搜档网
当前位置:搜档网 › 盘管换热器相关计算

盘管换热器相关计算

盘管换热器相关计算
盘管换热器相关计算

一、铜盘管换热器相关计算

条件:600kg 水 6小时升温30℃ 单位时间内换热器的放热量为q q=GC ΔT=600*4.2*10^3*30/(6*3600)= 3500 w 盘管内流速1m/s ,管内径为0.007m ,0.01m ,

物性参数:

40℃饱和水参数。

黏度—653.3*10^-6 运动黏度—0.659 *10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m. ℃) 求解过程:

盘管内平均水温40℃为定性温度时

换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为

0.4

f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*21244.310.84.310.4=143.4 (d1) 0.4

f

8.0f

f Pr 023Re

.0*2.1Nu ==1.2*0.023*30349.010.84.310.4=190.7 (d2)

管内对流换热系数为

l Nu h f

f i λ?=

=143.4*0.635/0.014=6503.39 (d1) l

Nu h f

f i λ?=

=190.7*0.635/0.02=6055.63 (d2) 管外对流换热系数

格拉晓夫数准则为(Δt=10)

23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0163/(0.659*10^-6)2=356781.6 (d1) 23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0223/(0.659*10^-6)2=927492.9(d2)

其中g=9.8 N/kg

β为水的膨胀系数为386*10^-6 1/K

自然对流换热均为层流换热(层流范围:Gr=10^4~5.76*10^8)

25

.023w w

Pr t g l 525.0Nu ???

? ????=να=0.525(356781.6*4.31)0.25=18.48755 (d1)

25

.023w w

Pr t g l 525.0Nu ???

? ????=να=0.525(927492.9*4.31)0.25=23.47504 (d2)

其中Pr 普朗特数为4.31

对流换热系数为

d

Nu m λ

α=

=18.48755*0.635/0.014=838.5422 (d1) d

Nu m λ

α=

=23.47504*0.635/0.014=677.5749 (d2) 其中λ为0.635w/(m. ℃) .传热系数U

λ

δ++=o i h 1h 1U 1=1/6503.39+1/838.5422+1/393=0.003891 U=257.0138 (d1)

λ

δ++=o i h 1h 1U 1=1/6055.63+1/677.5749+1/393=0.004186 U=238.9191 (d2) h i -螺旋换热器内表面传热系数 J/㎡·s ·℃ h o -螺旋换热器外表面传热系数 J/㎡·s ·℃ δ-螺旋换热器管壁厚 m δ=1m

λ-管材的导热系数 J/m ·s ·℃ λ=393W/m ℃ k o -分别为管外垢层热阻的倒数(当无垢层热阻时k o 为1) J/㎡·s ·℃ 自来水 k o =0.0002㎡℃/W

换热器铜管长度 d

q l απ70==3500/10/257.0138/3.14/0.014=27.1 (d1)

A=1.53

d

q l απ70=

=3500/10/238.9191/3.14/0.022=21.2 (d2)

A=1.65

二、集热面积的相关计算(间接系统)

条件:加热600kg 水,初始水温10℃,集热平面太阳辐照量17MJ/㎡以上,温升30℃,

???

?

????+?=hx hx C

L R c IN A

U A U F 1A A =9.5㎡ 式中

IN A —间接系统集热器总面积,㎡

L R U F —集热器总热损系数,W/(㎡·℃)

对平板集热器,L R U F 宜取4~6W/(㎡·℃) 对真空管集热器,L R U F 宜取1~2W/(㎡·℃)取1

hx U —环热器传热系数,W/(㎡·℃) hx A —换热器换热面积,㎡

c A —直接系统集热器总面积,㎡ )

1(J f

)t t (C Q A L cd T i end w w c ηη--=

w Q —日均用水量,kg

w C —水的定压比热容,kJ/(kg ·℃) end t —出水箱内水的设计温度,℃

i t —水的初始温度,℃

f —太阳保证率,%;根据系统的使用期内的太阳辐照、系统经济以用户要求等因素综合考虑后确定,宜为30%~80% 取1

T J —当地集热采光面上的年平均日太阳辐照量kJ/㎡

cd η—集热器的年平均集热效率;根均经验值宜为0.25~0.5 取0.6

L η—出水箱和管路的热损失率;根据经验取值宜为0.20~0.30 取0.2 结论:

1) 换热器入口流速在1 m/s 左右

2) 保证换热器内的平均温度在40℃左右 3) 换热器的入口压力不低于0.2 5MPa

三、换热器计算

1.传热面积

T

U Q

A ?=

(2.1.1) A — 传热面积 ㎡ Q —传热量 J/s

U —传热系数 J/㎡·s ·℃ ΔT -平均温度差 ℃

2.平均温度差(考虑逆流情况)

c1

h2c2h1c1h2c2h1T T T T ln

)

T T ()T (T T -----=

?

(2.2.1) 其中

T c —冷流体温度 ℃ T h —热流体温度 ℃

下标1为入口温度,下标2为出口温度 当

c1

h2c2

h1T T T T --≤2时,可用算数平均值计算,即

2

)

T T ()T (T c1h2c2h1-+-

(2.2.2) 3.传热系数U

)A A

(k 11)k 1h 1()A A (h 1U 1i

o i o o o i o i ++++=λδη (2.3.1)

h i -螺旋换热器内表面传热系数 J/㎡·s ·℃ h o -螺旋换热器外表面传热系数 J/㎡·s ·℃ δ-螺旋换热器管壁厚 m

λ-管材的导热系数 J/m ·s ·℃

k i ,k o -分别为管内外垢层热阻的倒数(当无垢层热阻时k i ,k o 均为1) J/㎡·s ·℃ ηo -为肋面总效率(如果外表面为肋化,则ηo =1)

i

o

A A -为换热管的外表面积与内表面积之比; 4.螺旋管内表面传热系数

l

Nu h f

f i λ?=

(2.4.1)

其中

h i —管内表面传热系数 J/㎡·h ·℃

f Nu —努塞尔数

f λ—流体导热系数 W/m ·K

换热器设计流量为:4L/min ~14L/min , 管内为湍流时

实验关联式验证范围:Re f =104~1.2×105,Pr f =0.1~120,l/d ≥60; 管内径d 为特征长度。

采用迪图斯-贝尔特公式:

n

f 8.0f

f Pr 023Re

.0Nu =

(2.4.2)

加热流体时n =0.4,冷却流体时n =0.3 Re f -雷诺数 u ·l/ν u -流体流速 m/s l -管径 m

ν-流体运动黏度 ㎡/s

Pr f -普朗特数 Cp ·μ/λ=ν/a

螺旋管内流体在向前运动过程中连续的改变方向,因此会在横截面上引起二次环流而强化换热。流体在螺旋管内的对流换热的计算工程上一般算出平均Nu 数后再乘以一个螺旋管修正系数c r 。推荐:

对于气体 R

d

1.771cr +=

对于液体 3

R d 10.31cr ??

?

??+=

以上内容仅适用于Pr>0.6的气体或液体,d 是螺旋管的内经,R 是螺旋圈的半径 管内层流时,

推荐采用齐德-泰特公式来计算长为l 的管道平均Nu 数

14

.0w f 3

/1f f d /l Re 86.1Nu ???

? ???

?

?

??=ηη

(2.4.3)

此式的定性温度为流体平均温度t f

(但w η按壁温计算),特长长度为管径。实验验证范围: Re f =104~1.2×105,Pr f =0.48~16700,w f ηη=0.0044~9.75,14

.0w f

3

/1f d /l Re ???

?

????? ??ηη≥2

5.螺旋管外表面传热系数(自然对流换热情况) 格拉晓夫数 2

3T

gl G r ν

α?=

(2.5.1)

螺旋管外表面传热系数 l

Nu h λ

?=

(2.5.2) 其中

h -螺旋管外表面传热系数 J/㎡·s ·K Nu -螺旋管外表面努塞尔数

λ-螺旋管外流体导热系数 W/m ·K l -螺旋管外径 m

努塞尔数 25

.023w w Pr t g l 525.0Nu ???

? ????=να

(2.5.3) 其中

ρ-螺旋管外流体密度 kg/m 3

α-螺旋管外流体膨胀系数 K -1 g -重力加速度 kg/s

Δt -流体和管壁间的温度差 K

Pr -流体的普朗特数 Cp ·ρ·ν/λ Cp -流体的比热 J/kg ·K ν-流体运动黏度 ㎡/s

管壳式换热器的建模、换热计算和CFD模拟

毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟 专业年级2007级热能与动力工程专业 学号姓名20070348 杨郭 指导教师刘巍 评阅人刘庆君 二零一一年六月 中国南京

任务书 课题名称:管壳式换热器的建模、换热计算与CFD模拟 课题类型:毕业论文 任务书内容: 1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文) 2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。其总流阻损失应在满足规定要求。 2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟; 3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。 3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。 3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。 3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6. 4.规定状态的CFD模拟结果和能量分析图; 3.6. 5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。准备毕业答辩的PPT文稿。 任务书进度: 1、16~17周,分析、熟悉毕业设计题目、查找相关翻译资料,对“毕业设计任务书”进行分析计划;收集相关行业信息;准备电脑、办公地点,学习相关软件; 2、18~19周,基础设计,查找技术资料、确定设计方案,对方案进行初步设计与计算; 3、1~4周,进行相关计算,结果分析,编写相关计算、设计、计划文件; 4、5~9周,计算结果分析、修改、撰写毕业论文; 5、10~14周,毕业论文和设计文件的修改,准备毕业答辩。

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

管壳式换热器换热管根数的估算

管壳式换热器换热管根数的估算 王 玉 常 阳 支 歆 沈阳仪器仪表工艺研究所 沈阳市 110043 贾书鹏 大连冷冻机股份有限公司 辽宁省大连市 116033 【摘要】根据行业标准JB/T4715-92,JB/T4716-92有关内容绘出公式n=(D/ad)2中系数a的变化曲线,从曲线分析结果中得出一些有价值的结论。 关键词:管壳式换热器 壳径 管径 程数 管数 系数a The Estimate of H eat Exchange Tubes Number in the Tubular H eat Exchanger W ang Yu Chang Yang Zhi Xin Shenyang Institute of Instrumentation Technology,Shenyang110043 Abstract:According to the JB/T4715-92.JB4716-92,the curves of coefficient a in the formula n=(D/ad)2are given,some worthy conclusions are drawn by analyzing the curves. K ey Words:Tubular Heat Exchanger,Diameter of Shell,Diameter of Tube,Number of Passes,Number of Tubes,Coeffi2 cient a. 1 引 言 布管是管壳式换热器设计重要内容之一。通常,在壳径、管径、程数、排列方式确定后,即可按G B151相关内容,手工或计算机自动布管(如化工设备CAD 软件包(V2.0)LBJ38),给出准确管数。 但有时尚未进行到正式设计阶段,无法知道准确管数,能否在已知部分参数的情况下,估算出管数是很有必要的。文献〔1〕介绍一种估算方法: n=(D/ad)2 式中 n———换热管根数; D———管壳式换热器壳内径,mm; d———换热管外径,mm; a———系数,取1.5~1.7。 该公式适用于管心距P=(1.3~1.5)d。其形式简单,但使用的范围、误差、系数a的具体选取办法,文献〔1〕均未介绍,还有,按G B151规定,除小于等于Ф20规格换热管管心距在公式适用范围内,其余管心距均小于1.3d,已超出公式使用范围。 G B151适用的固定管板式、浮头式、U形管式和填料函式换热器,从布管角度讲,固定管板式属一类;U 形管式属一类;浮头式和填料函式属一类。U形管由于受到弯曲半径的限制,分程隔板槽两侧相邻管中心距需按2倍的弯曲半径选取。况且,单根U形管通常包括一个弯管段和两个直管段,管数不到同壳径的固定管板式1/2;浮头式和填料函式受浮头管板和浮头管板裙的影响,布管数大为减少,仅相当于小一规格的固定管板式布管数。因而,固定管板式是同规格中布管密度最大,布管根数最多的一种形式,并且也是最常用的结构形式。本文以行业标准JB/T4715—92“固定管板式换热器型式与基本参数”;JB/T4716—92“立式热虹吸式重沸器型式与基本参数”为基础,探讨公式n =(D/ad)2中系数a的选取办法。 2 标准范围内系数a的变化 2.1 为简化起见,特作如下假设 (1)用钢管(DN159~DN325)制造换热器筒体,钢管壁厚定为10mm。因壳径较小,拉杆孔位数占总管数比例较高,故按G B151规定,拉杆数定为4,另加到管子根数里。 (2)卷制筒体(DN≥400mm)中,除DN400及采用Ф38换热管DN500的拉杆孔数按G B151规定为 12 第1期?管件与设备?

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3) 绿色版无需安装解压后启动 Thecal.exe 该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。 硬件环境: Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。 请将显示卡的分辨率设置为800×600或以上。 软件环境: 该软件运行在中文Windows 9X环境下。推荐使用中文Windows 98。

软件安装: 运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。 运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。 输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。 正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。 该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。 按<返回>按钮返回数据输入界面, 按<打印>按钮打印计算结果,需要说明的是,该软件所输出的计算结果采用的是A4号纸,需要事先在Windows的打印机管理模块中设置好。 该软件除了提供了管式换热器工艺计算功能外,还提供了几个实用的小程序,他们是<计算器>、<万能单位换算>,这些功能可以在主菜单中的<实用程序>项下找到。 本软件没有换热器强度计算功能,而管板厚度会影响换热面积的,如果管板厚度修改后,需要重新验证该换热器的传热性能。有关管壳式换热器的强度计算可以采用化工部设备设计技术中心站的钢制压力容器设计计算软件包或其他软件。 Thecal 1.1有如下问题需要注意: 1. 换热管数会因为设计压力不同需要必要的调整。 2. 由于该版本不具备强度计算功能,同时管板的厚度会影响总换热面积(换热管的长度一定),软件中的管板厚度仅为假设值,因而当管板经过强度计算以后,需要重新核准传热面积。 3. 折流板的间距为最大的允许距离,针对不同的工艺可能需要的调整。 4. 折流板约定为切除25 %的圆缺型折流板。 5. 根据文献,管外冷凝时,不论时水平管还是垂直管,气体流速对冷凝液膜流动的影响都很小,文献中的管外冷凝的膜系数不含气体流动特性因素。 6. 软件中采用“设计”所得的结果并不一定是最佳的方案,比如,采用默认数据时,设计结果是450的壳体,2.5米的管长,管程为双流程,当然也可以采用“校核”来选择400的壳体,3米的管长,或者是500的壳体,2米管长,4流程等等。 7. “保存文件”保存的仅是设计条件,而计算的结果没有保存。

管壳式换热器模型原程序(C语言)

换热器模型原程序(C语言) #include #include float density(float t,float d) {float x,z; x=1+(t/100); z=0.942+0.248*x+0.174*d*d+0.0841/(x*d)-0.312*x/d-0.556*exp(-x); z=z*1000; return(z); } /*以下为比热容的计算:*/ float hcap(float t,float d) {float cp; cp=(0.7072+(0.00147-0.000551*d)*t-0.318*d)*(0.055*12.5+0.35); cp=cp*4186; return(cp); } /*以下为热导率的计算:*/ float hcon(float t,float d) {float cn; cn=0.1008*(1-0.00054*t)/d; cn=cn*4186/3600; return(cn); } float nianc(float t,float d) {float ni; ni=exp(exp(22.81142-3.68738*log(t+273)))-1.22; ni=ni*density(t,d)*0.000001; return(ni); } float nianh(float t,float d) {float ni; ni=exp(exp(18.9173-2.92782*log(t+273)))-1.22; ni=ni*density(t,d)*0.000001; return(ni); } main() { int n,N; float tc1,tc2,th1,th2,k,q,e,h,hi,ho,ntu,rei,reo,pri,pro,wc,tao, wh,tmc,tmh,ai,ao,twi,two,cpc,cph,rdc,rdh,ndc,ndh,di,dou,dk, d1,d2,s1,s2,cmin,cmax,de,p,l,v1,v2,rs,rt,thx,tx,ty,thy,tcx,tcy;

_管壳式换热器热工选型计算

_管壳式换热器热工选型计算 2019年第1期 2019年1月化学工程与装备 Chemical Engineering & Equipment 101 管壳式换热器热工选型计算 陈亮 (兰州兰石重型装备股份有限公司技术研发中心,甘肃兰州 730000) 摘要:本文探讨了运用HTRI软件进行管壳式换热器热工选型计算的一般步骤要求,提出了对设计过程中常见问题的解决方案,可以为此类换热器的设计选型提供参考。关键词:管壳式换热器;热工设计;HTRI;选型计算引言 管壳式换热器是石油、化工、动力和原子能等行业中应用最广泛的间壁式传热型换热器,其既可是一种单元设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的换热器,适用范围从真空到超高压(超过100MPa),从低温到高温(超过1100℃),其作为化工生产中重要的单元设备,约占市场多于65%的份额,因此对于工程设计人员来说,管壳式换热器的设计计算十分重要。 现结合某国内项目氨蒸发器的选型计算,介绍利用HTRI选型计算的基本要素及注意事项。 1 计算步骤 设计时先选择Design mode 输入基本数据以确定初步方案,继而选择Simulation及Rating mode,并调整壳体和换热管的直径、折流板数、折流板间距、换热管数目、折流板切口等参数详细计算以符合设计要求。 1.1 输入数据及运行Design mode 运用HTRI软件进行管壳式换热器的选型设计,首先需要完成数据的输入,输入数据主要分为传热数据和机械数据两部分,在Input summary 模块下的Geometry、Piping、Process、Hot Fluid Properties、Cold Fluid Properties、Design和Control,需要输入数值的地方都以红框显示,软件默认值及单位显示在窗口上,如下图1所示: 图1 HTRI数据输入界面 1.2 运行Rating mode 根据软件在Design mode中计算出的壳径,换热管规格大小、排列角度,折流板的切割方式等基本信息,选择运行Rating mode 模式和Simulation mode模式,在Input

(完整版)HTRI管壳式换热器设计基础教程讲解

HTRI管壳式换热器设计基础教程 郑州大学化工与能源学院 2011年11月

HTRI简介 美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。HTRI帮助其会员设计高效、可靠及低成本的换热器。HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。 HTRI.Xphe能够设计、核算、模拟板框式换热器。这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。 HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。该软件使用了HTRI的最新逐点完全增量计算技术。 HTRI.Xjpe是计算套管式换热器的软件。HTRI.Xtlo是管壳式换热器严格的管子排布软件。HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。HTRI.Xfh能够模拟火力加热炉的工作情况。该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。 在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。

管壳式换热器简介

EDR(HTFS) ASPEN EDR(HTFS) 之管壳式换热器软件介绍 1 北京中油奥特科技有限公司 BeiJing Zhongyou AOTO Science and Technology Limited https://www.sodocs.net/doc/0b16032835.html,

EDR(HTFS) EDR(HTFS)软件历史 ?系列软件创始于1967年,具有30多年的发展史 HTFS年具有 ?HTFS软件原是英国AEA公司的产品 年拿 ?1997年加拿大Hyprotech公司成为AEA公司子公司后,HTFS划归Hyprotech公司管理 ?2002年7月,Hyprotech公司与AspenTech公司合并,HTFS成为AspenTech公司的产品 ?2008年9月,AspenTech公司改变产品名称HTFS->EDR

EDR (HTFS ) 用户全球客户超过?BP Amoco ?Chi d HTFS 用户:用户:全球客户超过 400BP Amoco ?Shell Global Solutions ?Exxon Chiyoda ?Petrobras ?ENI Larson and Tubro ?Repsol ?BASF ?MW Kellogg Foster Wheeler ?Larson and Tubro ?Statoil ?Fluor Colt Engineering ?Foster Wheeler ?Technip ?Stone & Webster ABB Lummus ?Colt Engineering ?Dow Chemical ?Linde ?ABB Lummus ?Bronswerk Heat Transfer ?Exchanger Industries ? Koch Industries……. ?Huntsman ?Sumitomo ? China Tianchen Chemical Engineering ?Sasol…………….

HTRI在管壳式换热器选型中应用

HTRI在管壳式换热器选型中的应用 摘要:采用软件HTRI对管壳式换热器进行选项计算的方式方法在石油化工产业中得以广泛应用,并逐渐取代传统的计算方法,成为现今工程设计人员及换热器厂家最常要的应用软件。关键词:HTRI 管壳式换热器选项 一.前言 在石油化工生产过程中,常需要进行加热或冷却,即传热。当一种流体与另一种流体进行热交换且不允许混合时,就要去在间壁式热交换器中进行,冷热流体被固体传热面隔开。间壁式热交换器种类很多,如套管换热器、蛇管换热器、管壳式换热器、板式换热器等等。在各种换热器中,由于管壳式换热器单位体积能够提供较大的传热面积,传热效果比较好,且适应性强,因此是生产上应用最广泛的换热设备。 因此为保证化工生产的正常运行,对每种不同的工况,通过优化选型得到一台最适合的设备型号就显得尤为重要。现今,比较流行的做法是通过HTRI这款软件来实现选型这一目的。二.正文 1. 管壳式换热器性能特点 1).结构特点 管壳式换热器通常有固定管板、U形管和浮头式三种,其结构各有优缺点,适用于 不同的场合。管壳式换热器主要由外壳、管板、管束、封头等部件组成。 2).使用范围 目前国内管壳式换热器系列特征和适用范围如表-1所示: 2. HTRI的特点及功能 HTRI Xchanger Suite, 采用了在全球处于领导地位的工艺热传递及换热器技术,包含了换热器及燃烧式加热炉的热传递计算及其他相关的计算软件。HTRI软件包采用了标准的Windows 用户界面, 其计算方法是基于40多年来HTRI广泛收集的工业级热传递设备的试验数据而研发的。在所拥有的世界上最先进的试验设备和方法上HTRI所进行的研究将不断更新和改进我们的软件以满足你的日益发展的工程需要。 打开HTRI软件,进入管壳式换热器界面. 图中带有红色的边框为必须输入的数据,左侧为需要输入的各个大类的,右侧则为各个大类

管壳式换热器的有效设计外文翻译

-- 工程大学邮电与信息工程学院 毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部 - -教育-

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

FLUENT软件模拟管壳式换热器壳程三维流场

FL UENT 软件模拟管壳式换热器壳程三维流场 刘利平 3黄万年 (郑州大学化工学院 摘要 -, , T 软件进行了三维数、温度场和压力场 , , 。 管壳式换热器数值模拟 FLU EN T 多孔介质分布阻力模型 0前言 数值模拟是换热器研究的一种重要手段。应用计算流体力学模拟管壳式换热器无相变壳程流场 , 由 Patankar 与 Spalding 在 1974年最早提出 [1]。但由于受到当时计算机与计算流体力学的条件限制 , 研究进展缓慢。 20世纪 80年代 , 由于核电厂换热设备的大型化、高参数化发展 , 促进了换热器数值模拟研究的开展 [2, 3]。关于国内外的换热器数值模拟研究 , 采用二维研究的较多 , 而在三维研究方面 , 又通常采用自己编程的方法 [4, 5]。利用 FLU EN T 软件 , 模拟管壳式换热器壳程三维流场 , 本文进行了有益的探索。 FLU EN T 是世界领先、应用广泛的 CFD 软件 , 用于计算流体流动和传热问题。 FLU 2 EN T 软件是基于 CFD 软件群的思想 , 从用户需求的角度出发 , 针对各种复杂流动的物理现象 , 采用不同的离散格式和数值方法 , 使得特定领域内的计算速度、稳定性和精度等达到最佳组合 , 从而高效率地解决各个领域的复杂流动计算问题。 1模拟模型 111计算模型 管壳式换热器壳程流场数值计算 , 采用了多孔介质与分布阻力模型。由于换热器壳程结构复杂以及流动形态多样化 , 使得影响流体流动和传热的因素多 , 相对于管程而言 , 壳程流体的数值模拟复杂 , 特别是具有复杂折流板结构的情况 , 更为如此。对于普通折流板换热器 , 壳程流体时而垂直于管束 , 时而平行于管束 ,

相关主题