搜档网
当前位置:搜档网 › 基于UG的Logix齿轮参数化建模及弯曲应力分析

基于UG的Logix齿轮参数化建模及弯曲应力分析

基于UG的Logix齿轮参数化建模及弯曲应力分析
基于UG的Logix齿轮参数化建模及弯曲应力分析

万方数据

万方数据

机械传动2011年

先利用网格控制命令控制齿廓的网格数量,再对

整体进行自动网格划分,网格采用4节点的3D四面体

网格。网格划分完成后,进行网格单元检查,结果显示

没有划分失败的单元。网格划分如图5。

图4蛳x齿轮啮合模型

2.4边界约束和载荷的施加

模拟齿轮箱中齿轮的受

力及约束状况施加约束及载

荷如下:

(1)约束条件。实际工

作中,主动齿轮和从动齿轮

都是通过机械联接固定在传

动轴上,因此,对主动轮轴孔

内表面采用圆柱形约束,固图5岫齿轮模型网格划分定径向和轴向自由度,绕轴旋转自由;对从动轮轴孔内表面施加固定约束。在啮合齿间采用手动方式建立接触关系。主动齿轮为目标面,从动齿轮为源面。

(2)施加载荷。齿轮运动依靠外界输入转矩实现,因此在主动齿轮上的轴孔内侧轴孔圆柱面处施加转矩,根据所模拟的实际工况,大小设为500N?m,从动轮不施加外力。

2.5解算及后处理

求解结果中包含位移、应力、应变等多个物理量。选择节点应力选项中的啪一rIli:ses第四强度理论准则进行应力分析。冯氏应力云图如图6所示。

由图6可知,在该承载工况下,IJ09i】【齿轮的最大弯曲应力为即一=115.1MPa

2.6比较与讨论

在相同承载工况下,对材料和基本参数相同的渐开线齿轮进行弯曲应力分析,其冯氏应力云图如图7所示。

图6岫齿轮有

限元分析应力云图

图7渐开线齿轮有限

元分析应力云图由图7可知,在该承载工况下,渐开线齿轮的最大弯曲应力为盯胁,’=153.5MPa。

对比两者计算结果,可知IJ09i】【齿轮的最大弯曲应力要比渐开线齿轮的弯曲应力低38.4MPa,大约减少33%左右。由此可见,在相同承载工况下,bgi】【齿轮的最大弯曲应力要低于材料和基本参数相同的渐开线齿轮,即【o出齿轮的弯曲强度要优于渐开线齿轮。

3结论

应用UG软件及NxN鹪tmn解算器,在同一软件平台上实现了IJD出齿轮的参数化建模与弯曲应力的有限元分析,提高了建模效率与有限元解算精度。有限元分析结果表明,在相同承载工况下,岫啦齿轮的弯曲强度显著优于相同材料及基本参数的渐开线齿轮的弯曲强度。本文中的研究对于高强度齿轮的研究及k出齿轮的推广应用具有一定的指导意义。

参考文献

[1]K加谢T,蜘Y,N岫s.A嘲孵肚帆姗枷"瞪舭m删呵洲耐曲[J】.Tr哪0ftIleAs皿,1990,12(3):430—436.

[2]冯显英,王爱群,艾兴.IJ09ix齿形的数学模型及其参数选择[J】.机械传动,姗B,27(4):12一15.

[3]杨光王.沁峰.精通uG5.O产品设计[M].北京:电子工业出版社,20∞:3—4.

[4]李荣刚,李剑蜂,冯显英.IJ09h齿条中各参数对齿轮齿形的影响及选择[J].山东轻工业学院学报。2003,17(4):∞一23.

[5】吴序堂.齿轮齿和原理[M].西安:西安交通大学出版社,2009:25—30.

收稿日期:20I蝴

作者简介:谢匕(1979一),男,吉林长春人。博士。讲师万方数据

基于UG的Logix齿轮参数化建模及弯曲应力分析

作者:谢飞, 黄旭, 王建华, 王云成, Xie Fei, Huang Xu, Wang Jianhua, Wang Yuncheng

作者单位:吉林大学,汽车动态模拟国家重点实验室,吉林,长春,130025

刊名:

机械传动

英文刊名:JOURNAL OF MECHANICAL TRANSMISSION

年,卷(期):2011,35(3)

本文链接:https://www.sodocs.net/doc/0b17951092.html,/Periodical_jxcd201103009.aspx

变位齿轮传动的受力分析及强度计算

变位齿轮传动的受力分析及强度计算的原理与标准齿轮传动的一样。经变位修正后的轮齿齿形有变化,轮齿弯曲强度计算式中的齿形系数Y Fa及应力校正系数Y Sa,也随之改变,但进行弯曲强度计算时,仍沿用标准齿轮传动的公式。 变位齿轮的齿形系数Y Fa及应力校正系数Y Sa的具体数值可查阅有关资料。 在一定的齿数范围内(如80齿以内),正变位齿轮的齿厚增加(即Y Fa减小),尽管齿根圆角半径有所减小(即Y Sa有所增大),但Y Fa Y Sa的乘积仍然减小。故对齿轮采取正变位可以提高其弯曲强度。 在变位齿轮传动中,分别以x2,x1代表大、小齿轮的变位系数,x∑代表配对齿轮的变位系数和,即x∑=x2+x1.对于x∑=0的高度变位齿轮传动,轮齿的接触强度未变,故高度变位齿轮传动的接触强度计算仍沿用标准齿轮传动的公式。对于x∑≠0的角度变位齿轮传动,其轮齿接触强度的变化由区域系数Z H来体现。 角度变位的直齿圆柱齿轮传动的区域系数为: 角度变位的斜齿圆柱齿轮传动区域系数为: 式中αt、αt'分别为变位斜齿轮传动的端面压力角及端面啮合角。 角度变位齿轮传动的区域系数Z H的具体数值可查阅有关资料。 x∑>0的角度变位齿轮传动,节点的啮合角α'>α(或αt'〉αt)可使区域系数Z H减小,因而提 高了轮齿的接触强度。 渐开线齿轮传动可借适当的变位修正获得所需要的特性,满足一定要求。为了提高外啮合齿轮传动的弯曲强度和接触强度,增强耐磨性抗胶合能力,推荐的变位系数列于下表中。按表中所列变位系数设计制造的齿轮传动皆能确保轮齿不产生相切与干涉、端面重合度εa≥1.2 及齿顶厚s a≥0.25m n。对于斜齿圆柱齿轮或直齿锥齿轮,按当量齿数z v查表,所得变位系数对斜齿圆柱齿轮为法向数值(x n1, x n2)。但为使大、小齿轮轮齿的弯曲强度相近可对锥齿轮传动进行切向变位修正。

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

弯曲应力计算 (1)

第7章弯曲应力 引言 前一章讨论了梁在弯曲时的内力——剪力和弯矩。但是,要解决梁的弯曲强度问题,只了解梁的内力是不够的,还必须研究梁的弯曲应力,应该知道梁在弯曲时,横截面上有什么应力,如何计算各点的应力。 在一般情况下,横截面上有两种内力——剪力和弯矩。由于剪力是横截面上切向内力系的合力,所以它必然与切应力有关;而弯矩是横截面上法向内力系的合力偶矩, F时,就必然有切应力τ;所以它必然与正应力有关。由此可见,梁横截面上有剪力 Q 有弯矩M时,就必然有正应力 。为了解决梁的强度问题,本章将分别研究正应力与切应力的计算。 弯曲正应力 纯弯曲梁的正应力 由前节知道,正应力只与横截面上的弯矩有关,而与剪力无关。因此,以横截面上只有弯矩,而无剪力作用的弯曲情况来讨论弯曲正应力问题。 在梁的各横截面上只 有弯矩,而剪力为零的弯 曲,称为纯弯曲。如果在 梁的各横截面上,同时存 在着剪力和弯矩两种内 力,这种弯曲称为横力弯 曲或剪切弯曲。例如在图 7-1所示的简支梁中,BC 段为纯弯曲,AB段和CD 段为横力弯曲。 分析纯弯曲梁横截面 上正应力的方法、步骤与 分析圆轴扭转时横截面上 切应力一样,需要综合考 虑问题的变形方面、物理 方面和静力学方面。图7-1 变形方面为了研究与横截面上正应力相应的纵向线应变,首先观察梁在纯弯曲时的变形现象。为此,取一根具有纵向对称面的等直梁,例如图7-2(a)所示的矩形截面梁,并在梁的侧面上画出垂直于轴线的横向线m-m、n-n和平行于轴线的纵向线d-d、

b -b 。然后在梁的两端加一对大小相等、方向相反的力偶e M ,使梁产生纯弯曲。此时 可以观察到如下的变形现象。 纵向线弯曲后变成了弧线''a a 、''b b , 靠顶面的aa 线缩短了,靠底面的bb 线伸长 了。横向线m -m 、n -n 在梁变形后仍为直线,但相对转过了一定的角度,且仍与弯曲 了的纵向线保持正交,如图7-2(b)所示。 梁内部的变形情况无法直接观察,但根据梁表面的变形现象对梁内部的变形进行 如下假设: (1) 平面假设 梁所有的横截面变形后仍为平面.且仍垂直于变形后的梁的轴线。 (2) 单向受力假设 认为梁由许许多多根纵向纤维组成,各纤维之间没有相互挤压, 每根纤维均处于拉伸或压缩的单向受力状态。 根据平面假设,前面由实验观察到的变形现象已经可以推广到梁的内部。即梁在 纯弯曲变形时,横截面保持平面并作相对转动,靠近上面部分的纵向纤维缩短,靠近 下面部分的纵向纤维伸长。由于变形的连续性,中间必有一层纵向纤维既不伸长也不 缩短,这层纤维称为中性层(图7-3)。中性层与横截面的交线称为中性轴。由于外力偶 作用在梁的纵向对称面内因此梁的变形也应该对称于此平面,在横截面上就是对称于 对称轴。所以中性轴必然垂直于对称轴,但具体在哪个位置上,目前还不能确定。 考察纯弯曲梁某一微段dx 的变形(图7-4)。设弯曲变形以后,微段左右两横截面 的相对转角为d ?,则距中性层为y 处的任一层纵向纤维bb 变形后的弧长为 式中,ρ为中性层的曲率半径。该层纤维变形前的长度与中性层处纵向纤维OO 长度 相等,又因为变形前、后中性层内纤维OO 的长度不变,故有 由此得距中性层为y 处的任一层纵向纤维的线应变 ρ y θρθρθy)(ρbb bb b'b'ε=-+=-=d d d (a) 上式表明,线应变ε?随y 按线性规律变化。 物理方面 根据单向受力假设,且材料在拉伸及压缩时的弹性模量E 相等,则由 虎 克定律,得 ρ y E E εσ== (b) 式(b)表明,纯弯曲时的正应力按线性规律变化,横截面上中性轴处,y =0,因而 ?=0,中性轴两侧,一侧受拉应力,另一侧受压应力,与中性轴距离相等各点的正应 力数值相等(图7-5)。 静力学方面 虽然已经求得了由式(b)表示的正应力分布规律,但因曲率半径?和 中性轴的位置尚未确定,所以不能用式(b)计算正应力,还必须由静力学关系来解决。 在图7-5中,取中性轴为z 轴,过z 、y 轴的交点并沿横截面外法线方向的轴为x 轴,作用于微面积dA 上的法向微内力为dA σ。在整个横截面上,各微面积上的微内

齿轮传动的载荷和应力

1. 齿轮传动的载荷计算 (1) 直齿圆柱齿轮传动的受力分析 圆周力: 径向力: 法向力: o d1——小齿轮的分度圆直径mm oα——分度圆压力角 o T1——小齿轮传递的名义转矩(N.m) o P1为小齿轮所传递的功率(KW) o n1为小齿轮转速(rpm) 作用在主动轮和从动轮上的力大小相等,方向相反。主动轮上的圆周力是阻力,其方向与它的回转方向相反;从动轮上的圆周力是驱动力,其方向与它的回转方向相同;两轮所受的径向力分别指向各自的轮心。 齿面上的总法向力方向则为啮合点的法向方向,对于渐开线齿廓即为通过啮合点与基圆相切的啮合线方向。 (2) 斜齿圆柱齿轮传动的受力分析

圆周力: 径向力: 轴向力: 法向力: ?αt——端面分度圆压力角; ?αn——法向分度圆压力角; ?β——分度圆螺旋角; ?βt——基圆螺旋角。 (3) 直齿锥齿轮传动的受力分析 法向力Fn集中作用在齿宽节线中点处,则Fn可分解为互相垂直的三个分力。

圆周力: 径向力: 轴向力: dm1——小齿轮齿宽中点分度圆直径mm;δ1——小锥齿轮分度圆锥角 圆周力和径向力的方向判别与直齿圆柱齿轮判别方法相同,轴向力方向分别指向各自的大端。由于锥齿轮传动两轴的空间交角为90°,因此存在以下关系:;。负号表示方向相反。 (4) 齿轮传动的计算载荷 齿轮承受载荷常表现为其传递的力矩或圆周力。由上述力的分析计算所得出的圆周力为齿轮传动的名义圆周力。实际工作中,由于各种因素的影响,齿轮实际承受的圆周力要大于名义圆周力。考虑各种因素的影响,实际圆周力Ftc为: Ftc也称为计算载荷。 1)KA——使用系数。2)KV——动载系数。3) KHα和KFα——齿间载荷分配系数。4) KHβ和KFβ——齿向载荷分布系数。 2. 齿轮传动应力分析 齿轮传动工作过程中,相啮合的轮齿受到法向力Fn的作用,主要产生两种应力:齿面接触应力和齿根弯曲应力。 (1) 齿面接触应力σH 齿轮传动工作中,渐开线齿面理论上为线接触,考虑齿轮的弹性变形,实际上为很小的面接触。在接触面上,产生齿面接触应力。对于相啮合齿轮上的一对特定轮齿,工作齿廓上的各对应接触部位仅仅在接触的瞬间产生接触应力,过此瞬间脱离接触之后,该部位的接触应力随即消失。因此,不论轮齿承受稳定载荷或不稳定载荷,传动运动方式如何,齿面接触应力总是按脉动循环变化的变应力。 齿面接触应力的数值,与载荷大小、接触点的变形、材料性能等因素有关,可按弹性力学理论和轮齿表面的具体情况予以确定;齿面接触应力的变化次数,与齿轮的预期工作寿命及转速等因素有关。 (2) 齿根弯曲应力σF

《纯弯曲时的正应力》教案

《纯弯曲时的正应力》教案 南京航空航天大学刘荣梅 一、教学目标 1.明确纯弯曲和横力弯曲的概念,理解基本假设。 2.掌握纯弯曲正应力公式的推导方法。 3.掌握弯曲正应力公式的应用,解决工程问题。 4.运用问题探索研究式教学方法,激发学生的求知欲和探索动机;锻炼学生分析问题解决问题的能力;培养学生应用实践能力。 二、教学重点和难点 1.纯弯曲和横力弯曲 (1)纯弯曲杆件横截面上仅有弯矩,而无剪力的状态称为纯弯曲。 (2)横力弯曲杆件的横截面上既有弯矩又有剪力的状态称为横力弯曲。 2.中性层和中性轴 (1)中性层杆件弯曲变形时,沿轴线方向既不伸长又不缩短的一层,称中性层。在教学中以立体图形的方 式加以解释。 (2)中性轴中性层和横截面的 交线,即横截面上正应力为零的各点 的连线,称为中性轴。在教学中以立 体图形的方式演示。 (3)中性轴的位置纯弯曲时,直梁的中性轴通过横截面的形心且垂直于载荷作用面。强调这一结论是在轴力为零的情况下得到的。

z M y I σ= m ax M W σ= 3.直梁横截面上弯曲正应力公式 横截面上任一点正应力的大小和该点至中性轴的距离成正比,中性轴一侧为拉应力,另一侧则为压应力。横截面上最大正应力 其中W 为抗弯截面模量,几种常见横截面的W 计算公式: (1) 矩形截面 2 6 bh W = (2) 实心圆截面 3 32 d W π= (3) 空心圆截面 3 4 (1) 32 D W πα = - (4) 型钢 查型钢表或用组合法求。 注意:如果中性轴不是横截面对称(如T 形钢),m ax y 有两个,对应W 也应有两个。 三、 教学手段 综合运用演示实验、多媒体课件等教学手段。 四、 教学方法 问题探索研究式教学方法。 五、 解决方案及时间安排

梁弯曲时横截面上的正应力

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力F Q同时存在,故梁在这些段内发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD段内各段截面,只有弯矩M而无剪力F Q,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c)。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

用romax软件进行齿轮强度分析及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程 (吕浚潮) 目录 1.建立流程目的 2.用romax软件建模过程 3.强度分析过程 4.齿轮优化过程 4.1 齿向优化 4.2 齿廓优化 5.结论 1.建立流程目的 用romax软件对齿轮及轴进行建模,首先进行强度分析。由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。 2.用romax软件建模过程 本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。具体过程如下: (1) 通过菜单栏的components按钮增加一个组(add New assemble/component),弹出图2所示对话框。 图2.1 为模型增加一个部件 (2) 首先增加一个轴组件,如图2.2,单击ok按钮。

图2.2 增加一个轴组件 (3) 建立轴各段的截面形式、直径和长度,如图2.3。 图2.3 建立轴各段的直径、长度及截面形式 (4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。 设置轴各段的长度、截面直径、圆锥方向

增加轴承按钮 图2.4 增加轴承界面 (5) 指定轴承安装在轴上的位置,如图2.5。 设定轴承在轴上位置 图2.5 设置轴承位置截面 (6) 按上述方法,把换挡机构的主轴、副轴全部建完。然后按图2.1,增加一个齿轮部件,如图2.6。

增加一个齿轮部件 图2.6 (7) 继第6步,出现齿轮参数选择界面,如图2.7,选择齿轮类型(直齿或斜齿),螺旋角,螺旋方向,模数,主动齿轮或被动齿轮,压力角等参数。 设置齿轮的模数、压力角、直(斜)齿、主被动形式 图2.7 齿轮参数选择界面 (8) 单击next,进入齿轮参数设置页面,设定齿轮的齿宽、变位系数、齿顶高系数、齿根高系数、齿顶倒角、齿根倒角、跨齿数等参数。

弯曲应力和强度.

第六章 弯曲应力和强度 1、 纯弯曲时的正应力 横力弯曲时, 0≠=Q dx dM 。 ,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。 根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。横截面只是绕其面内的某一轴线刚性地转了一个角度。这就是弯曲变形的平面假设。 (2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。 (2)物理关系 根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为 y E E ρ εσ= = 该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上 ρ E 为常数,说 明弯曲正应力沿截面高度按线性规律分布,如图所示。中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。 (3)静力关系 截面上的最大正应力为 z I My max max = σ 如引入符号 m a x y I W z z = 则截面上最大弯曲正应力可以表达为

z W M = max σ 式中,z W 称为截面图形的抗截面模量。它只与截面图形的几何性质有关,其量纲为[] 3 长度。矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面: 62 1223 max bh h bh y I W z z === 直径为d 的圆截面: 322 6433 max d d d y I W z z ∏=∏== 至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。 若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如 T 形截面。这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。 最大拉应力为: z t I My 1 )(= σ 最大压应力为: z e I My 2 )(= σ 2、横力弯曲时的正应力 z I My = σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

齿轮传动强度设计计算

直齿轮箱尺寸变化影响传动强度分析
阮超
传递:功率P,转速n,扭矩T
齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 1.齿轮箱外形尺寸不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P2=120*4/3KW 接触 体积不变,转速变化3600/3000,P2=120KW;
弯曲变化机理:齿形变大 接触变化机理:P=T*n/9550
已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm

直齿轮箱尺寸变化影响传动强度分析
阮超
传递:功率P,转速n,扭矩T
齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 2.齿轮箱齿数不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW
2 2 2 2
弯曲变化机理:力臂和曲率半径增大 接触变化机理:单位齿宽负载和直径增大
已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm

直齿轮箱尺寸变化影响传动强度分析
阮超
传递:功率P,转速n,扭矩T
齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 3.齿轮箱尺寸放大4/3倍,n2=3600r/min, 求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW
2 2 3 3
弯曲变化机理:齿宽b,模数m增大 接触变化机理:齿宽b,模数m增大
已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm

弯曲正应力实验报告

弯曲正应力实验报告

矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P?时,梁的四个受力点处分别增加作用力/2 ?,如下图所示。 P 为了测量梁纯弯曲时横截面上应变分布 规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎 克定律公式E σε =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ =E 实 ε 实 式中E是梁所用材料的弹性模量。

图 3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中

性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0 P (一般按00.1s P σ=确定)、最 大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理 1、原始数据。 其中a=80mm b=19.62mm h=39.38mm 1/4桥 荷载 测点 测点 测点 测点 测点

齿轮弯曲应力的有限元分析

齿轮弯曲应力的有限元分析 朱彤1 摘要:本文对有限元的概念和分析方法做了介绍,利用有限元分析软件ANSYS 对UG建模的齿轮进行了分析,得出了齿轮在不同载荷下,弯曲应力的变化情况,对齿轮的设计提供了理论依据。 关键词:ANSYS;有限元;齿轮 1.有限元的基本概念 有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。用有限元法不仅能提高计算精度,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 1作者简介:朱彤(1969-)男,苏州职业大学教师。研究方向:计算机辅助设计与制造。

为保证问题求解的收敛性,单元形状应以规则为好,内角避免出现钝角,避免出现畸形,因为畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。 2.齿轮建模及数据转换 根据给出的齿轮参数,在UG软件中通过齿轮端面的曲线方程逐步建立起齿轮的模型图,然后再模拟出一对齿轮副的啮合模型。截取其中的三个轮齿;数据存储转换为IGES格式。用ANYSY有限元分析软件读取IGES格式的数据,通过数据转换,把模型输入到ANSYS中,对有数据丢失的模型进行修复,在ANSYS 中形成完整的模型,如图1所示。修复读入的啮合模型步骤如下:先修整模型,保留单根轮廓线,然后由线生成各部分面,面构成体,结果为三个齿条和一个齿底座,使之能在ANSYS中进行有限元分析。 3.有限元分析 对直齿圆柱齿轮定材料参数,加载,网格划分,应力分析。然后给出计算结果云图,对结果的合理性进行分析。 3.1.齿轮模型的前置处理 (1)材料属性:Structural 〉Linear〉Elastic 〉Isotropic; EX=30e6,PRXY=0.3 (2)单元类型:Structural solid > Brick 8node 45(solid45) (3)划分网格:

齿轮传动的强度设计计算

1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。 分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。 两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:

最大接触应力: ?F——接触面所受到的载荷

?ρ——综合曲率半径,(正号用于外接触,负号用于内接触) ?E1、E2——两接触体材料的弹性模量 ?μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。 参数直齿圆柱齿轮斜齿圆柱齿轮 节点处的载荷为

第15讲 弯曲切应力、弯曲强度条件

第15讲教学方案——弯曲切应力、弯曲强度条件

§5-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

用romax软件进行齿轮强度分析及齿形优化流程资料

用r o m a x软件进行齿轮强度分析及齿形优 化流程

用romax软件进行齿轮强度分析及齿形优化流程 (吕浚潮) 目录 1.建立流程目的 2.用romax软件建模过程 3.强度分析过程 4.齿轮优化过程 4.1 齿向优化 4.2 齿廓优化 5.结论 1.建立流程目的 用romax软件对齿轮及轴进行建模,首先进行强度分析。由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。 2.用romax软件建模过程 本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。具体过程如下:

(1) 通过菜单栏的components按钮增加一个组(add New assemble/component),弹出图2所示对话框。 图2.1 为模型增加一个部件(2) 首先增加一个轴组件,如图2.2,单击ok按钮。 图2.2 增加一个轴组件 (3) 建立轴各段的截面形式、直径和长度,如图2.3。

设置轴各段的长度、截面直径、圆 图2.3 建立轴各段的直径、长度及截面形式 (4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。 增加轴承按 选择轴承界 图2.4 增加轴承界面

(5) 指定轴承安装在轴上的位置,如图2.5。 设定轴承在轴上位 图2.5 设置轴承位置截面 (6) 按上述方法,把换挡机构的主轴、副轴全部建完。然后按图2.1,增加一个齿轮部件,如图2.6。 增加一个齿轮部件 图2.6

弯曲应力计算

第7章弯曲应力 7.1 引言 前一章讨论了梁在弯曲时的内力——剪力和弯矩。但是,要解决梁的弯曲强度问题,只了解梁的内力是不够的,还必须研究梁的弯曲应力,应该知道梁在弯曲时,横截面上有什么应力,如何计算各点的应力。 在一般情况下,横截面上有两种内力——剪力和弯矩。由于剪力是横截面上切向内力系的合力,所以它必然与切应力有关;而弯矩是横截面上法向内力系的合力偶矩, F时,就必然有切应力τ;所以它必然与正应力有关。由此可见,梁横截面上有剪力 Q 有弯矩M时,就必然有正应力 。为了解决梁的强度问题,本章将分别研究正应力与切应力的计算。 7.2 弯曲正应力 7.2.1 纯弯曲梁的正应力 由前节知道,正应力只与横截面上的弯矩有关,而与剪力无关。因此,以横截面上只有弯矩,而无剪力作用的弯曲情况来讨论弯曲正应力问题。 在梁的各横截面上只 有弯矩,而剪力为零的弯 曲,称为纯弯曲。如果在 梁的各横截面上,同时存 在着剪力和弯矩两种内 力,这种弯曲称为横力弯 曲或剪切弯曲。例如在图 7-1所示的简支梁中,BC 段为纯弯曲,AB段和CD 段为横力弯曲。 分析纯弯曲梁横截面 上正应力的方法、步骤与 分析圆轴扭转时横截面上 切应力一样,需要综合考 虑问题的变形方面、物理 方面和静力学方面。图7-1 变形方面为了研究与横截面上正应力相应的纵向线应变,首先观察梁在纯弯曲时的变形现象。为此,取一根具有纵向对称面的等直梁,例如图7-2(a)所示的矩形截

面梁,并在梁的侧面上画出垂直于轴线的横向线m -m 、n -n 和平行于轴线的纵向线d -d 、b -b 。然后在梁的两端加一对大小相等、方向相反的力偶e M ,使梁产生纯弯曲。此时可以观察到如下的变形现象。 纵向线弯曲后变成了弧线''a a 、''b b , 靠顶面的aa 线缩短了,靠底面的bb 线伸长了。横向线m -m 、n -n 在梁变形后仍为直线,但相对转过了一定的角度,且仍与弯曲了的纵向线保持正交,如图7-2(b)所示。 梁内部的变形情况无法直接观察,但根据梁表面的变形现象对梁内部的变形进行如下假设: (1) 平面假设 梁所有的横截面变形后仍为平面.且仍垂直于变形后的梁的轴线。 (2) 单向受力假设 认为梁由许许多多根纵向纤维组成,各纤维之间没有相互挤压,每根纤维均处于拉伸或压缩的单向受力状态。 根据平面假设,前面由实验观察到的变形现象已经可以推广到梁的内部。即梁在纯弯曲变形时,横截面保持平面并作相对转动,靠近上面部分的纵向纤维缩短,靠近下面部分的纵向纤维伸长。由于变形的连续性,中间必有一层纵向纤维既不伸长也不缩短,这层纤维称为中性层(图7-3)。中性层与横截面的交线称为中性轴。由于外力偶作用在梁的纵向对称面内因此梁的变形也应该对称于此平面,在横截面上就是对称于对称轴。所以中性轴必然垂直于对称轴,但具体在哪个位置上,目前还不能确定。 考察纯弯曲梁某一微段dx 的变形(图7-4)。设弯曲变形以后,微段左右两横截面的相对转角为d θ,则距中性层为y 处的任一层纵向纤维bb 变形后的弧长为 θy ρb'b')d (+= 式中,ρ为中性层的曲率半径。该层纤维变形前的长度与中性层处纵向纤维OO 长度相等,又因为变形前、后中性层内纤维OO 的长度不变,故有 θρO'O'OO bb d === 由此得距中性层为y 处的任一层纵向纤维的线应变 ρ y θρθρθy)(ρbb bb b'b'ε=-+=-=d d d (a)

齿轮弯曲强度计算

齿轮弯曲强度计算 根据标准Q/STB 16.061-2008 齿轮的计算弯曲应力b σ=v f Y b m P ... 齿轮BT05-01002 1m =6.5 1z =39 α=20° x=0 分度圆上的轴转矩T=121×4.84×2.7=1581.23N.m (即涡轮传递的扭矩) P (分度圆上切线负荷)=13102d T ??=395.61023.158123???=12475N b (齿宽)=24mm λb S (齿厚)=αα++tan 221???∏x inv Z =1.571+0.0149×1Z +0=2.152 知道变为系数x 和齿厚λb S 后,即可由附图查得齿形系数Y=0.385 分度圆周速度v= 31060???∏n d =310600395.6????∏=0(涡轮传递扭矩最大时,转速为0) V ≤25 所以,v f =1+ =6v 1+0=1 弯曲应力b σ=v f Y b m P ...= 1385.0245.612475???=207MPa 齿轮材料20CrMnTi 抗拉强度b σ=1080MPa 该材料的许用弯曲应力1-σ=0.43b σ=464.4MPa 所以,安全系数S=b σσ1 -=2.2 与BT05-01002啮合的齿轮BT05-00004 m=6.5 z=33 α=20° x=0

P= 23 102d T ?? =335.61023.158123???=14743N b=19 λb S =1.571+0.0149×33=2.0627 查附图得Y=0.365 v=0≤25 ∴v f =1+ =6v 1+0=1 ∴b σ=v f Y b m P ...=1 365.0195.614743???=327.04MPa ∴安全系数S= 04.3274.464=1.4 按照以上公式,可算出另外一对齿轮(BT05-00002、BT05-02001) 的弯曲应力1b σ=198.75MPa 2b σ=177.45MPa 所以,安全系数1S =2.3 2S =2.6

齿轮基础题库和答案.docx

习题与参考答案 一、单项选择题(从给出的A、B、C、D 中选一个答案) 1 一般开式齿轮传动的主要失效形式是 C 。 A. 齿面胶合 B. 齿面疲劳点蚀 C. 齿面磨损或轮齿疲劳折断 D. 轮齿塑性变形 2 高速重载齿轮传动,当润滑不良时,最可能出现的失效形式是 A 。 A. 齿面胶合 B. 齿面疲劳点蚀 C. 齿面磨损 D. 轮齿疲劳折断 3 45 钢齿轮,经调质处理后其硬度值约为 B 。 A. 45~50 HRC B. 220~270 HBS C. 160~180 HBS D. 320~350 HBS 4 齿面硬度为56~62HRC 的合金钢齿轮的加工工艺过程为 C 。 A. 齿坯加工→淬火→磨齿→滚齿 B. 齿坯加工→淬火→滚齿→磨齿 C. 齿坯加工→滚齿→渗碳淬火→磨齿 D. 齿坯加工→滚齿→磨齿→淬火 5 齿轮采用渗碳淬火的热处理方法,则齿轮材料只可能是 D 。 A. 45 钢 B. ZG340-640 C. 20Cr D. 20CrMnTi 6 齿轮传动中齿面的非扩展性点蚀一般出现在 A 。 A. 跑合阶段 B. 稳定性磨损阶段 C. 剧烈磨损阶段 D. 齿面磨料磨损阶段 7 对于开式齿轮传动,在工程设计中,一般 D 。 A. 按接触强度设计齿轮尺寸,再校核弯曲强度 B. 按弯曲强度设计齿轮尺寸,再校核接触强度 C. 只需按接触强度设计 D. 只需按弯曲强度设计 8一对标准直齿圆柱齿轮,若z1=18,z2=72,则这对齿轮的弯曲应力 A 。 A. σF1>σF2 B. σF1<σF2 C. σF1=σF2 D. σF1≤σF2 9 对于齿面硬度≤350HBS 的闭式钢制齿轮传动,其主要失效形式为 C 。 A. 轮齿疲劳折断 B. 齿面磨损 C. 齿面疲劳点蚀 D. 齿面胶合 10 一减速齿轮传动,小齿轮1 选用45 钢调质;大齿轮选用45 钢正火,它们的齿面接触应力 C 。 A. σH1>σH2 B. σH1<σH2 C. σH1=σH2 D. σH1≤σH2 11 对于硬度≤350HBS 的闭式齿轮传动,设计时一般 A 。 A. 先按接触强度计算 B. 先按弯曲强度计算 1

齿轮强度校核的新方法(图文)

齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力 0引言 齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能和寿命,然而在传统齿轮设计中,齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。 本文采用有限元分析法对渐开线标准圆柱直齿轮进行接触应力和齿根弯曲应力进行分析计算。并且在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自适应网格划分和有限元强度分析。 最后和传统经典方法进行了对比分析,证明了本方法的准确性。具有实际操作性和推广价值。论文发表。 1.齿轮强度分析的基本要求 在机械专业中,减速机是主要的重要的传动机构,而齿轮传动是其中最常见的实现方式。论文发表。因此齿轮零件的设计就显得尤为重要。

其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触和弯曲强度校核计算,才能进行齿轮结构设计。当然相互啮合的齿轮种类十分繁杂。这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。 传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包括图形和图表)。而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。因此借助计算机及相应软件完成对齿轮的优化设计十分必要。使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。 本文应用了APDL,即ANSYS参数化设计语言(ANSYS Parametric Design Language),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。 2.问题研究的主要方法及实例 本文以ANSYS软件为平台,以直齿圆柱齿轮为实例,研究了在ANSYS 环境下实现直齿轮精确建模和应力分析的方法,并与弹性力学和机械手册的计算结果进行了比较。 2.1ANSYS软件介绍 ANSYS是一个大型通用有限元软件。在机械结构系统中.主要在于分析机械结构系统受到负载后产生的力学效应.如位移、应力、变形等.根据该结果判断是否符合设计要求。

相关主题