搜档网
当前位置:搜档网 › 勾股定理的证明教学设计

勾股定理的证明教学设计

勾股定理的证明教学设计
勾股定理的证明教学设计

勾股定理的证明

勾股定理教案

勾股定理(一) 常德市第二中学张美荣 教学目标 2、过程与方法 让学生经历“观察——猜测——证明——应用”的数学探究过程,在动手实践中体会“特殊到一般”和“数形结合”的数学思想方法。 3、情感态度与价值观 通过实验,让学生感受到数学所具有的探索性和创造性,激发学生探究热情,培养学生良好的团队合作意识和创新精神。通过对我国古代数学成就的了解,增强民族自豪感,激发学习热情。 教学重点与难点 教学重点:勾股定理的探索过程与应用 教学难点:勾股定理的证明 教学过程 一、创设情景引入新知 创设校园问题情景 1、观看多媒体照片 照片中,你看到了什么? 2、抽象出数学问题 如图,少数师生为了走“捷径”,在学校求索馆前的长方形草坪内走出一条小路AB。已知两步为1m,你能算出“捷径”省了多少路吗?从计算出的结果,你有怎样的想法? 引导学生分析:要算节省的路程,就要算出AB的长,Rt△AOB中,已经知道AO、BO 的长,如何计算AB呢?即问题转化为:直角三角形中已知两边,如何求第三边? 这就是我们今天要探究的内容:勾股定理 二、测量实验猜测新知 操作一 在方格纸上画一个顶点都在格点上的R t△ABC,∠C=90°,其中a=3,b=4,测量斜边c 的长度。

操作二 分别以R t△ABC三边a、b、c为边长向外作正方形S、T、P,则正方形S、T的面积是多少?正方形P呢,如何计算? 引导学生先画图,由画图过程去体会正方形P的计算方法(割补法),然后请学生来表述。 操作三 P的面积,由此猜测 222 +=,即勾股定理: a b c 直角三角形两直角边a,b的平方和,等于斜边c的平方. 222 += a b c 三、拼图探究验证新知 (一)拼图实验 步骤1剪出四个全等的(如右图)直角三角形,其中c为斜边,且b>a. 步骤2用这四个直角三角形拼出一个正方形(中间可以出现空心). 学生作品展示 运用多媒体工具(备课王)展示学生作品:

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

勾股定理教案课程

勾股定理 教学目标 1、了解勾股定理的推理过程,掌握勾股定理的内容,会用面积法证明勾股定理; 2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想; 3、通过研究一系列富有探究性的问题,培养在实际生活中发现问题总结规律的意识和能力.知识梳理 1.勾股定理 (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于_____的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. (2)勾股定理应用的前提条件是在___三角形中. (3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2. (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边. 2. 直角三角形的性质 (1)有一个角为90°的三角形,叫做直角三角形. (2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理). 性质2:在直角三角形中,两个锐角___. 性质3:在直角三角形中,斜边上的___等于斜边的一半.(即直角三角形的外心位于斜边的中点) 性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积. 性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的___;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直 角边所对的锐角等于___. 3.勾股定理的应用 (1)在不规则的几何图形中,通常添加辅助线得到直角三角形. (2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型: ①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度. ②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为 边长的多边形的面积等于以直角边为边长的多边形的面积和. ③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题. ④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整 数的直角三角形的斜边. 4.平面展开-最短路径问题 (1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题. (2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型. 典型例题

勾股定理9种证明(有图)

勾股定理的9种证明(有图) 【证法1】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面 积等于ab 21 . 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、 F 、C 三点在一条直线上,C 、 G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴ 2 22c b a =+. 【证法2】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o―90o= 90o.

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

勾股定理的证明种方法教案

勾股定理的证明 【证法1】(课本的证明) 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴ 2 22c b a =+.

【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE , ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠D EC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴ ()2 2212122 1 c ab b a +?=+. ∴ 2 22c b a =+.

初中数学:勾股定理的多种证明 (1)

初中数学:勾股定理的多种证明 勾股定理的证明方法1 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。 勾股定理的证明方法2

以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o,

∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于a+b的平方。 ∴a加b的平方等于4乘二分之一ab,加上c的平方。. ∴a的平方加b的平方等于c的平方。 勾股定理的证明方法3 以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这四个直角三角形拼成如图所示形状。 ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o,

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理毕达哥拉斯定理及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

人教版八年级下册17.1.1勾股定理教案

《勾股定理》教案 【教学目标】 1.知识与技能 (1)了解关于勾股定理的一些文化历史背景。 (2)能用勾股定理解决一些简单问题。 2.过程与方法 发展观察、归纳、概括等能力,发展有条理的思考能力以及语言表达能力。 3.情感态度和价值观 通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。【教学重点】 勾股定理的推导 【教学难点】 利用勾股定理解决问题。 【教学方法】 自学与小组合作学习相结合的方法。 【课前准备】 教学课件。 【课时安排】 1课时 【教学过程】 一、情景导入 【过渡】如图所示为2002年在北京举行的国际数学家大会的会徽,它标志着我国古代数学的成就。这个图形里到底蕴涵了什么样博大精深的知识呢?今天我们就来探究一下,关于这个图形,究竟有哪些知识。

二、新课教学 1.勾股定理 【过渡】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。现在,我们也来观察一下,从图形中能发现什么知识呢? 【过渡】大家来看P22页的思考内容,我们发现,这个图形与上边的图形是一致的,今天,我们也来当一回科学家,来思考一下,这个图形到底有什么奥秘呢? 【过渡】我们能够看到,在这个图中,有三个正方形A、B、C,现在,我们假设小方格的边长为1。正方形A、B、C的面积各为多少? (学生回答)引导学生通过小方格的个数计算。 【过渡】通过观察,我们发现,三个正方形,S A=6,S B=6,S C=12。由此,我们能够回答思考内容中的第一个问题,即三个正方形的关系是S A+S B=S C。 【过渡】现在,我们来看第二个问题,结合正方形的知识,我们知道三个正方形所围成的,即蓝色部分是一个等腰直角三角形。我们假设A、B、C三个正方形对应的边长分别为a、b、c。则通过正方形面积的计算,大家能得到什么呢? (学生回答) 【过渡】大家都是很优秀的科学家,就是这样,我们能够得到a2+b2=c2,而从图中,我们又能发现,a、b、c刚好是等腰直角三角形的三条边。那么,现在谁能来总结一下,等腰直角三角形中三边的关系呢? 对于等腰直角三角形有这样的性质:斜边的平方等于两直角边的平方和。 【过渡】既然等腰三角形中有这样的性质,那大家就可能会说,其他一般的三角形中会不会也有

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

第十八章勾股定理全章教案

第十八章勾股定理 18.1 勾股定理(一) 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力. 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习. 二、重点、难点 1.重点:勾股定理的内容及证明. 2.难点:勾股定理的证明. 3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要.在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志.水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积.几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具.本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变. 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀. 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.进一步让学生确信勾股定理的正确性. 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就. 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长. 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长. 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2. 对于任意的直角三角形也有这个性质吗? 例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、 ∠C的对边为a、b、c. 求证:a2+b2=c2. 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹 塑纸,让学生拼摆不同的形状,利用面积相等进行证明. A B

勾股定理16种经典证明方法与在实际生活中的应用

2 证法 1】(课本的证明) 做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 . 从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即 证法 2】(邹元治证明) ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180 o ― 90o= 90 o. ∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的 面积等于 c 2. ∵ Rt Δ GDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o. ∴ ABCD 是一个边长为 a + b 的正方形,它的面积 等于 ∠HEF = 90 o. EFGH 是一个边长为 b ―a 的正方形,它的面积等于 1 ab 以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等 于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直 线上, 把这四个直角三 C 、G 、D 三点在一条直线上 b 2 4 12 ab c 2 4 1 ab 2 整理得 c 2 1 4 ab 2 c 2 a 2 b 2 c 2 【证法 3】(赵爽证明) 以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于 把这四个直角三 角形拼成如图所示形状 ∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o , ∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

勾股定理全章教案 人教版(优秀教案)讲解学习

勾股定理全章教案人教版(优秀教案)

第十八章勾股定理 .勾股定理(一) 一、教学目标 .了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 .培养在实际生活中发现问题总结规律的意识和能力。 .介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点、难点 .重点:勾股定理的内容及证明。 .难点:勾股定理的证明。 三、例题的意图分析 例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这

种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为和的直角△,用刻度尺量出的长。 以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)的长是。 再画一个两直角边为和的直角△,用刻度尺量的长。 你是否发现与的关系,和的关系,即,,那么就有勾股弦。 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例(补充)已知:在△中,∠°,∠、∠、∠的对边为、、。 求证:+。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:△小正大正 ×2 1 +(-),化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 A B

勾股定理的证明教案

勾股定理的证明教案 教学内容:第十四章勾股定理——第一节———第二课时 一、教学目标: 1、知识与技能:(1)掌握勾股定理的一些基本证明方法; (2)了解有关勾股定理的历史. 2、过程与方法:(1)在定理的证明中培养学生的拼图能力; (2)经历理解勾股定理的证明过程,感悟并 掌握勾股定理的证明猜想. 3、情感态度与价值观:(1)通过有关勾股定理的历史讲解,对学生 进行德育教育; (2)通过数学思维活动,发展学生探究意识 和合作交流思想. 二、教学重点:理解并熟练勾股定理的证明过程 三、教学难点:对勾股定理证明思想的领会 四、教学用具:直尺,四个全等的直角三角形纸片,赵爽弦图,2002 年国际数学大会图片 五、教学方法:以学生为主体的讨论探索法

六、教学过程: 1、创设情境→激发兴趣 (1)复习勾股定理——直角三角形的三边关系 勾股定理:直角三角形两直角边a、b 的平方和等于斜边c 的平方。数学表达式:a2+b2 =c2 (2)欣赏图片——引出课题 通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,激发学生民族自豪感. 2、分析探究→得出猜想 通过对赵爽弦图图形组成的提问:即由四个全等的直角三角形构成的,让同学们体验对数学图形的探究过程,学习这种研究方法。同时提问:为什么会把这个图案设为大会的会徽?它有什么意义呢? 继而教师总结:因为在1700多年前中国古代数学家赵爽用这个弦图证明了勾股定理(出示图片),我们称它为“赵爽弦图”,它反应了中国古代数学家的聪明才智,是我们中国古代数学的骄傲,现在让我们追忆一下古人的足迹,用赵爽弦图证明勾股定理: 3、拼图证明→得出定理

勾股定理的证明方法及应用研究开题报告

天津师范大学津沽学院2015届本科毕业论文(设计)选题审批表 学生姓名顾鹏飞学号13583115 指导教师张筱玮职称教授所选题目名称:勾股定理的证明方法及应用研究 选题性质:()A.理论研究(√)B.应用研究()C.应用理论研究 选题的目的和理论、实践意义: 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后 希帕索斯根据勾股定理发现了第一个无理数( 2),导致第一次数学危机。 指导教师意见: 签字:年月日系领导小组意见: 签字:年月日备注:

天津师范大学津沽学院2015届本科毕业论文(设计)开题 报告 系别:理学系专业:数学与应用数学 论文题目勾股定理的证明方法及应用研究 指导教师张筱玮职称教授学生姓名顾鹏飞学号13583115 一、研究目的(选题的意义和预期应用价值) 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础, 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后希帕索斯根据勾股定 理发现了第一个无理数( 2),导致第一次数学危机。 二、与本课题相关的国内外研究现状,预计可能有所突破和创新的方面(文献综述) 中国:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国:在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

相关主题