作;? 适合于垂直和水平镀; ? J-KEM化学沉铜是柔性印刷电路板的最佳工艺;? 经济节约。 化学沉铜工艺流程 J-KEM 7756**为可选工艺。

铁和铜及化合物知识点

专题复习八 ----铁及其化合物 一.物理性质:银白色,具有金属光泽;质地较软,有良好的导电性、延展性。密度7.86 g/cm3,熔沸点较高。位置:第四周期,第Ⅷ族 二.化学性质:1.与非金属反应 1)Fe+S(I2) FeS(FeI2) 2)4Fe+3O2 2Fe3O4 3)2Fe+3Cl2(Br2) 2FeCl3 弱氧化剂Fe3+、H+、I2、S、铁后的金属阳离子(置换)… Fe2+ Fe3+ 2.与水反应 3Fe + 4H2O(g) Fe3O4 + 4 H2↑(置换) 注意:铁在常温下不会和水发生反应,但在水和空气中O2和CO2的共同作用下,铁却很容易被腐蚀(生锈/电化学腐蚀) 3 与酸反应1)与非氧化性酸反应 Fe +2H+== Fe2+ + H2 2)与氧化性酸反应 a)常温下,铁在冷浓硫酸,浓硝酸中发生钝化 b)与浓硫酸反应:2Fe +6 H2SO4(浓)Fe2(SO4)3 +3SO2 +6 H2O c)与稀硝酸反应: 4.与盐溶液反应2Fe 3++ Cu = 2Fe 2++ Cu 2+ Fe + 2Fe3+ = 3 Fe2+ Fe + Cu2+ = Fe2+ + Cu 三、铁的化合物 Fe+CO+3CO+8Al

2、铁的氢氧化物 (1)Fe(OH)2的制备 Fe(OH)2易被氧化,在制备时应注意:⑴ FeS O 4晶体中不能有 Fe 3+ ;⑵配制后的FeSO 4溶液中要加入少量铁粉;⑶配制溶液的蒸馏水以及所用NaOH 溶液均须煮沸以除去其中溶解的氧气; 实验:FeSO 4溶液中加NaOH. ①现象: 生成白色沉淀,后又迅速转变为灰绿色,最后生成红褐色 ②Fe 2+ 容易被氧化,所以FeSO 4溶液要新配制. ③为了防止滴加NaOH 时带入空气,可将吸收NaOH 的长滴管伸入FeSO 4溶液液面下,再挤出NaOH 溶液. ④为了防止Fe 2+ 被氧化,还可以向盛有FeSO 4溶液的试管中加入少量煤油或其它密度比水小但不溶于水的有机物以隔绝空气. 化学方程式: FeSO 4 + 2NaOH = Fe(OH)2↓+Na 2SO 4 Fe 2++ 2OH -= Fe(OH)2↓(白色) 4Fe(OH)2 + O 2 + 2H 2O = 4Fe(OH)3(红褐色) (白色→灰绿色→红褐色) (2)Fe(OH)3的制备 实验:FeCl 3溶液中加NaOH 溶液. ①现象:生成红褐色沉淀 ②化学方程式:FeCl 3+3NaOH= Fe(OH) 3↓+3NaCl Fe 3++ 3OH -= Fe(OH)3↓(红褐色) ③热稳性:Fe(OH)3对热不稳定,受热能失去水生成红棕色的Fe 2O 3粉末. 化学方程式: 2Fe(OH)3 Fe 2O 3 +3H 2O [小结]难溶性或微溶性的碱受热不稳定,容易分解。生成相应的氧化物和水 (3)Fe (OH )3胶体的制备 向加热沸腾的蒸馏水中加入FeCI 3溶液,待出现红褐色时,停止加热,便可得到 Fe(OH)3胶体。制备时要注意:⑴不可长时间加热,因为加热会使胶体凝聚;⑵不能用自来水,因为自来水中的电解质也可使胶体凝聚。 四.铁的两种氢氧化物的比较 化学式 Fe(OH)2 Fe(OH)3 色、态 白色固体 红褐色固体 溶解性 难溶于水 难溶于水 物质类别 二元弱碱 三元弱碱 与非氧化性酸的 反应 Fe(OH)2+H 2SO 4=FeSO 4+2H 2O Fe(OH)2+2H + =Fe 2+ +2H 2O 2Fe(OH)3+3H 2SO 4=Fe 2(SO 4)3+6H 2O Fe(OH)3+3H + =Fe 3+ +3H 2O 与氧化性酸的反 应 3Fe(OH)2+10HNO 3(稀)=3Fe(NO 3)3+NO ↑+8H 2O 3Fe(OH)2+10H + +NO 3 -=3Fe 3+ +NO ↑+8H 2O Fe(OH)3+3HNO 3(稀)=Fe(NO 3)3+3H 2O Fe(OH)3+3H +=Fe 3+ +3H 2O 与还原性酸的反 应 Fe(OH)2+2HI=FeI 2+2H 2O Fe(OH)2+2H + =Fe 2+ +2H 2O 2Fe(OH)3+6HI=2FeI 2+6H 2O+I 2 2Fe(OH)3+6H + +2I -=2Fe 2++6H 2O+I 2 热稳定性 分解产物复杂 2Fe(OH)3 Fe 2O 3 +3H 2O

化学沉铜

化学沉铜 化学铜被广泛应用于有通孔的印制线路板的生产加工中,其主要目的在于通过一系列化学处理方法在非导电基材上沉积一层铜,继而通过后续的电镀方法加厚使之达到设计的特定厚度,一般情况下是1mil(25.4um)或者更厚一些,有时甚至直接通过化学方法来沉积到整个线路铜厚度的。化学铜工艺是通过一系列必需的步骤而最终完成化学铜的沉积,这其中每一个步骤对整个工艺流程来讲都是很重要。 本章节的目的并不是详述线路线路板的制作过程,而是特别强调指出线路板生产制作中有关化学铜沉积方面的一些要点。至于对那些想要了解线路板生产加工的读者,建议参阅其它文章包括本章后的所列举一部分的参考书目。 镀通孔(金属化孔)的概念至少包涵以下两种含义之一或二者兼有: 1.形成元件导体线路的一部分; 2.形成层间互连线路或印制线路; 一般线路板都是在非导体的复合基材(环氧树脂-玻璃纤维布基材,酚醛纸基板,聚酯玻纤板等)上通过蚀刻(在覆铜箔的基材上)或化学镀电镀(在覆铜箔基材或物铜箔基材上)的方法生产加工而成的。 PI聚亚酰胺树脂基材:用于柔性板(FPC)制作,适合于高温要求; 酚醛纸基板:可以冲压加工,NEMA级,常见如:FR-2,XXX-PC; 环氧纸基板:较酚醛纸板机械性能更好,NEMA级,常见如:CEM-1,FR-3; 环氧树脂玻纤板:内以玻璃纤维布作增强材料,具有极佳的机械性能,NEMA级,常见如:FR-4,FR-5,G-10,G-11; 无纺玻纤聚酯基板:适合于某些特殊用途,NEMA级,常见如:FR-6; 化学铜/沉铜 非导电基材上的孔在完成金属化后可以达到层间互连或装配中更好的焊锡性或二者兼而有之。非导电基材的内部可能会有内层线路---在非导电基材层压(压合)前已经蚀刻出线路,这种过程加工的板子又称多层板(MLB)。在多层板中,金属化孔不仅起着连接两个外层线路的作用,同时也起着内层间互联的作用,加入设计成穿过非导电基材的孔的话(当时尚无埋盲孔的概念)。 现在生擦和许多线路板在制程特点上都采用层压基板下料,也就是说,非导体基材的外面是压合上去一定厚度电解法制作的铜箔。铜箔的厚度是用每平方英尺的铜箔重量(盎司)来表示的,这种表示方法转化为厚度即为表13.1所示: 表13.1基材铜箔常见厚度对照: OZ/ft2 铜箔厚度 0.5 0.7mil(17.5um) 0.25 0.35mil(8.75um) 1 1.4mil(35um) 2 2.8mil(70um) 非导体基材有不同厚度因为要求不同,可能会要求很强的刚性也可能要求很薄的以致柔性也很好的基材. 在加成法生产加工中,使用的是无铜箔基材.这样化学通的作用不仅是孔金属化,而且同时也是为后续电镀创造一个表面基材导体化电镀基底,或者甚至完全靠化学铜沉积至特定厚度并形成整个表面的线路图形. 现在好多板子是采用不同基材生产加工的,无论是双面板还是多层线路板.对不同基材类型的前处理加工也稍有不同,值得加以注意和讨论. 在讨论化学铜槽本身的原则方法对于

铁和铜及其化合物

Fe 铜、铁及其化合物 一、铁及其化合物 1.物理性质:银白色,具有金属光泽;质地较软,有良好的导电性、延展性。密度7.86 g/cm 3 ,熔沸点较高。 位置:第四周期,第Ⅷ 族 2.化学性质:(1)与非金属反应 Fe+S (I 2) FeS (FeI 2) 4Fe+3O 2 2Fe 3O 4 2Fe+3Cl 2(Br 2) 2FeCl 3 弱氧化剂 Fe 3+、H + 、I 2、S 、铁后的金属阳离子(置换)… 强氧化剂 Cl 2、Br 2、HNO 3、浓H 2SO 4、MnO 4-(H + ) … (2)与水反应 3Fe + 4H 2O(g) Fe 3O 4 + 4 H 2 ↑(置换) 注意:铁在常温下不会和水发生反应,但在水和空气中O 2和CO 2的共同作用下,铁却很容易被腐蚀(生锈/电化学腐蚀) (3) 与酸反应 a.与非氧化性酸反应 Fe +2H +== Fe 2+ + H 2 b.与氧化性酸反应 c.常温下,铁在冷浓硫酸,浓硝酸中发生钝化 d.与浓硫酸反应:2Fe +6 H 2SO 4(浓) Fe 2(SO 4)3 +3SO 2 +6 H2O e.与稀硝酸反应:①当Fe 少量时,离子方程式为:Fe + 4H + + NO 3- == Fe 3+ +NO↑+2H 2O ②当Fe 过量时,,离子方程式为:3Fe+8H + +2NO 3- == 3Fe 2+ +2NO↑+4H 2O ③当1:4<n( Fe) :n (HNO 3)<3:8 时,此情况下,Fe 3+ 和Fe 2+ 共存。 (4)与盐溶液反应:2Fe 3++ Cu = 2Fe 2++ Cu 2+ Fe + 2Fe 3+ = 3 Fe 2+ Fe + Cu 2+ = Fe 2+ + Cu 3.铁的氧化物 FeO Fe 2O 3 Fe 3O 4 铁的化合价 +2 +3 +2、+3 颜色、状态 黑色粉末 红棕色粉末 黑色晶体 俗名 铁红 磁性氧化铁 水溶性 不溶于水 不溶于水 不溶于水 氧化物类别 碱性氧化物 碱性氧化物 Fe 2+ Fe 3+

印制电路板化学沉铜详解1

印制电路板化学沉铜详解(一) 化学铜被广泛应用于有通孔的印制线路板的生产加工中,其主要目的在于通过一系列化学处理方法在非导电基材上沉积一层铜,继而通过后续的电镀方法加厚使之达到设计的特定厚度,一般情况下是1mil(25.4um)或者更厚一些,有时甚至直接通过化学方法来沉积到整个线路铜厚度的。化学铜工艺是通过一系列必需的步骤而最终完成化学铜的沉积,这其中每一个步骤对整个工艺流程来讲都是很重要。 本章节的目的并不是详述线路线路板的制作过程,而是特别强调指出线路板生产制作中有关化学铜沉积方面的一些要点。至于对那些想要了解线路板生产加工的读者,建议参阅其它文章包括本章后的所列举一部分的参考书目。 镀通孔(金属化孔)的概念至少包涵以下两种含义之一或二者兼有: 1.形成元件导体线路的一部分; 2.形成层间互连线路或印制线路; 一般的一块线路板是在一片非导体的复合基材(环氧树脂-玻璃纤维布基材,酚醛纸基板,聚酯玻纤板等)上通过蚀刻(在覆铜箔的基材上)或化学镀电镀(在覆铜箔基材或物铜箔基材上)的方法生产加工而成的。 PI聚亚酰胺树脂基材:用于柔性板(FPC)制作,适合于高温要求; 酚醛纸基板:可以冲压加工,NEMA级,常见如:FR-2,XXX-PC; 环氧纸基板:较酚醛纸板机械性能更好,NEMA级,常见如:CEM-1,FR-3; 环氧树脂玻纤板:内以玻璃纤维布作增强材料,具有极佳的机械性能,NEMA级,常见如:FR-4,FR-5,G-10,G-11; 无纺玻纤聚酯基板:适合于某些特殊用途,NEMA级,常见如:FR-6; 化学铜/沉铜 非导电基材上的孔在完成金属化后可以达到层间互连或装配中更好的焊锡性或二者兼而有之。非导电基材的内部可能会有内层线路---在非导电基材层压(压合)前已经蚀刻出线路,这种过程加工的板子又称多层板(MLB)。在多层板中,金属化孔不仅起着连接两个外层线路的作用,同时也起着内层间互联的作用,加入设计成穿过非导电基材的孔的话(当时尚无埋盲孔的概念)。 现在生擦和许多线路板在制程特点上都采用层压基板下料,也就是说,非导体基材的外面是压合上去一定厚度电解法制作的铜箔。铜箔的厚度是用每平方英尺的铜箔重量(盎司)来表示的,这种表示方法转化为厚度即为表13.1所示:这些方法一般使用胶细的研磨剂如玻璃珠或氧化铝研磨材料.在湿浆法过程中是采用喷嘴喷浆处理孔.一些化学原料无论在回蚀和/或 除胶渣工艺中用来溶解聚合物树脂.通常的(如环氧树脂系统),浓硫酸,铬酸的水溶液等都曾经

铜及其化合物性质归纳

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 铜及其化合物性质归纳 铜及其化合物的性质虽然在中学化学中没有专门介绍,但它们分散在中学教材的各个章节中。在近几年高考题中经常出现铜及其化合物的影子,为便于同学们掌握它们的性质,现归纳如下: 一、铜 1、原子结构:原子序数为29,位于元素周期表中第4周期、第IB族,最外层有1个电子,常见化合价有+1、+2价。 2、物理性质:纯铜呈暗红色,属有色金属,导电导热性、延展性良好,焰色反应呈绿色。 3、化学性质:铜是一种较不活泼的金属,位于金属活动性顺序表中氢原子之后。 (1)与O 2的反应在空气中或O 2 中加热表面变黑:, 利用此反应可除去混在H 2、CO中的少量O 2 。 (2)与O 2、CO 2 、H 2 O的作用 在潮湿的空气中铜可生成铜绿,。(3)与其他非金属的反应 Cu在中燃烧生成棕黄色烟:;

在硫蒸气里燃烧生成黑色固体: (4)与酸的反应 ①与稀盐酸、稀不反应; ②与浓反应: ③与硝酸反应: (浓) (稀) (5)与盐溶液反应: 二、铜的化合物 1、氧化物 CuO是不溶于水的碱性氧化物,具有较强的氧化性,在加热时能被CO、、C等还原:, H 2 ;可与酸反应: 。 呈砖红色,可用于制红色玻璃,本身较稳定,但在酸液中易发生歧化反应生成Cu和。 2、

(1)难溶性碱,可与酸反应:。 (2)受热易分解: (3)有弱氧化性,新制的悬浊液能氧化醛基化合物,本身被还原为,常用于醛基化合物的检验: 。 (4)制备:可溶性铜盐与强碱反应:(蓝色絮状沉淀)。 3、铜盐 常见的铜盐有等。 (1)颜色:无水呈棕黄色,硫酸铜晶体(,又称胆矾或蓝矾)呈蓝色,其浓溶液呈绿色,无水硫酸铜呈白色,及其溶液呈蓝色。常用无水硫酸铜白色粉末检验水蒸气或水的存在。 (2)化学性质 ①水解性,其水溶液显弱酸性:。 ②氧化性,与金属单质反应:。 ③与强碱反应:。 ④胆矾受热可失去结晶水变成白色粉末,过热时,会进一步分解出。

铜和化合物性质归纳

铜及其化合物性质归纳 铜及其化合物的性质虽然在中学化学中没有专门介绍,但它们分散在中学教材的各个章节中。在近几年高考题中经常出现铜及其化合物的影子,为便于同学们掌握它们的性质,现归纳如下: 一、铜 1、原子结构:原子序数为29,位于元素周期表中第4周期、第IB族,最外层有1个电子,常见化合价有+1、+2价。 2、物理性质:纯铜呈暗红色,属有色金属,导电导热性、延展性良好,焰色反应呈绿色。 3、化学性质:铜是一种较不活泼的金属,位于金属活动性顺序表中氢原子之后。 A (1)与02的反应在空气中或02中加热表面变黑:2CU + 6 —250,利用此反应可除去混在H2、C0中的少量02。 (2)与02、CO2、H2O 的作用 在潮湿的空气中铜可生成铜绿,+ 6+C0?十比0 ■如(0円)£0?。 (3)与其他非金属的反应 占燃

在硫蒸气里燃烧生成黑色固体SCu + sAcu^S Cu在口2中燃烧生成棕黄色烟:一6C*; (4) 与酸的反应 ①与稀盐酸、稀J 4不反应; ②与浓反应:-■' -■■■■':.--J 【「 ③与硝酸反应: . .. (浓)_「」I. 「- II (稀)-小… I ' | £ (5) 与盐溶液反应: Cu+ 2A^+= Cu a+ 4 程Cu + :氏酣=Cu2++ 2 F0 、铜的化合物 1、氧化物 CuO是不溶于水的碱性氧化物,具有较强的氧化性,在加热时能被CO、 A H2、C 等还原:「^「1—, A A 弗 可与酸反^应: CuCJ+ + H-.0 专业word可编辑

呈砖红色,可用于制红色玻璃,也°本身较稳定,但在酸液中易发生歧化反应生成Cu和Cu卄。 2、5(叫 (1)难溶性碱,可与酸反应:4阳+ - Cu s++2H a O。 A (2)受热易分解:CuQH)2—CuO + HQ (3)有弱氧化性,新制的5(叫悬浊液能氧化醛基化合物,本身被还原为’二,常用于醛基化合物的检验: CH3CHO4-2C U(OH)2—i—*CH3COOH+ Cu a Cli4-2H2O。 (4)制备:可溶性铜盐与强碱反应:' 1 H:. ■(蓝色絮状沉淀)。 3、铜盐 常见的铜盐有CM1严加50屮Cu(N6b等。 (1)颜色:无水cm呈棕黄色,硫酸铜晶体(C協0「5H±0,又称胆矶或蓝矶)呈蓝色,其浓溶液呈绿色,无水硫酸铜呈白色,…:":一及其溶液呈蓝色。常用无水硫酸铜白色粉末检验水蒸气或水的存在。 (2)化学性质 ①水解性,其水溶液显弱酸性:Cu"亠加小^匚叽口环+ 2H+。

铁铜化学性质概括

铁、铜的性质 (一)铁及其化合物的性质 1、铁在周期表中的位置及结构 铁位于第四周期第毗族,电子排布式为:1s22s22p63s23p63d64s2 厂、''、\ :+26 丄 原子结构示意图为 在化学反应中易失去两个或三个电子形成+ 2或+ 3价:Fe— 2e—= Fe2+; Fe— 3e—= Fe3+ 2、纯铁具有银白色光泽、密度大,熔沸点高,延展性、导电、导热性较好、能被磁铁吸引。纯铁的抗腐蚀能力很强,通常我们所见的铁中由于含有碳等物质,抗腐蚀能力较弱,易发生电化腐蚀。 在酸性介质中发生:析氢腐蚀:负极:Fe— 2e—= Fe2+ ;正极反应为:2H + =H2; 在中性或碱性介质中发生:吸氧腐蚀:负极:Fe— 2e— = Fe2+ ;正极反应为: 2H2O+ 02+ 4e- = 4OH- 3、化学性质:铁是较活泼的金属,易失去最外层和次外层的电子,常显+2、 +3价,且Fe3+比Fe2+稳定。 (1)与非金属反应:铁与强氧化剂反应生成+ 3价铁的化合物,与弱氧化剂反应生成+ 2价铁的化合物。如: 3Fe+2O2 '' Fe3O4; 2Fe+3CI2 2FeCl3; Fe+S FeS (2)与水反应:铁在加热至红热时能与水蒸气发生反应。 3Fe+4H2O (g) Fe3O4+4H2 常温下,铁与水不起反应,但在水和空气里 O2、CO2等共同作用下,铁易被腐蚀。(3)与酸反应:非氧化性酸:Fe+2H+=Fe2++H2T 氧化性酸:常温下,铁遇浓硫酸、浓硝酸会钝化,加热条件下可发生氧化还原反应。Fe+4HNO3 (过量)=Fe(NO3)3+NO T +2H2O 3Fe (过量)+8HNO3=3Fe(NO3)2+2NO T +4H2O Fe+6HNO3 (浓)丄一Fe(NO3)3+3NO2 T +3H2O (4)与盐溶液反应:Fe+ Cu2+ = Fe2++ Cu; Fe+ 2Fe3+ = 3Fe2+ 4

铜合金化学成分

铜合金化学成分 编制说明 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,我公司承担了GB/T5231-2001《加工铜及铜合金化学成分和产品形状》的修订工作。该标准主管部门为中国有色金属工业协会,由全国有色金属标准化技术委员会技术归口,计划要求2011年完成修订任务,标准计划编号20091080-T-610。 为保证标准的编制水平,中铝沈阳有色金属加工有限公司成立了标准编制小组,进行了全面的市场调研,并以函件的形式向同行业广泛征询修订意见及相关技术数据,全面准确地了解铜加工行业近几年的发展动态。标准修订过程中经过多次征询意见,2010年2月形成了该标准讨论稿,四月武夷山会议及八月呼和浩特会议两次讨论后,标准稿经过较大调整,于2011年3月形成标准送审稿。 1.我国加工铜及铜合金化学成分标准修订历程及牌号的发展概况。 我国的《铜及铜合金化学成分和产品形状》标准最早是仿效前苏联“ΓΟCΤ”标准形式,制订了YB145~148—65,1971年进行第一次修订为YB145~148-71、1985年第二次修订为GB5231~5235—85,2001年修订为GB/T5231-2001。几次修订后其中元素控制范围水平不低于发达国家水平,但其模式和系列化程度都没有突破性提高。 纳入原国家标准GB/T 5231-2001的变形铜及铜合金牌号一共有111个,其中紫铜9个,黄铜43个,青铜41个,白铜18个。但是各加工企业实际生产的牌号远不止这些,据不完全统计,近10年来申请专利的新型合金就达70余个,而各个公司、院所研究开发的新型铜合金更数倍于此,达1000个以上。随着专业化生产趋势的不断发展,合金系列化程度在迅速提高,铜合金材料的成份细化分类已成必然趋势,为适应下游用户不同生产线工艺条件的要求,个性化,精密化产品越来越多,相比10年前有了很大的变化。 本标准合金牌号达到201个(美国2009年11月18日最新公布合金牌号为397个),基本上纳入了近10年来新开发研制的热点新合金牌号,新增电子铜银合金、引线框架材料、弥散强化铜合金、高强高导铜铬、铜铬锆合金、高速轨道交通接触线及受电弓用铜合金、无铅易切削铜合金系列、海水淡化用铜合金、高耐磨铜合金等。 而且合金系列化程度显著提高,尤其是铜银系合金,铜铬系合金,铜锡系合金、铅黄铜,锌白铜,系列化程度较原国标有大幅度的提高,部分合金系的系列化程度已接近美国ASTM标准。 例如,铅黄铜,为了适应不同用户的车削条件(车速和润滑方法),将铅含量的范围细分,从而衍生出多个新合金牌号。本标准草案新增8个铅黄铜合金牌号,加上原国标中已经纳入的合金牌号11个,共19个合金牌号,含铅量上限最高值4.5,最低下限值0.05,细化程度极高。美国2009年11月18日最新公布

铜基本知识介绍

铜基本知识介绍 1、自然属性 铜是人类最早发现的古老金属之一,早在三千多年前人类就开始使用铜。 金属铜,元素符号Cu,原子量63.54,比重8.92,熔点1083oC。纯铜呈浅玫瑰色或淡红色,表面形成氧化铜膜后,外观呈紫铜色。铜具有许多可贵的物理化学特性,例如其热导率和电导率都很高,化学稳定性强,抗张强度大,易熔接,具抗蚀性、可塑性、延展性。纯铜可拉成很细的铜丝,制成很薄的铜箔。能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金。 铜冶炼技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法冶炼为主,其产量约占世界铜总产量的85%。1)火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。2)现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。 2、铜及铜产品分类 ①、按自然界中存在形态分类 自然铜------铜含量在99%以上,但储量极少; 氧化铜矿-----为数也不多 硫化铜矿-----含铜量极低,一般在2--3%左右,世界上80%以上的铜是从硫化铜矿精炼出来的。 ②、按生产过程分类 铜精矿----冶炼之前选出的含铜量较高的矿石。 粗铜------铜精矿冶炼后的产品,含铜量在95-98%。 纯铜------火炼或电解之后含量达99%以上的铜。火炼可得99-99.9%的纯铜,电解可以使铜的纯度达到99.95-99.99%。 ③、按主要合金成份分类 黄铜-----铜锌合金 青铜-----铜锡合金等(除了锌镍外,加入其他元素的合金均称青铜) 白铜-----铜钴镍合金 ④、按产品形态分类:铜管、铜棒、铜线、铜板、铜带、铜条、铜箔等 3、铜的主要用途 铜是与人类关系非常密切的有色金属,被广泛地应用于电气、轻工、机械制造、建筑工业、国防工业等领域,在我国有色金属材料的消费中仅次于铝。 铜在电气、电子工业中应用最广、用量最大,占总消费量一半以上。 铝基本知识介绍 1、自然属性 铝是一种轻金属,其化合物在自然界中分布极广,地壳中铝的含量约为8%(重量),仅次于氧和硅,具第三位。在金属品种中,仅次于钢铁,为第二大类金属。铝具有特殊的化学、物理特性,是当今最常用的工业金属之一,不仅重量轻,质地坚,而且具有良好的延展性、导电性、导热性、耐热性和耐核辐射性,是国民经济发展的重要基础原材料。 铝的比重2.7,密度约为一般金属的1/3。而常用铝导线的导电度约为铜的61%,导热度为银的一半。虽然纯铝极软且富延展性,但仍可靠冷加工及做成合金来使它硬化。铝土矿是铝的重要来源,制造一镑氧化铝约需要两磅铝土矿,而制造一磅金属铝也需要两磅氧化铝。

高一化学教案 铁铜的化合物及性质

高一化学教案铁铜的化合物及性质 【学海导航】 1.掌握铁、铜及其重要化合物的主要性质; 2.掌握Fe2+与Fe3+的相互转化 【主干知识】 1.铁的氧化物的性质比较: 化学式FeOFe2O3Fe3O4 俗名 色态 铁的价态 水溶性 稳定性 与酸的反应 共性 2.Fe(OH)2和Fe(OH)3 化学式Fe(OH)2Fe(OH)3 状态 化学性质 制法 ★转化

3.Fe2+与Fe3+的检验 物质Fe2+Fe3+ 溶液颜色 化学性质 检 验观察法 碱法 SCN-法 氧化还原法 4.氧化铜和氢氧化铜: 化学式CuOCu(OH)2 状态O 化学性质 制法 转化 【精彩例题】 1.某500mL溶液中含0.1 mol Fe2+、0.2 mol Fe3+,加入0.2 mol 铁粉,待Fe3+完全还原后,溶液中Fe2+的物质的量浓度为(假设反应前后体积不变) ( ) A.0.4 molL-1 B.0.6 molL-1 C.0.8 molL-1 D.1.0 molL-11、★ 2.铁屑溶于过量的盐酸后,在加入下列物质,会有三价铁生成的是( )

A、硫酸 B、氯水 C、硝酸锌 D、氯化铜 ★3、下列各组离子在水溶液中能大量共存的是( ) A、Fe3+、Fe2+、Cl-、OH- B、Fe2+、H+、Na+、NO3- C、H+、Fe2+、SO42-、Cl- D、Fe3+、NO3-、K+、Cl- E. Fe2+、NO3-、K+、Cl- 【巩固练习】 一.选择题(每小题有一个正确答案) 1.向一定量的FeO、Fe、Fe3O4的混合物中加入100ml1molL-1的盐酸,恰好使混合物完全溶解,放出224ml(标准状况)的气体,在所得溶液中加入KSCN溶液无血红色出现.若用足量的CO在高温下还原相同的质量的此混合物,能得到铁的质量是( ) A.11.2g B.5.6g C.2.8g D.无法计算 2.某磁铁矿石200 t,经分析其中含有铁元素869 t (杂质中不含铁元素) 。则磁铁矿中Fe3O4的质量分数为 A 50% B 60% C 65% D 70% 3.向铁和Fe2O3的混合物中加入足量稀H2SO4,充分反应后生成FeSO4溶液,当生成的Fe2+和H2的物质的量之比为4 ∶1时,反应中关系量正确的是( ) A.被氧化的铁与被还原的铁离子物质的量之比为1∶1 B.被氧化的铁与被还原的铁离子物质的量之比为2∶1 C.被氧化的铁与被还原的铁离子物质的量之比为1∶2 D.被氧化的铁与被还原的铁离子物质的量之比为1∶3

铜及其化合物的性质

铜及其化合物的性质 一、目标要求: 知识目标:1.了解铜的物理性质、化学性质。 2. 3.掌握的Fe 2+、Fe 3+的检验方法。 能力目标:1.通过演示实验,培养学生的观察能力。 2.培养学生分析问题的方法,提高综合运用知识的能力。 情感目标:通过实验现象的观察和总结,培养学生事实求是的科学精神。 二、学习重、难点:铜的化学性质。 三、课堂互动 【问题导学】预习时顺带把这些问题解决了,试试你的身手呀! 一、铜 1、原子结构:原子序数为29,位于元素周期表中第4周期、第IB 族,最外层有1个电子,常见化合价有+1、+2价。 2、物理性质:纯铜呈暗红色,属有色金属,导电导热性、延展性良好,焰色反应呈绿色。 3、化学性质:铜是一种较不活泼的金属,位于金属活动性顺序表中氢原子之后。 (1)与O 2的反应 在空气中或O 2中加热表面变黑:2Cu + O 2 == 2CuO ,利用此反应可除去混在H 2、CO 中的少 量O 2。 (2)与O 2、CO 2、H 2O 的作用 在潮湿的空气中铜可生成铜绿,2Cu + O 2 +CO 2 + H 2O == Cu 2(OH)2CO 3 (3)与其他非金属的反应 Cu 在Cl 2中燃烧生成棕黄色烟:Cu + Cl 2 == CuCl 2; 在硫蒸气里燃烧生成黑色固体: (4)与酸的反应 ①与稀盐酸、稀H 2SO 4不反应; ②与浓H 2SO 4反应: ③与硝酸反应: (浓) (稀) (5)与盐溶液反应: 二、铜的化合物 1、氧化物 CuO 是不溶于水的碱性氧化物,具有较强的氧化性,在加热时能被CO 、H 2、C 等还原: , ;可与酸反应: 。 Cu 2O 呈砖红色,可用于制红色玻璃,Cu 2O 本身较稳定,但在酸液中易发生歧化反应生成Cu 和Cu 2+。 Δ 点燃

高中化学 铁、铜重要化合物的性质探究

铁、铜重要化合物的性质探究 1.《本草纲目》在绿矾(FeSO4·7H2O)“发明”项载:“盖此矾色绿,味酸,烧之则赤……”。下列叙述正确的是() A.绿矾能电离出H+,所以有“味酸” B.绿矾煅烧后的固体产物为FeO C.可用无水CuSO4检验煅烧绿矾生成的H2O D.通入Ba(NO3)2溶液可检验煅烧产物中的SO3 解析:选C绿矾是硫酸亚铁晶体,不能电离出H+,之所以有“味酸”,是溶解时Fe2+水解的结果,故A错误;绿矾煅烧后生成“赤”色的产物为Fe2O3,故B错误;水蒸气遇到无水CuSO4,无水CuSO4会变成蓝色CuSO4·5H2O,因此可以用无水CuSO4检验煅烧绿矾生成的H2O,故C正确;酸性溶液中NO-3具有强氧化性,生成的二氧化硫,也会被氧化生成SO2-4,进而生成硫酸钡沉淀,故D错误。 2.为了探究铁及其化合物的氧化性和还原性,某同学设计了如下实验方案,其中符合实验要求且完全正确的是() 解析:选A氯气能够将Fe2+(浅绿色)氧化为Fe3+(棕黄色),A项正确;B项得到的结论应该是Fe2+具有氧化性;C项的离子方程式错误;D项的实验现象应该是铜粉逐渐溶解,溶液由棕黄色变为蓝色。 3.如图所示装置可用来制取Fe(OH)2和观察Fe(OH)2在空气中被氧化时的颜色变化。实验提供的试剂:铁屑、6 mol·L-1硫酸溶液、NaOH溶液。下列说法错误的是()

A . B 中盛有一定量的NaOH 溶液,A 中应预先加入的试剂是铁屑 B .实验开始时应先将活塞E 关闭 C .生成Fe(OH)2的操作为关闭E ,使A 中溶液压入B 瓶中 D .取下装置B 中的橡皮塞,使空气进入,有关反应的化学方程式为4Fe(OH)2+O 2+2H 2O===4Fe(OH)3 解析:选B 制取硫酸亚铁需要铁屑,所以在烧瓶中应该先加入铁屑,所以A 中应预先加入的试剂是铁屑,故A 正确;稀硫酸和铁反应生成硫酸亚铁和氢气,实验开始时应打开活塞E ,用氢气排出装置中的空气,B 错误;铁和硫酸反应有氢气生成,关闭活塞E ,导致A 装置中压强逐渐增大,将FeSO 4溶液被压入B 瓶中进行反应生成氢氧化亚铁,C 正确;氢氧化亚铁不稳定,容易被空气中的氧气氧化生成红褐色的氢氧化铁,反应方程式为4Fe(OH)2+O 2+2H 2O===4Fe(OH)3,故D 正确。 4.由硫铁矿烧渣(主要成分:Fe 3O 4、Fe 2O 3和FeO)得到绿矾(FeSO 4·7H 2O),再通过绿矾制备铁黄[FeO(OH)]的流程如下: 烧渣――→酸溶①――→FeS 2②溶液――→ ③绿矾――→氨水/空气 ④ 铁黄 已知:FeS 2和铁黄均难溶于水。 下列说法不正确的是( ) A .步骤①,最好用硫酸来溶解烧渣 B .步骤②,涉及的离子方程式为 FeS 2+14Fe 3++8H 2O===15Fe 2++2SO 2-4+16H + C .步骤③,将溶液加热到有较多固体析出,再用余热将液体蒸干,可得纯净绿矾 D .步骤④,反应条件控制不当会使铁黄中混有Fe(OH)3 解析:选C 要制得绿矾,为了不引入其他杂质,步骤①最好选用硫酸来溶解烧渣,A 项正确;加入FeS 2后得到的溶液经步骤③可得到绿矾,故步骤②中FeS 2和Fe 3+ 发生氧化还原反应,生成了FeSO 4,离子方程式为FeS 2+14Fe 3++8H 2O===15Fe 2++2SO 2-4+16H +,B 项正确;步骤③,由FeSO 4溶液得到绿矾应蒸发浓缩、冷却结晶而不是蒸发结晶,C 项错误;步骤④中若反应条件控制不当,则会使铁黄中混有Fe(OH)3,D 项正确。 5.钌(Ru)是一种硬而脆呈浅灰色的多价稀有金属,性质很稳定,且耐腐蚀性很强。实验室用H 2还原RuO 2来制备金属钌的装置如图所示。下列说法不正确的是( ) A .加热试管前,应先收集气体并点燃,通过爆鸣声判断气体的纯度 B .洗气瓶中盛装的可能是NaOH 溶液,用于除去HCl

铜合金分类与化学成分

铜合金分类与化学成分

铜合金分类与化学成分 一、黄铜 黄铜是铜与锌的合金。最简单的黄铜是铜——锌二元合金,称为简单黄铜或普通黄铜。改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性稍低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,使合金性能变坏。 为了改善黄铜的某种性能,在一元黄铜的基础上加入其它合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。在黄铜中加铝能提高黄铜的屈服强度和抗腐蚀性,稍降低塑性。含铝小于4%的黄铜具有良好的加工、铸造等综合性能。在黄铜中加1%的锡能显著改善黄铜的抗海水和海洋大气腐蚀的能力,因此称为“海军黄铜”。锡还能改善黄铜的切削加工性能。黄铜加铅的主要目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。锰黄铜具有良好的机械性能、热稳定性和抗蚀性;在锰黄铜中加铝,还可以改善它的性能,得到表面光洁的铸件。黄铜可分为铸造和压力加工两类产品。常用加工黄铜的化学成分,见表1。 表1 常用加工黄铜的化学成分 组别代号 主要化学成分(%)(重量) 杂质总和(%)(重 量) 铜锌其它合金元素 普通黄 铜H96 H90 H80 H68 H62 H59 95.0-97.0 88.0-91.0 79.0-81.0 67.0-70.0 60.5-63.5 57.0-60.0 余 量 ≤0.2 ≤0.2 ≤0.3 ≤0.3 ≤0.5 ≤1.0 铅黄铜 HPb63-3 HPb59-1 62.0-65.0 57.0-60.0 余 量 铅2.4-3.0 铅0.8-1.9 ≤0.75 ≤1.0 锡黄铜HSn62-1 61.0-63.0 余 量 锡0.7-1.1 ≤0.3

【铜及其化合物】 铜的化合物及其性质

铜及其化合物 庆云一中王金行 课程标准解读 了解铜的物理性质和重要用途; 通过演绎法去分析铜及其重要化合物的化学性质; 掌握硫酸铜的性质及其简单计算。 知识再现 一、铜的物理性质和用途 铜是色的固体,导电,据此性质,铜可以用作。 铜还有许多重要的合金,如、等。 二、铜的化学性质 根据铜在金属活动性顺序表中的位置,它应属于不活泼的金属,因此它置换出酸或水中的氢。 (一)铜与非金属的反应 (1)与氧气反应 2Cu + O22CuO 在潮湿空气中还可发生腐蚀生成绿色的铜锈 2Cu + O2 + H2O + CO2=Cu2(OH)2CO3 (2)与其它非金属的反应 2Cu + S Cu2S Cu + Cl2 CuCl2

(二)与酸的反应 (1)铜与非氧化性酸(如盐酸、磷酸等)不反应。 (2)铜与强氧化性酸(如浓硫酸、硝酸等)能反应,但不生成氢气。 Cu+2H2SO4CuSO4+SO2↑+2H2O (三)与盐溶液的反应 2 FeCl 3 + Cu=2FeCl2 + CuCl2 Cu + 2AgNO3=Cu(NO3)2 + 2Ag 三、铜的冶炼 工业上,主要采用高温冶炼黄铜矿的方法获得铜。这种方法冶炼的铜,其含量为95% ∽97%,还有Ag、Au、Fe、Zn等杂质。要达到电气化生产铜的要求,这种由黄铜矿高温冶炼的铜还必须经过电解精炼,电解精炼得到的铜,其含量高达995%∽998%。 [典题解悟] 例. 铜是生命必需的元素,也是人类最早使用的金属之一,铜的生产对国计民生各个方面都产生了深远的影响。请完成下列各题 (1)在化学反应中,铜元素可表现为0、+1、+2价。 ①在西汉古籍中有记载曾青得铁则化为铜(即曾青CuSO4跟铁反应就生成铜)。试写出该反应的化学方程式。 ②铜器表面有时会生成铜绿Cu2(OH)2CO3,这层铜绿可用化学方法除去。试写出一个除去铜绿而不损坏器物的化学方程式。 (2)铜钱在历史上曾经是一种广泛流通的货币,试从物理性质和化学性质的角度分析为什么铜常用于制造货币。(铜的熔点是1184℃,铁的熔点是1538℃) (3)历史上的“青铜器时期”早于“铁器时期”,而近百年才大量使用铝制品,试分析人类使用这些金属的时间的事实与金属活泼性及冶炼难易的联系 精析西汉时期的“曾青得铁则化为铜”是湿法冶金术得先驱,Fe+CuSO4=FeSO4+Cu。当铜生成铜绿时,铜元素的化合价升高到+2,所以空气中必有氧化剂参加了反应。因铜在常温下不与稀硫酸反应,而铜绿则能与稀酸反应,所以可考虑用稀硫酸清洗。

相关主题