搜档网
当前位置:搜档网 › 热电偶温度补偿

热电偶温度补偿

热电偶温度补偿
热电偶温度补偿

详细介绍热电偶补偿导线常识

详细介绍热电偶补偿导线常识OMEGA热电偶热电偶常识补偿导线详细介绍热电偶补偿导线常识. 1结构及定义 热电偶补偿导线简称补偿导线,通常由补偿导线合金丝、绝缘层、护套、屏蔽层组成。在一定温度范围内(包括常温)、具有与所匹配的热电偶的热电动势的标称值相同的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。 热电偶与测量装置之间使用补偿导线,其优点有二:1.改善热电偶测温线路的物理性能和机械性能,采用多股线芯或小直径补偿导线可提高线路的挠性,是接线方便,也可调节线路电阻或屏蔽外界干扰; 2.降低测量线路成本,当热电偶与测量装置距离很远,使用补偿导线可以节省大量的热电偶材料,特别是使用贵金属热电偶时,经济效益更为明显。 2术语及符号 2.1延长型补偿导线 延长型补偿导线又称延长型导线,其合金丝的名义化学成分及热电动势标称值与配用的热电偶相同,用字母“X”附在热电偶分度号之后表示,例如“KX”表示K型热电偶用延长型补偿导线。 2.2补偿型补偿导线 补偿型补偿导线又称补偿型导线,其合金丝的名义化学成分与配用的热电偶不同,但其热电动势值在0-100℃或0-200℃时与配用热电偶的热电动势标称值相同,用字母“C”附在热电偶分度号之后表示,例如“KC”。不同合金丝可以应用于同一分度号的热电偶,并用附加字母区别,如“KCA”、“KCB”。 2.3允差 热电偶用补偿导线的允差是由于测量系统中引用了补偿导线而产生的最大偏差,该值用微伏表示,其允差的大小分为精密级和普通级两种。 2.4符号 S——表示热电特性为精密级补偿导线。普通级补偿导线不标字母; G——表示一般用补偿导线; H——表示耐热用补偿导线; R——表示线芯为多股的补偿导线。线芯为单股的补偿导线不标字母; P——表示有屏蔽层的补偿导线;

K热电偶冷端温度补偿实验

实验一K型热电偶冷端温度补偿实验 一、实验目的: 了解热电偶冷端温度补偿器的原理与补偿方法。 二、需用器件与单元: 主机箱中的智能调节器单元、电压表、转速调节0~24V电源、15V直流稳压电源; 温度源、Pt100热电阻(温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)、冷端温度补偿器、补偿器专用+5V直流稳压电源。 三、基本原理: 本实验为K分度热电偶。冷端补偿器外形为一个小方盒,有4个引线端子,4、3接+5V专用电源,2、1输出补偿热电势信号;它的内部是一个不平衡电桥,如图33-1所示。这个直流电桥称冷端温度补偿器,电桥在0oC时达到平衡(亦有20oC平衡)。当热电偶温度升高时(>0oC)热电偶回路电势Uab下降,由于补偿器中,PN呈负温度系数,其正向压降随温度升高而下降,促使2端电位上升,使Vi不变达到补偿目的。 图1 热电偶冷端温度补偿器原理 四、实验步骤: 1、温度传感器实验模板放大器调零:按图2示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的Rw2(增益电位器)顺时针转到底,再调节Rw3(调零电位器)使主机箱的电压表显示为0V(零位调好后Rw3电位器旋钮位置不要改动)。关闭主机箱电源。 图2 温度传感器实验模板放大器调零接线示意图

2、调节温度传感器实验模板放大器的增益A为100倍:利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图2示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的Rw2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.01V(用主机箱电压表测量);再将0.01V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器Rw2(小心:不要误碰调零电位器Rw3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后Rw2电位器旋钮不要改动)。关闭电源。 图3 调节温度实验模板放大器增益A接线示意图 3、将主机箱上的转速调节旋钮(0~24V)顺时针旋转到底(24V);将调节控制对象开关拨到Rt.Vi位置。将冷端补偿器的专用电源插头插到主机箱侧面的交流220V插座上。按图33-4示意接线,检查接线无误后合上主机箱电源开关,再合上调节器电源开关和温度源电源开关,将温度源控制在60oC,待电压表显示上升到平衡点时记录数据。再按表1中温度值设置温度源的温度并将放大器的相应输出值填入表中: 温度设定方法,按住▲键约三秒,仪表进入“SP”给定值(实验值)设置,此时可按上述方法按↓、↑、←三键设定实验值,使SV窗显示值与AL-1(上限报警)值一致(如100 oC)。 图4 K热电偶冷端温度补偿实验接线示意图

教你正确使用热电偶补偿导线

教你正确使用热电偶补偿导线 热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所 示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工 作的。 如何正确使用热电偶补偿导线 等级:计量工程师昵称:我是美女金币:192积分:250发帖:59回帖:0注册:2006-11-2如何正确使用热电偶补偿导线(转载) 摘要在使用热电偶进行温度测量中,热电偶补偿导线的使用比较普遍。但经调查发现,很多地方由于没有正确使用补偿导线而出现很多问题。本文介绍了补偿导线的原理,对常见错误使用的形式进行归纳,同时从理论上分析所产生的偏差,指出正确使用方法和注意事项。 关键词热电偶补偿导线使用方法误差 热电偶补偿导线已经广泛用于热电偶温度测量中。如果了解了热电偶补偿导线的原理、功能、作用方法和注意事项,就能充分发挥热电偶补偿导线的作用,否则就会适得其反。 某钢管生产企业新引进的一套球化炉装置,装置的二十多个测温点由于设备安装人员将热电偶正负极接反,且补偿导线还存在多接头现象,再加上设备使用人员对此知识的贫乏,在工作中因炉温不正确导致炉内产品报废,直接经济损失达一百多万元,教训不可谓不深刻。 实际上在众多热电偶测温现场,笔者发现用普通铜导线作连线的占40%,而使用补偿导线作连接线的仅占60%。究其原因有二: 一是由于热电偶设备使用操作人员不了解补偿导线功能,认为既然只要起到连接作用,普通导线即可。 二是设备制造商在安装热电偶时,用的连接线即为普通导线,而在使用者角度总认为设备安装人员都是专业人员,做法总是正确的,没能引起应有的怀疑。 在工业生产中,虽然热电偶作为温度传感器,已经广泛使用于温度测量和控制,人们对此也比较熟悉,但如果在使用中不注意正确的使用方法,就会给测温和控温造成很大的偏离,严重时会直接造成经济损失,所以应该引起重视。 一、热电偶的测温原理简介 由2种不同均质材料A、B组成的回路(见图1)称为热电偶。A、B材料2端连接的接点分别用J1、J2表示,如果J1、J2的接点温度T1和T2不一样,在回路中就会产生电势,通常称为热电势。当A、B的材料一定时,热电势的大小取决于T1、T2之间的温度差,用公式表示为 EAB(T1,T2)=eAB(T1)+eBA(T2)=eAB(T1)-eAB(T2)(1) 式中:EAB(T1,T2)———材料为A、B的热电偶,接点温度T1、T2之间的温差电势。 eAB(T1)———A、B接点温度为T1时的电势。 eAB(T2)、eBA(T1)———A、B接点温度为T2时的电势,这2项大小相等,符号相反。 为了统一热电偶材料并进行规范,国家有关标准规定了组成热电偶材料A、B的成分、纯度,并且给出了A、B材料的组合形式,统一用一个字母命名型号,如K型、S型等。为了

实验4 E型热电偶冷端温度补偿实验

热电偶冷端温度补偿实验 (请先仔细阅读温控仪操作说明) 一、实验目的: 了解热电偶冷(自由)端温度补偿的原理与方法。 二、基本原理: 由实验四可知,热电偶是一种温差测量传感器。为直接反映温度场的摄氏温度值,需对其自由端进行温度补偿。热电偶冷端温度补偿的方法有:冰水法、恒温槽法、自动补偿法、电桥平衡法,常用的是电桥平衡法(图5-1),它是在热电偶和测温装置之间接入一个直流电桥,称为冷端温度补偿器,补偿器电桥在0℃时达到平衡(亦有20℃平衡)。当热电偶自由端(a、b)温度升高时(>0℃)热电偶回路的电势Uab下降,由于补偿器中PN结呈负温度系数,其正向压降随温度升高而下降,促使Uab上升,其值正好补偿热电偶因自由端温度升高而降低的电势,达到补偿目的。 三、实验设备及器材: 温度控制仪SET300、温度传感器实验模板、K.E热电偶、冷端温度补偿器、外接+5V电源适配器。 四、实验步骤: 1、温控仪电源先别开启,将热电偶插到温度控制仪两个传感器插孔中任意一个插孔中,(K型、E 型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的E K端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错; 2、将E型热电偶的自由端(蓝、绿线)接到数字万用表红、黑表笔,打开万用表电源开关,将量程设置到DC200mV挡,观察万用表的电压显示值,若为负,交换E型热电偶与万用表连接的蓝、绿线,然后记录下此时室温下对应的电压读数V于表5-1中; 3、开启温控仪电源,按表5-1对温控仪进行温度设置,当PV窗口显示值达到设定的温度值,且稳定之后,记录下该温度下对应输出的电压值V,并填入表5-1。 表5-1:E型热电偶测温数据(补偿前) 4、关闭温控仪电源,将E型热电偶从温控仪顶部加热孔中取出,让其充分冷却至室温; 5、将冷端温度补偿器(0℃)与冷却后的E型热电偶按图5-1相连,在补偿器④、③端加上补偿器电源+5V(用外接电源适配器),将冷端补偿器的①、②端接入数字电压表,记录下室温时对应的电压表读数V; 6、将E型热电偶重新插入温度控制仪加热插孔中,开启温控仪电源,按表5-2对温控仪进行温度设置,记录下各温度值下对应的万用表电压值,填入表5-2中。

热电偶冷端温度补偿的方法

热电偶冷端温度补偿的方法 1.热电偶热电势的大小与其两端的温度有关,其温度-热电势关系曲线是在冷端温度为0℃时分度的。在实际应用中,由于热电偶冷端暴露在空间受到周围环境温度的影响,所以测温中的冷端温度不可能保持在0℃不变,而热偶电势既决定于热端温度,也决定于冷端温度。所以,如果冷端温度自由变化,必然会引起测量误差。为了消除这种误差,必须进行冷端温度补偿。可以采用以下的方法: 1)补偿导线延长法补偿导线是特种导线,用于热电偶和二次仪表间的信号传输,能够消除热电偶冷端温度变化引起的测量误差,保证仪表对介质温度的精确测量。补偿导线在一定温度范围内与所连接的热电偶具有相同或十分相近的热电特性, 根据热电偶补偿导线标准,不同的热电偶所配用的补偿导线也不同,并且有正负极性之分,各种补偿导线的正极均为红色,负极的不同颜色分别代表不同的分度号和导线。使用时注意与型号匹配,并且电极不能接错,否则将产生较大的测量误差。常用的热电偶补偿导线见表2-1-11 表2-1- 1 型号热电偶分度号 线芯材料绝缘层颜色正极负极正极负极 SC S(铂铑10-铂)SPC(铜)SNC(铜镍)红绿KC K(镍铬-镍硅)KPC(铜)KNC(康铜)红蓝KX K(镍铬-镍硅)KPX(镍铬)KNX(镍硅)红黑EX E(镍铬-康铜)EPX(镍铬)ENX(铜镍)红棕 JX J(铁-康铜)JPX(铁)JNX(铜镍)红紫TX T(铜-康铜)TPX(铜)TNX(铜镍)红白 2)冰点法各种热电偶的分度表都是在冷端为0℃的情况下制定的,如果把冷端置于能保持0℃的冰点槽内,则测得的热电势就代表被测的实际温度。冰点法一般在实验室的精密测量中使用。 3)计算修正法用计算修正法来补偿冷端温度变化的影响只适用于实验室或临时性测温的情况,而对于现场的连续测量是不实用的。 4)仪表零点校正法如果热电偶的冷端温度比较恒定,与之配用的显示仪表调整又比较方便,则可采用此种方法来实现冷端温度补偿。 5)补偿电桥法补偿电桥法是采用不平衡电桥产生的直流毫伏信号,来补偿热电偶因冷端温度变化而引起的热电势变化,有称为冷端补偿器。 2.有关热电偶回路的几个结论: 1)如组成热电偶回路的两种导体材料相同,则无论热电偶两端温度如何,热电偶回路内的总热电势为零。 2)如热电偶两端温度相同,T=T0,则尽管两热电偶丝的材料不同,热电偶回路内的总热电势亦为零。 3)热电偶的热电势与A、B材料中间温度无关,只与端点温度T1、T0有关。 4)在热电偶回路中接入第三种材料的导线,只要第三种导线两端温度相同,第三种导线的引入不会影响热电偶的热电势。

K型热电偶冷端补偿方案

K型热电偶冷端补偿方案 时间:2007-12-07 来源: 作者:郭锐徐玉斌点击:1742 字体大小:【大中小】 1 引言 在SMT 行业中为满足自动化大批量生产的需要,绝大多数企业采用隧道式连续传送结构的回流焊炉。这种回流焊炉普遍至少具有3 个温区。由于印制板上的温度变化远比仪表的显示温度复杂得多,因此对于回流焊炉操作者来说只凭经验,很难在短时间内把这种回流焊 炉的温度和传动速度调节到最佳状态。 因此,须将细丝状K型热电偶的探头用焊料或高温胶粘剂固定在印制板的监测点上,温度记录器和印制板一起随炉子的传送网或传送链从炉膛中穿过,与此同时,记录器自动以预定 时间间隔采样热电偶的温度信号,并将随时间变化的温度数据保存在记录器的非易失性存储器中。在此过程中, 温度记录仪的外界温度可能达到270 ℃以上,其内部温度采取必要的隔热技术后也在60 ℃左右。而热电偶的理论冷端温度为纯水冰点温度(0 ℃) ,故而必须对此给予补偿。挢轍钨癆泼殯赊鋯褲斋純餼語優參嬷皱劝圓潴脔鹵躦鄉槨饲濤阊嗩蠼镏窜詫鸳赕颟戶贏实積历銼狮牽镣餃讽驗鋨缚爭擋苹繃钯层偉钍嘯稳鹈闭躕为红侠櫻譫牽驚魯輔骋辑檸遜遲燁懌痫潑砻刍諏虾讲飑塵攏葦靥緬覓钋糾晋 嗇愛騁錯。 2 方案选择 2.1 硬件系统方案 现有产品多采用3 种方法测量冷端环境温度。 (1) 直接借用CPU 内部温度传感器,如Cygnal 的CF020。然而,首先记录仪内部温度场并不均匀,热点偶补偿线接入点的温度与CPU 的表面温度存在差值;其次,集成温度传感器的灵敏度一般为0.1 ℃,精度±2 ℃,难以满足测量要求。 (2) 使用新型智能温度传感器,如美信DS1626,12bit 采样精度,3 线串行数据通信, 0 ℃to + 70 ℃,2.7V

热电偶用补偿导线

变频电力电缆 一、产品特点及用途 变频电缆绝缘具有较好耐温耐候性。传输阻抗低,电磁兼容性好、工作电容低、抗F?扰和低辐射性能良好, 对称的三芯电缆结构设计,具有比四芯电缆更好的传输性 变频电缆主要用于变频电源和变频电机之间连接用电缆,作为输送电能用。适用于造纸、冶金、纺织.金属加工、矿山.铁路和食品加工等行业。 二、产品执行标准 LJ/QB03039-2001 三、使用特性: 1、工频额泄电压U°/U为0. 6/lkV及以下。 Rated power-frequency voltage U o/U: 0. 6/lkV 2、电缆长期允许的环境最髙工作温度: 交联聚乙烯绝缘:90°C XLPE insulation:90°C 聚氯乙烯绝缘为70C PVC insulation 70°C 氟塑料绝缘不超过200°C? Fluorplastic insulation: 200°C 3、电缆的敷设温度应不低于0°C ° 4、推荐的允许弯曲半径为电缆直径的12倍,软电缆为直径的6倍。 四、主要技术指标: IV.Main technical parameters 1、成品电缆导体直流电阻

95 A x B 19/2. 55 0. 193 0. 195 R 475/0. 50 0.206 0.210 120 A 、B 19/2. 97 0. 153 0. 151 R 608/0. 50 0. 161 0. 164 150 A 、B 30/2. 55 0. 124 0. 126 R 756/0. 50 0. 129 0. 132 185 A 、B 37/2. 55 0.0991 0. 100 R 925/0. 50 0. 106 0. 108 210 A 、 B 37/2. 97 0. 0751 0. 0762 R 1221/0. 50 0.0801 0. 0817 、成品电缆的绝缘电阻(20C )氟塑料绝缘应不小于100MQ*kmo 聚氯乙烯绝缘应不小于50 MQ*kmo 3、屏蔽层传输 阻抗 电缆在100MHz 时传输阻抗等于或小于100 Q/m o 电缆的理想屏蔽抑制系数等于或小于0. 7o 五. 基本型号及名称 V. Basic type and product name 型号 名称 BP-VV-P 聚氮乙烯绝缘聚氮乙烯护套铜丝编织屛蔽变频电力电缆 BP-VV-P2 聚氮乙烯绝缘聚氮乙烯护套铜帶屏蔽变频电力电缆 BP-VV-P3 聚氯乙烯绝缘聚氯乙烯护套铝塑复合带屏蔽变频电力电缆 BP-VV-P22 聚氯乙烯绝缘聚氯乙烯护套铜丝编织屏蔽钢帯铠装变频电力电缆 BP-VV-P2-22 聚氮乙烯绝缘聚氮乙烯护套铜帯屛蔽钢带铠装变频电力电缆 BP-VV-P3-22 聚氮乙烯绝缘聚氮乙烯护套铝塑复合带屏蔽钢带铠装变频电力电缆 BP-YJV-P 交联聚乙烯绝缘聚氮乙烯护套铜丝编织屏蔽变频电力电缆 BP-YJV-P2 交联聚乙烯绝缘聚氮乙烯护套铜带屏蔽变频电力电缆 BP-YJV-P3 交联聚乙烯绝缘聚氯乙烯护套铝塑复合带屛蔽变频电力电缆 BP-YJV-P22 交联聚乙烯绝缘聚氮乙烯护套铜丝编织屏蔽钢带铠装变频电力电缆 BP-YJV-P2-22 交联聚乙烯绝缘聚氮乙烯护套铜带屏蔽钢带铠装变频电力电缆 BP-YJV-P3-22 交联聚乙烯绝缘聚氮乙烯护套铝塑复合帯屏蔽钢带铠装变频电力电缆 注:变频电缆的屛蔽允许采用复合屏蔽形式。 六VI. Type illustration K 型号表示方法 屏蔽代号 衬层材料代号 导体类型 绝缘材料代号 变频代号 护套材料代号 装铠材料代号

热电偶测温原理及冷端温度补偿方法

热电偶测温原理及冷端温度补偿方法 院系:化工学院化机系 班级: 姓名: 学号:

热电偶测温原理及冷端温度补偿方法热电偶温度计是以热电效应为基础的测温仪表,温精确度高,显示仪表配合,广泛用来测量气体、蒸汽、液体等介质-200℃~16000℃范围内的温度,殊情况下可测-2700℃~28000℃,态响应快,惯性小,械强度高,压性能好,高温可达28000℃,震性能好,且便于信号的远距离传送和实现多点切换测量,自动记录和集中控制,能稳定、测量精度高、准确可靠、使用寿命长、结构简单、制造容易、装配简单、更换方便和使用维护方便,测量范围广,可作为标准计量,量值传递之用,以在科学研究和工业生产中应用广泛,为测温仪表,建筑环境与设备工程中应用也非常广泛。 热电偶测温的测温系统的热电偶温度计由热电偶、电测仪表和连接导线组成。测温原理基于物理学中“热电效应”现象,是把任意两种不同的导体(或半导体)连接成闭合回路,果两个接点的温度不同,回路中就会产生热电势,热电流,就是“热电效应”。热电偶温度计就是利用该原理,两种不同的金属材料一端焊接而成的,接的一端叫测量端(也叫热端或工作端),未焊接的一端叫参考端(也叫冷端或自由端),如果参考端的温度恒定不变,热电势的大小和方向就只与这两种材料的特性和测量端的温度有关,热电势和温度之间有一个固定的函数关系,用这个关系,要测量出热电势的大小,配以测量毫伏级电势信号的仪表或变送器就实现了温度的测量或温度信号的变换。 在进行温度测量时,热电偶热端插入被测温的设备或管道中,其热端感受被测介质的温度,冷端置于恒定的温度之下,用连接导线连

接电气测量仪表。根据热电偶基本定律之一的中间导体定律,热电偶回路中接入第三种金属材料时,要该材料两个接点的温度相同,电偶所产生的热电势将保持不变,不受第三种金属接入回路中的影响。因此,热电偶测温时,接入测量仪表,得热电动势后,可知道被测介质的温度。 热电偶测温系统的冷端温度补偿方法:由热电偶测温原理可知,电势的大小与热电偶两端的温度有关。只有当热电偶冷端温度保持不变时,电势才是被测温度的单值函数。因此,准确地测量温度,须使其参考端温度恒定,电偶冷端最好应保持0℃,般固定在0℃,在现场条件下使用的仪表则难以实现,此必须对其参考端进行温度补偿修正,确保温度测量的准确性。 工业上常用的各种热电偶的温度———热电势关系曲线(或数据)是在冷端温度为0℃时得到的,它配套的仪表也是依据这一关系进行刻度的。但在实际应用中,冷端温度往往高于0℃,不稳定,环境温度变化而改变,使热电偶产生的热电势偏小并随之变化,而造成测量误差引入。因此,热电偶参考端温度不为0℃,是一个波动的温度时,须采用恰当的补偿方法准确修正。 热电偶参比端温度的处理方法有:(1)补偿导线法(2)参比端温度测量计算法(3)参比端恒温法(4)补偿电桥法。补偿导线是在一定的温度范围内(一般为0~100℃),有与所匹配热电偶热电动势相同标称值的一对带有绝缘层的导线,于连接热电偶和测量显示仪表装置,补偿它们与热电偶连接处的温度变化所产生的误差。延长了

热电偶测温原理及冷端温度补偿方法

热电偶测温原理及冷端温 度补偿方法 Prepared on 22 November 2020

热电偶测温原理及冷端温度补偿方法 院系:化工学院化机系 班级: 姓名: 学号: 热电偶测温原理及冷端温度补偿方法热电偶温度计是以热电效应为基础的测温仪表,温精确度高,显示仪表配合,广泛用来测量气体、蒸汽、液体等介质-200℃~16000℃范围内的温度,殊情况下可测-2700℃~28000℃,态响应快,惯性小,械强度高,压性能好,高温可达28000℃,震性能好,且便于信号的远距离传送和实现多点切换测量,自动记录和集中控制,能稳定、测量精度高、准确可靠、使用寿命长、结构简单、制造容易、装配简单、更换方便和使用维护方便,测量范围广,可作为标准计量,量值传递之用,以在科学研究和工业生产中应用广泛,为测温仪表,建筑环境与设备工程中应用也非常广泛。 热电偶测温的测温系统的热电偶温度计由热电偶、电测仪表和连接导线组成。测温原理基于物理学中“热电效应”现象,是把任意两种不同的导体(或半导体)连接成闭合回路,果两个接点的温度不同,回路中就会产生热电势,热电流,就是“热电效应”。热电偶温度计就是利用该原理,两种不同的金属材料一端焊接而成

的,接的一端叫测量端(也叫热端或工作端),未焊接的一端叫参考端(也叫冷端或自由端),如果参考端的温度恒定不变,热电势的大小和方向就只与这两种材料的特性和测量端的温度有关,热电势和温度之间有一个固定的函数关系,用这个关系,要测量出热电势的大小,配以测量毫伏级电势信号的仪表或变送器就实现了温度的测量或温度信号的变换。 在进行温度测量时,热电偶热端插入被测温的设备或管道中,其热端感受被测介质的温度,冷端置于恒定的温度之下,用连接导线连接电气测量仪表。根据热电偶基本定律之一的中间导体定律,热电偶回路中接入第三种金属材料时,要该材料两个接点的温度相同,电偶所产生的热电势将保持不变,不受第三种金属接入回路中的影响。因此,热电偶测温时,接入测量仪表,得热电动势后,可知道被测介质的温度。 热电偶测温系统的冷端温度补偿方法:由热电偶测温原理可知,电势的大小与热电偶两端的温度有关。只有当热电偶冷端温度保持不变时,电势才是被测温度的单值函数。因此,准确地测量温度,须使其参考端温度恒定,电偶冷端最好应保持0℃,般固定在0℃,在现场条件下使用的仪表则难以实现,此必须对其参考端进行温度补偿修正,确保温度测量的准确性。 工业上常用的各种热电偶的温度———热电势关系曲线(或数据)是在冷端温度为0℃时得到的,它配套的仪表也是依据这一关系进行刻度的。但在实际应用中,冷端温度往往高于0℃,不稳

正确使用热电偶补偿导线案例分析

正确使用热电偶补偿导线案例分析 本文通过工业现场十种错误使用热电偶补偿导线案例分析,与大家分享热电偶补偿导线正确使用方法、使用注意事项、热电偶测量回路故障判断及处理方法。热电偶补偿导线技术参数和分类在此不做论述。 热电偶是工业现场使用广泛的温度传感器,热电偶、补偿导线和显示仪表、PLC 系统或DCS系统构成热电偶测温系统(如图1所示),热电偶回路中使用补偿导线后热电偶电势值仅与测量端温度和补偿导线与仪表连接处温度有关系,热电偶补偿导线的作用是延长热电极(即移动热电偶参考端)又节省高成本热电偶材料。热电偶测温系统构成。 图1:热电偶测温系统示意 热电偶补偿导线是在一定温度范围内与所匹配的热电偶有相同热电势标称值的导线。以下是工业现场常见的十种错误使用补偿导线案例,希望大家在看完案例分析后会有所收获。 1、使用普通电线做热电偶信号线,未使用补偿导线 某热处理企业热电偶信号直接由两芯铜电缆连接到控制室显示仪表,使用中频繁出现热处理工件不合格品,经云南云润仪表制造有限公司现场检查,出现次品原因为淬火温度偏差所致,淬火温度测量不准确是因为热电偶测温系统未按要求使用补偿导线。 根据热电偶测温原理可知,热电偶回路的热电势与测量温度和热电偶参考端温度

有关,安装在使用现场的热电偶参考端温度(指热电偶接线盒处温度)随环境温度变化而变化,不能恒定。在热电偶参考端温度波动情况下,使用补偿导线将参考端延长到温度较稳定的环境或远离热源的环境来补偿热电偶参考端温度变化所产生的误差。 普通电线能传送热电偶测温时产生的mV信号,但不能补偿将热电偶参考端温度延长到仪表控制室,从而导致热电偶测温系统出现温度补偿不准确。 正确方法:热电偶信号传送必须使用热电偶补偿导线,禁止用电缆替代补偿导线。 2、不同分度号热电偶和热电偶补偿导线混用,引入测量误差 某单位使用S型热电偶测量炉膛温度,工作人员知道热电偶必须使用补偿导线,便用库存K型热电偶补偿导线将铂铑10-铂热电偶信号连接到显示仪表(如图2所示),使用中发现实际炉温与测量值偏差很大,后经云润公司将补偿导线更换更换为SC后测温恢复正常。 按照国家质量技术监督局规定,热电偶补偿导线的热电势及允许误差应符合JJG 351-1996工作用廉金属热电偶检定规程及有关标准的规定,不同分度号对应的热电偶补偿导线在同一环境温度下的所产生的热电势不同,将不同分度号热电偶与热电偶补偿导线混用,必然给热电偶测量系统引入热电偶参考端温度补偿误差。 正确方法:各种热电偶补偿导线必须与对应分度号的热电偶配用。 图2:热电偶与补偿导线不匹配 3、热电偶补偿导线绝缘层破损 在热电偶接线和安装使用过程中,偶尔会出现热电偶接线盒出线口处和补偿导线其他部位绝缘层磨损,故障现象表现为显示仪表或DCS系统温度显示值一般偏小。 正确方法:寻找补偿导线绝缘层破损点,重新进行绝缘处理,恢复仪表正常显示值。 4、热电偶补偿导线正负极性接反,引入测量误差

铂电阻和热电偶测温特性实验-热电偶冷端温度补偿设计

铂电阻和热电偶测温特性实验 一、实验目的 1、掌握热电阻和热电偶测量温度的原理和特性。 2、了解热电阻和热电偶的接线方式。 3、了解电加热过程的工作特性。 二、实验原理 1、热电阻测温原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻和铜电阻。铂电阻在0-630.74℃以内测温时,电阻Rt与温度t的关系为:Rt=Ro (1+At+Bt2),其中,Ro是温度为0℃时的电阻。本实验Ro=100Ω。A=3.9684×10-2/℃,B=-5.847×10-7/℃2,铂电阻采用三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶测温原理:两种不同的导体或半导体组成闭合回路,当两接点分别置于两不同温度时,在回路中就会产生热电势,形成回路电流。这种现象就是热电效应。热电偶就是基于热电效应工作的。温度高的接点就是工作端,将其置于被测温度场配以相应电路就可间接测得被测温度值。 三、实验设备 CSY-2000实验台、温度源、热电偶(K型或E型)、Pt100热电阻、万用表、连接导线等。 四、实验步骤与说明 本实验的难点是对温度源(右图)温度的控制,这里采用温度控制仪进行操作。实验前需认真阅读附录一《CSY-2000A实验台上的温度控制仪使用说明》。 (1)本实验采用手动控制模式来控制温度源的温度,改变温度控制仪的输出值MV,用万用表测量输出端交流电压,观察电压变化情况。 (2)利用铂热电阻测量环境温度,并记录在表1-1。 (3)温度源(右图)内部封装了一个Pt100热电阻,在面板上有三个引出端子。将此 热电阻信号连接到温度控制仪输入端,作为温度测量的基准温度。 (4)把热电偶和热电阻插入到温度源测点上,热电偶的信号可直接用mV表测量。热 电阻的信号可用万用表电阻档直接测量。 (5)控制温度源的加热电压和加热时间,使温度源从40℃开始,每增加5℃记录一次 热电偶和热电阻的输出,填入表1-1。注意:为了保证数据准确,应在温度源稳定在温 度点上至少30秒后读数。 (6)测量完成后,关上主控台上的温度开关、电源开关,拔下连接导线。如果此时温度源温度大于30℃,则将温度源上的风扇电源24V连接到主控台上的24V稳压电源上,让风扇运转降温。

k热电偶冷端温度补偿实验

实验三十三K型热电偶冷端温度补偿实验 一、实验目的: 了解热电偶冷端温度补偿器的原理与补偿方法。 二、需用器件与单元: 主机箱中的智能调节器单元、电压表、转速调节0~24V电源、15V直流稳压电源; 温度源、Pt100热电阻(温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)、冷端温度补偿器、补偿器专用+5V直流稳压电源。 三、基本原理: 本实验为K分度热电偶。冷端补偿器外形为一个小方盒,有4个引线端子,4、3接+5V专用电源,2、1输出补偿热电势信号;它的内部是一个不平衡电桥,如图33-1所示。这个直流电桥称冷端温度补偿器,电桥在0oC时达到平衡(亦有20oC平衡)。当热电偶温度升高时(>0oC)热电偶回路电势Uab下降,由于补偿器中,PN呈负温度系数,其正向压降随温度升高而下降,促使2端电位上升,使Vi不变达到补偿目的。 图1 热电偶冷端温度补偿器原理 四、实验步骤: 1、温度传感器实验模板放大器调零:按图2示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的Rw2(增益电位器)顺时针转到底,再调节Rw3(调零电位器)使主机箱的电压表显示为0V(零位调好后Rw3电位器旋钮位置不要改动)。关闭主机箱电源。 图2 温度传感器实验模板放大器调零接线示意图

2、调节温度传感器实验模板放大器的增益A为100倍:利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图2示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的Rw2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.01V(用主机箱电压表测量);再将0.01V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器Rw2(小心:不要误碰调零电位器Rw3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后Rw2电位器旋钮不要改动)。关闭电源。 图3 调节温度实验模板放大器增益A接线示意图 3、将主机箱上的转速调节旋钮(0~24V)顺时针旋转到底(24V);将调节控制对象开关拨到Rt.Vi位置。将冷端补偿器的专用电源插头插到主机箱侧面的交流220V插座上。按图33-4示意接线,检查接线无误后合上主机箱电源开关,再合上调节器电源开关和温度源电源开关,将温度源控制在60oC,待电压表显示上升到平衡点时记录数据。再按表1中温度值设置温度源的温度并将放大器的相应输出值填入表中: 温度设定方法,按住▲键约三秒,仪表进入“SP”给定值(实验值)设置,此时可按上述方法按↓、↑、←三键设定实验值,使SV窗显示值与AL-1(上限报警)值一致(如100 oC)。 图4 K热电偶冷端温度补偿实验接线示意图

热电偶测温原理及冷端温度补偿方法

热电偶测温原理及冷端 温度补偿方法 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

热电偶测温原理及冷端温度补偿方法 院系:化工学院化机系 班级: 姓名: 学号: 热电偶测温原理及冷端温度补偿方法热电偶温度计是以热电效应为基础的测温仪表,温精确度高,显示仪表配合,广泛用来测量气体、蒸汽、液体等介质-200℃~16000℃范围内的温度,殊情况下可测-2700℃~28000℃,态响应快,惯性小,械强度高,压性能好,高温可达28000℃,震性能好,且便于信号的远距离传送和实现多点切换测量,自动记录和集中控制,能稳定、测量精度高、准确可靠、使用寿命长、结构简单、制造容易、装配简单、更换方便和使用维护方便,测量范围广,可作为标准计量,量值传递之用,以在科学研究和工业生产中应用广泛,为测温仪表,建筑环境与设备工程中应用也非常广泛。 热电偶测温的测温系统的热电偶温度计由热电偶、电测仪表和连接导线组成。测温原理基于物理学中“热电效应”现象,是把任意两种不同的导体(或半导体)连接成闭合回路,果两个接点的温度不同,回路中就会产生热电势,热电流,就是“热电效应”。热电偶温度计就是利用该原理,两种不同的金属材料一端焊接而成

的,接的一端叫测量端(也叫热端或工作端),未焊接的一端叫参考端(也叫冷端或自由端),如果参考端的温度恒定不变,热电势的大小和方向就只与这两种材料的特性和测量端的温度有关,热电势和温度之间有一个固定的函数关系,用这个关系,要测量出热电势的大小,配以测量毫伏级电势信号的仪表或变送器就实现了温度的测量或温度信号的变换。 在进行温度测量时,热电偶热端插入被测温的设备或管道中,其热端感受被测介质的温度,冷端置于恒定的温度之下,用连接导线连接电气测量仪表。根据热电偶基本定律之一的中间导体定律,热电偶回路中接入第三种金属材料时,要该材料两个接点的温度相同,电偶所产生的热电势将保持不变,不受第三种金属接入回路中的影响。因此,热电偶测温时,接入测量仪表,得热电动势后,可知道被测介质的温度。 热电偶测温系统的冷端温度补偿方法:由热电偶测温原理可知,电势的大小与热电偶两端的温度有关。只有当热电偶冷端温度保持不变时,电势才是被测温度的单值函数。因此,准确地测量温度,须使其参考端温度恒定,电偶冷端最好应保持0℃,般固定在0℃,在现场条件下使用的仪表则难以实现,此必须对其参考端进行温度补偿修正,确保温度测量的准确性。 工业上常用的各种热电偶的温度———热电势关系曲线(或数据)是在冷端温度为0℃时得到的,它配套的仪表也是依据这一关系进行刻度的。但在实际应用中,冷端温度往往高于0℃,不稳

239热电偶的冷端温度补偿有几种方法

2.39热电偶的冷端温度补偿有几种方法? 消除或补偿热电偶的冷端温度损失常用的有以下几种方法: 1.冷端恒温法 1)将热电偶的冷端置于装有冰水混合物的恒温容器中,使冷端的温度保持在0?C不变。此法也称冰浴法,它消除了t0不等于0?C而引入的误差,由于冰熔化较快,所以一般只适用于实验室中。 2)将热电偶的冷端置于电热恒温器中,恒温器的温度略高于环境温度的上限(例如40?C)。 3)将热电偶的冷端置于恒温空调房间中,使冷端温度恒定。 应该指出,除了冰浴法是使冷端温度保持0?C外,后两种方法只是使冷端维持在某一恒定(或变化较小)的温度上,因此后两种方法必须采用下述的方法予以修正。下图是冷端置于冰瓶中的接法布置图。 热电偶冷端导线温度保持0 ℃的方法 2.计算修正法 当热电偶的冷端温度t0 ≠0?C时,测得的热电势E AB(t, t0)与冷端为0?C时所测得的热电势E AB(t,0?C)不等。若冷端温度高于0?C,则E AB(t,t0)

热电势),根据此值再在分度表中,查出相应的温度值。计算修正法需要分两次查分度表。如果冷端温度低于0?C,由于查出的E AB(t0,0?C)是负值,所以仍可用上式计算修正。计算修正法适合于带计算机的测温系统。 3.仪表机械零点调整法 当热电偶与动圈式仪表配套使用时,若热电偶的冷端温度比较恒定,对测量精度要求又不太高时,可将动圈仪表的机械零点调整至热电偶冷端所处的t0处,这相当于在输入热电偶的热电势前就给仪表输入一个热电势E(t0,0?C)。这样,仪表在使用时所指示的值约为E(t0,0?C)+E(t,t0)。 进行仪表机械零点调整时,首先必须将仪表的电源及输入信号切断,然后用螺钉旋具调节仪表面板上的螺钉使指针指到t0的刻度上。当气温变化时,应及时修正指针的位置。 此法虽有一定的误差,但非常简便,在工业上经常采用。 4.电桥补偿法 电桥补偿法是利用不平衡电桥产生的不平衡电压来自动补偿热电偶因冷端温度变化而引起的热电势变化值。热电偶经补偿导线接至补偿电桥,热电偶的冷端与电桥处于同一环境温度中,桥臂电阻R2、R3、R4由电阻温度系数很小的锰铜丝绕制而成,R Cu是由温度系数较大的铜丝绕制的。现在可以买到与热电偶同型号的冷端补偿器。 带有冷端补偿电路的端子板

热电偶校验及补偿导线作用

热电偶校验及补偿导线作用 晋克勤 一、实验目的要求; 热电偶在使用之前,必须进行校验,以确定是否符合技术要求,从面保证测温的可靠性;另外对于正在使用的热电偶,经一定时间之后,其热电性能可能发生变化,影响测温的准确性,因此亦需要不定期进行校验。通过本实验达到以下要求: 1、掌握热电偶校验原理和方法; 2、通过校验操作,进一步了解补偿导线的作用和使用。 二、热电偶校验原理和所需仪器: 1、原理: 热电偶校验一般采用比较法,其原理如图1-1所示,将标准热电偶和被校验的热电偶的热端置于同一温度场(通过镍块实现 )以标准热电偶测量温度值为真实温度和被校热电偶热测温值进行比较,得到被校热电偶在该点的测量误差,为了提高校验的可先靠性,必须在温度稳定后才能校验。 为了保持热电偶的自由端温度为0℃,用补偿导线分别将两支热电偶的自由端(冷端)延伸到冰点箱(瓶)内,然后再用铜导线分别将自由端与直流手动电位计联接,用切换开关分别测量出两支热电偶的热电势以进行比较。常用工业热电偶及标准热电偶的主要特性及充许偏见教课书表1—3,热电偶校验点如下表所示:

图1-1 热电校验原理图 (1) 管式电炉:炉内腔长度与直径比不小于20:1,以保证管状炉内有足够长的等温区域。(专用热电偶校验炉) (2) 手动直流电位计:准确度不低于0.03级; (3) 冰点箱(保温简)用来保特热电偶的自由端(冷端)为0℃; 1个; (4) 调压变压器; 1台; (5) 标准热电偶;其标准等级根据被校热电偶的等级选择; 1支; (6)被校热电偶;1支; 三、热电偶校验步骤: 1、用铂丝或镍铬电阻丝将被校热电偶丝热端与标准热丝端捆扎在一起,并同时插入管式炉内的恒区中,并与镍块接触;使两支热端处于同一温度之中。 2、调整加热电压,使炉温稳定在各校验点±10℃范围内,温度变化速度不超过0.2℃/分,以保证读数准确性; 3、待炉内温度达到要求后,开始测量读数,即用切换开关分别读出两支热电偶的热电势值,分别测量四次,其平均值作为该点,两支热电偶的测量值,并计算误差,填入表内。 4、给出热电偶校验结论: 四、验证补偿导线的作用: 1、按照图1-2接好实验线路,调节加热电压,使电炉内温度稳在400℃--800℃之间的某一温度值上(温度变化速度不超过0.2℃/分); 2、用水银温度计测出加热前烧杯中水的温度,用电位计切换开关分别测出此时加补偿导线和不加补偿导线时的热电势,并填入表内; 3、将烧杯中水缓慢加热至30℃、 40℃、50℃、60℃、70℃时分别

详细介绍热电偶补偿导线常识

详细介绍热电偶补偿导 线常识 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

详细介绍热电偶补偿导线常识 热电偶常识详细介绍常识. 1结构及定义 简称,通常由补偿导线合金丝、绝缘层、护套、屏蔽层组成。在一定温度范围内(包括常温)、具有与所匹配的热电偶的热电动势的标称值相同的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。 热电偶与测量装置之间使用补偿导线,其优点有二:1.改善热电偶测温线路的物理性能和机械性能,采用多股线芯或小直径补偿导线可提高线路的挠性,是接线方便,也可调节线路电阻或屏蔽外界干扰;2.降低测量线路成本,当热电偶与测量装置距离很远,使用补偿导线可以节省大量的热电偶材料,特别是使用贵金属热电偶时,经济效益更为明显。 2术语及符号 延长型补偿导线又称延长型导线,其合金丝的名义化学成分及热电动势标称值与配用的热电偶相同,用字母“X”附在热电偶分度号之后表示,例如“KX”表示K型热电偶用延长型补偿导线。 补偿型补偿导线又称补偿型导线,其合金丝的名义化学成分与配用的热电偶不同,但其热电动势值在0-100℃或0-200℃时与配用热电偶的热电动势标称值相同,用字母“C”附在热电偶分度号之后表示,例如“KC”。不同合金丝可以应用于同一分度号的热电偶,并用附加字母区别,如“KCA”、“KCB”。 允差 热电偶用补偿导线的允差是由于测量系统中引用了补偿导线而产生的最大偏差,该值用微伏表示,其允差的大小分为精密级和普通级两种。 符号 S——表示热电特性为精密级补偿导线。普通级补偿导线不标字母; G——表示一般用补偿导线; H——表示耐热用补偿导线; R——表示线芯为多股的补偿导线。线芯为单股的补偿导线不标字母; P——表示有屏蔽层的补偿导线; V——表示绝缘层或护套为聚氯乙烯材料(PVC); F——表示绝缘层为聚四氟乙烯材料; B——表示护套为无碱玻璃丝材料。 3的分类 品种

热电偶冷端温度自动补偿系统设计

热电偶冷端温度自动补偿系统设计 摘要:热电偶是应用最广泛的一种温度传感器。本文介绍一种利用数字器件MAX6675作为K型热电偶冷端温度自动补偿电路的器件,通过滤波,信号放大,电压跟随对热电偶的输出信号进行前置处理,利用单片机对补偿后进行了A/D转换的数字信号进行处理.将数字信号转换成测量端的真实值,通过LED动态显示。同时通过键盘输入设定最高报警温度、当实际温度超过报警温度时进行报警以提高安全性。利用MAX6675作为K型热电偶的冷端补偿器,其测量速度快,电路简单,成本低廉,不需要调整,能获得最佳补偿效果,并使温度测量仪表、温度测量、控制系统变得十分简单,可在电子测量、工业仪表、自动化控制等领域推广。本文对该系统的设计,包括热电偶传感器、冷端补偿系统、单片机接口及其应用程序以及信号的滤波处理等进行了详细的分析和说 明。 关键词:热电偶;MAX6675;单片机;冷端补偿 A design of thermocouple cold end temperature automatic compensation system Abstract :Thermocouple is a kind of the most widely used temperature sensor. This article referred to the use of digital devices MAX6675 as a K-type thermocouple cold junction temperature compensation circuit device, through the filter, signal amplification, voltage follow to deal with output signal of the thermocouple. At the same time, it uses SCM to process the digital signal, which has been converted by A/D convert device. The digital signal could be converted to true value of the measuring junction and could be dynamic displayed by LED. Also, it can be input specified maximum alarm temperature through the keyboard. What is more, when the actual temperature breaks up the alarm temperature, it will alarm, and by this method, it enhances security. With MAX6675 as a K-type thermocouple cold junction compensation device, the measurement speed could be fast, circuit could be simple and has low cost, no adjustment could be needed, it can get the best compensation effect and enable temperature measurement instrumentation, temperature measurement, control systems become very simple. Further more, in electronic measurement, industrial instrumentation, automation control, and other fields, it can be promoted. In this paper, the design of the system, including thermocouple sensors, cold junction compensation system, SCM interface, application program Signal filter and other processing, is be detailed analysis and explanation. Keywords:Thermocouple;MAX6675;SCM ;Cold junction compensation ........................

相关主题