搜档网
当前位置:搜档网 › 陶瓷膜组件的油水分离机理

陶瓷膜组件的油水分离机理

陶瓷膜组件的油水分离机理
陶瓷膜组件的油水分离机理

陶瓷膜组件的油水分离机理

2020.08.08

陶瓷膜组件的油水分离机理

陶瓷膜过滤是一种“错流过滤”形式的流体分离过程。原料液在膜管内高速流动,在压力驱动下含小分子组分的澄清渗透液沿与之垂直方向向外透过膜,含大分子组分的混浊浓缩液被膜截留,从而使流体达到分离、浓缩、纯化的目的。通常认为,陶瓷膜的油水分离机理是筛分原理。膜孔径一般小于油滴的粒径,从而可以利用膜孔截留料液中的悬浮油滴,使水透过膜,达到油水分离的目的。但在实际膜过滤过程中,油滴会在压力的作用下产生形变,从而进入膜孔中。变形后油滴的表面膜受到破坏,致使油滴中的内相被释放出来,又由于膜表面具有很强的亲和性和润湿性,从而使内相吸附在膜面上,并逐渐聚结成较大的油滴,然后在压力的作用下通过膜孔,同时连续相也通过膜孔,这样就实现了油水乳状液的破乳,过孔后的油滴和连续相很容易实现进一步分相,离开原来的分散介质,进而实现油水分离。

基于超亲水超疏油原理的网膜及其在油水分离中的应用

2014年6月 CIESC Journal June 2014第65 卷 第6期 化 工 学 报 V ol.65 No.6 基于超亲水超疏油原理的网膜及其在油水分离中的应用 袁腾1,陈卓2,周显宏3,涂伟萍1,胡剑青1,王锋1 (1华南理工大学化学与化工学院,广东省绿色化学产品技术重点实验室,广东 广州 510640;2华南理工大学 轻工与食品学院,广东 广州 510640;3东莞理工学院化学与环境工程学院,广东 东莞 523808) 摘要:综述了基于超亲水超疏油原理的网膜的研究进展及其在油水分离中的应用。首先介绍了研究的理论基础, 包括构筑超亲水超疏油网膜的理论基础及膜分离原理,膜的基本性能及影响因素,液桥原理在超亲水超疏油膜中 的应用以及该类膜的结构、制备的原材料和制备的基本方法。然后全面综述了刺激响应超亲水超疏油膜,超亲水 及水下超疏油膜,无机结晶纳米线超亲水超疏油膜,分子刷结构超亲水超疏油膜及可用于含油乳液分离的网膜等 的研究进展。最后指出了目前在该领域的研究中存在的一些问题,主要包括膜分离的基本理论,制备膜的原材料、膜通量、膜寿命及应用范围等,并对未来的发展进行了展望。 关键词:特殊润湿性;微纳二元粗糙结构;刺激响应;重组装;薄膜;油水分离 DOI :10.3969/j.issn.0438-1157.2014.06.001 中图分类号:TB 381;TB 383;TQ 208.8 文献标志码:A 文章编号:0438—1157(2014)06—1943—09 Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation YUAN Teng 1, CHEN Zhuo 2, ZHOU Xianhong 3, TU Weiping 1, HU Jianqing 1, WANG Feng 1 (1Guangdong Provincial Key Laboratory for Green Chemical Product Technology , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640, Guangdong , China ; 2School of Light Industry and Food Sciences , South China University of Technology , Guangzhou 510640, Guangdong , China ; 3College of Chemistry and Environmental Engineering , Dongguan University of Technology , Dongguan 523808, Guangdong , China ) Abstract : This paper reviews the research progress of membranes based on the principle of superhydrophilicity and superoleophobicity and its application in the oil-water separation. First, the fundamentals of the research are introduced, including those for preparing superhydrophilic and superoleophobic membranes and separation process, basic properties of membranes and influencing factors. The applications of liquid bridge principle in the superhydrophilic and superoleophobic membranes, membranes structures, general raw materials and prepared methods are also introduced. Then a comprehensive overview is given on the research progress of current common 2014-01-06收到初稿,2014-03-04收到修改稿。 联系人:王锋。第一作者:袁腾(1987—),男,博士研究生。 基金项目:国家自然科学基金项目(50903031);中央高校基本科研 业务费专项资金(2013ZM0072);广东省重大科技专项计划项目 (2010A080406002);广东省省部产学研项目(2010A080405006, 2010A080404008);广州市国际科技交流与合作专项(2012J5100043); 广东省绿色化学产品技术重点实验室开放基金(GC201201);深圳市新 型锂离子电池与介孔正极材料重点实验室开放课题(20120213);广东高 校轻化工清洁生产工程技术研究中心开放课题。 Received date : 2014-01-06. Corresponding author : WANG Feng, fengwang@https://www.sodocs.net/doc/0c11098457.html, Foundation item : supported by the National Natural Science Foundation of China (50903031), the Fundamental Research Funds for the Central Universities (2013ZM0072), the Key Scientific and Technological Special Research Fund of Guangdong Province (2010A080406002),the Project Funds of Combination Research of the Guangdong Province and Ministry of Education (2010A080405006, 2010A080404008) and the Research Fund of the Guangdong Provincial Laboratory of Green Chemical Product Technology (GC201201).

液膜分离实验

液膜分离实验 液膜分离装置主体实图 液膜分离加料

一、实验的流程 液膜分离的工艺流程如图1所示。 图1 乳状液膜分离过程示意图 二、实验步骤及方法 1 实验步骤 本实验为乳状液膜法脱除水溶液中的醋酸,首先需制备液膜。液膜组成已于实验前配好,分别为以下两种液膜: 1) 液膜1#组成:煤油95%;乳化剂司班80,5%。 2) 液膜2#组成:煤油90%;乳化剂司班80,5%;液体石蜡(载体),5%。 内相用2M的NaOH水溶液。采用HAc水溶液作为料液进行传质试验,外相HAc的初始浓度在实验时测定。 具体步骤如下: ①在制乳搅拌釜中先加入液膜1#70mL,然后在1600r/min的转速下滴加内相NaoH水溶液70mL(约1分钟加完),在此转速下搅拌15分钟,待成稳定乳状液后停止搅拌,待用。 ②在传质釜中加入待处理的料液450mL,在约300r/min的搅拌速度下加入上述乳液80 mL,进行传质实验,在一定时间下取少量料液进行分析,测定外相HAc浓度随时间的变化(取样时间为2、5、8、12、16、20、25分钟),并作出外相HAc浓度与时间的关系曲线。待外相中所有HAc均进入内相后,停止搅拌。放出釜中液体,洗净待用。 ③在传质釜中加入450mL料液,在搅拌下(与②同样转速)加入小釜中的乳状液50 ml,重复步骤2。 ④比较②,③的实验结果,说明在不同处理比(料液体积/乳液体积)下传质速率的差别,并分析其原因。 ⑤用液膜2#膜相,重复上述步骤①~④。注意,两次传质的乳液量应分别与②、③步的用量相同。 ⑥分析比较不同液膜组成的传质速率,并分析其原因。 ⑦收集经沉降澄清后的上层乳液,采用砂芯漏斗抽滤破乳,破乳得到的膜

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

膜分离技术与现代油水分离技术的简介

膜分离技术与现代油水分离技术的简介 摘要 膜分离技术是一项新兴的高效分离浓缩技术,分离纯化产品效果较好。随着现代工业技术的不断发展,油水分离技术也得到广泛应用。本文对膜分离技术和油水分离技术的分离机理、特点、种类进行了综述,并对分离技术的研究进展及其在各个方面分离纯化的应用现状进行了归纳,同时指出了该技术目前存在的问题并对其前景进行了展望。 关键词:膜分离技术,油水分离技术 Abstract Membrane separation technology was a new and highly efficient separation, concentration technology of separation and purification of products,good effect. With the continuous development of modern industrial technology, oil and water separation technology has been widely used. In this paper, the mechanism of membrane separation technology and oil-water separation technology, characteristics, types were reviewed, the separation and its research progress in various aspects of the application of separation and purification were summarized,and the existing problems and prospect were pointed out. Key word:membrane separation technology,oil and water separation 一、膜分离技术简介 1.原理 膜分离技术是一种使用半透膜分离方法,其分离原理是依据物质分子尺度的大小,借助膜的选择渗透作用,在外界能量或化学位差的推动作用下对混合物中双组分或多组分溶质和溶剂进行分离、分级提纯和富集,从而达到分离、提纯和浓缩的目的。现已应用的膜过程有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等,其中在食品工业中常用的有微滤、超滤和反渗透三种。 2.特点

油气回收膜分离法

油气回收膜分离法 1国内外发展现状 国外对膜法油气回收的研究和工业应用较早。日本公司1988年建造了第一套用于油库油气回收的膜装置。1989年德国公司也成功推出了膜法油气回收装置,至今已有180多套大型装置在运行。德国的公司、日本的日东电工和美国的公司都在膜法油气回收方面实现了工业应用。欧洲建造了很多安装在输油管线终端的大型膜装置,用来从输送过程产生的气流中分离和回收油气。 由于国外在气体分离膜领域开展的研究较早,目前国外己经实现工业化的膜分离法回收的生产厂家以及回收体系有: 我国对气体分离膜的研究开发和应用开始的较晚,20世纪80年代初才开始。但由于气体分离技术与催化燃烧、吸附等传统处理方法比较,具有效率高、能耗低、操作简单、装置紧凑、占地面积少、无二次污染等显著特点,所以得到了广泛推广和深入研究。 中科院大连化学物理所、中科院长春应用化学所等单位在该方面进行了积极有益的探索,并取得了长足进步。我国目前使用膜分离技术主要应用的领域有:氢气的回收和利用、从空气中制取富氮、从空气中富集氧气、二氧化碳的回收和脱除、工业气体脱湿、从天然气中提取浓氦气、空气中易挥发有机物的回收等。在这些领域,膜分离技术基本都得到了工业化应用,但在回收废气中的挥发性有机物领域的研究应用工作只是最近几年才开始。

在化工生产、油罐、油轮及加油站等有机物质制造、贮存、运输和使用过程中,经常要排放挥发性有机气体。他们通常由惰性气体和烷烃、烯烃等有机气体组成,采用膜技术实现有机混合气体的分离,不仅可以回收附加值高的烷烃、烯烃等有机物和等,获得可观的经济效益。2002年,中国科学院大连化学物理研究所和吉化公司合作进行了现场实验,采用螺旋卷式膜分离器回收聚乙烯生产过程中排放的乙烯和丁烯单体,取得了较好的结果。但在膜材料的研究和生产领域,我国还没有全部实现自己研制开发。寻找成本低,分离效率高、化学稳定性好、耐热、并具有优良的机械加工性能的膜材料,并将其工业化应用将是我国研究人员面临的挑战。 近几年来,国外的实验室研究分离使用得最多的膜分离材料是聚二甲基硅氧烷P()。它从结构上看属半无机、半有机结构的高分子,具有许多独特性能,是目前发现的气体渗透性能好的高分子膜材料之一。研究人员大多是采用聚枫()、聚偏氟乙烯()、聚间苯二甲酸乙二酯()等材料作为支撑层,使用涂层堵孔,作为选择性分离层,选择性分离2或空气体系,都取得了理想的实验结果。 2003年,大连欧科力德环境技术有限公司与德国研究所、公司合作,率先引进膜法油气回收技术,在中石油上海灵广加油站应用成功。这座加油站安装上膜法油气回收装置后,油气回收率达到98%以上,尾气排放浓度降到15 g 3以内,低于欧洲标准(35 g 3),是国内第一座真正意义上的安全、环保、效益型的加油站。 2膜分离机理 膜法气体分离的基本原理就是根据混合气中各组分在压力的推动下透过膜的传递速率不同,从而达到分离目的。对不同结构的膜,气体通过膜的传递扩散方式不同,因而分离机理也不同。目前常见的气体通过膜的分离机理包括: (1)气体通过非多孔膜即致密膜(如,高分子聚合物膜)的溶解—扩散的分离机理。一般橡胶态聚合物的气体渗透是溶解控制,玻璃态聚合物为扩散控制。此时,气体透过膜的过程可认为由3个环节(步骤)组成:①吸着过程,即气体在膜的上游侧表面被吸附、凝聚、溶解。这个过程带有一定的选择性;②扩散过程,即该被吸着的气体在膜两侧压力差、浓度差的推动下,按不同扩散系数扩散透过膜另一侧;③解吸过程,即该已扩散透过的气体在膜下游侧表面被解吸、剥离过程。

超疏水高分子薄膜的研究进展 (1)

超疏水高分子材料的研究进展 摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。 关键词:超疏水,高分子材料,自清洁 Developments of super-hydrophobic Ploymeric material Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end. Key Words: super-hydrophobic, polymeric membrane, self-cleaning. 引言 自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。 随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

陶瓷膜过滤技术与设备

陶瓷膜过滤技术与设备 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:本文通过归纳简单介绍了以陶瓷纳滤膜为代表的无机膜技术及其成套设备主要构成,仅用于提供给广大膜分离环保工程技术人员交流学习与探讨之用。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。 关键词:陶瓷纳滤技术,陶瓷纳滤膜,陶瓷膜技术,陶瓷膜设备,膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图

超亲水水中超疏油改性膜用于高效的油水分离

超亲水/水中超疏油改性膜用于高效的油水分离采用了简单、新型和环保的材料和方法用于油水分离,即使用戊二醛分别在聚氨酯海绵和棉织物表面均匀覆盖一层PVA/壳聚糖 /SiO2复合涂层,使其达到超亲水/水中超疏油的特点。这种新型的改性海绵和棉织物不仅可以用于持续的分离不同油水混合物;还具有超强的耐腐蚀性,能够分离酸性、碱性和高浓度盐溶液的含油废水。通过使用扫描电子显微镜来表征其表面粗糙结构,热重分析仪表征其良好的热稳定性,以及接触角测量仪来表征其超亲水性。改性材料表现出优异的可重复使用功能,可以重复使用10次以上,在棉织物上油水分离效率仍高达99.5%,流通量为4200 Lm-2h-1,而聚氨酯海绵改性膜水的分离效 率高达99.3%,流通量为3600 Lm-2h-1。因此,这种制备简单、高效、经济和绿色环保的材料在实际应用中具有广阔的前景。同时还采用了简单的浸渍法以棉织物作为基底材料,制备了超亲水/水中超疏油的聚丙烯酰胺/TiO2复合型膜, 并研究了聚丙烯酰胺和TiO2不同质量比对涂层润湿性、形貌和稳定性的影响。制得的这种新型膜可以用于高效的油水分离,不仅可以分离各种油水混合物,分离效率均在99%以上,流通量高达4980 Lm-2h-1,而且可以分离不同pH值、不同浓度NaCl溶液与油的混合物,且分离效率良好。此膜还具有较高的热稳定性和可重复使用功能,重复使用10次,分离效率仍可以高达99%。因此,它也是一种新型、高效、绿色和制备简单的材料。

液膜萃取法

液膜萃取法文献综述 液膜萃取技术结合了固体膜分离法和溶剂萃取法的特点,是一种新型的膜分离方法.液膜是乳状液滴分散在另一水相或油相中聚集成平均直径为1mm的聚集体时形成的(W/O)/W或(O/W)/O型复相乳液体系。在前一种情况,两种不同的水相(分别称为内相、外相)被一层油膜隔开,后一种情况是两种不同的油相被一层水膜隔开,液膜本身的厚度为1~10Lm。由于液膜的厚度只有人工固体薄膜的十分之一,所以物质穿过液膜的迁移速度更快。液膜萃取就是利用液膜的选择透过性,使料液中的某些组分透过液膜进入接受液,然后将三者各自分开,从而实现料液组分的分离。液膜萃取过程是由三个液相所形成的两个相界面上的传质分离过程,实质上是萃取与反萃取的结合。 应用领域:30多年来,液膜一直是一个十分活跃的研究课题。液膜传质速率高与选择性好的特点,使之成为分离、纯化与浓缩溶质的有效手段,

它与其它辅助设备、仪器、检测方法相结合,在石油化学、冶金工业、海水淡化、废水处理和综合回收、医学、生物学等方面的应用已日益受到人们的重视。 应用优点:一些物理化学性质相似的碳氢化合物很难分离,采用液膜技术可以成功分离碳氢化合物。利用液膜萃取技术可以有效地提取某些金属,提取率达99.5%。液膜萃取法处理废水,使废水达到了国家排放标准,有效的回收了可循环利用的成分,同时也减少了环境的污染。液膜萃取在生物学方面。青霉素是一种应用广泛的抗生素类药物,传统的提取方法采用溶媒萃取法。青霉素易分解损失。莫凤奎等使用青霉素G钠盐纯品溶液,模拟考察了乳状液膜法分离青霉素的条件,在最佳条件下青霉素的提取率可达92%。浓缩比可达9,且具有青霉素不易损失,工艺简单等优点。 废水处理中液膜萃取应用的优点:对含有机质废水的处理,大多采用有机溶剂萃取法,但处理后的废水中仍含有较高浓度的有机物质,采用液膜法则可使废水得到彻底的处理。 发展前景:经过多年的发展,液膜萃取在机理

中药液膜分离技术的应用及发展

2 液膜分离技术在废水处理中的应用 2.1去除重金属离子 液膜分离技术可以有效地分离并回收废水中的重金属离子。奥地利Graz工业大学的Marr等人采用乳状液液膜分离技术,对去除粘胶废水中的Zn2+、Cu2+、Cd2+、Pb2-、C产、Ni2+等重金属离子作了大量试验。表I为试验结果。 表1从粘胶废水中去除各种剧金属离子的中试结果 重金厲离子废水涼矗 /(L*h-T) 初始厳度 /(mg ? L_ 11 处理肓浓度 /(mu-L-1) 2r严3045004 Z严30500 Zn I+701500,5 Cu i+20SOOO27 3*408003 Ni沖202200360 Cd"60[40 t01 Pb叶6080. 01 Cr3*4015004 从表I中可以看出,除Ni夕卜,其他金属离子的去除率均高于99%,以Zn的去除与回收为例,与溶剂萃取、化学沉淀、离子交换等方法比较,液膜分离法最经济。分离Zn的工艺采用逆流萃取塔和静电聚结破乳装置,内包相使用 DTPA[ ( 2-乙基己基)二硫代磷酸]。回收1 0 0 k g Zn的费用为54.4美元,而市售100 kg Zn为133美元采用液膜法从废水中回收zn具有一定的经济效益。美国Syracuse大学Jongheop Yi采用陶瓷支撑膜分离Cu他们认为,充满有机螫合酸的孔状陶瓷支撑膜,作为分离稀溶液中金属离子的无机支撑膜系统.其性能优于聚合物支撑膜,具有广阔的应用前景。因为聚合物支撑膜对温度、pH敏感,易变形老化,而陶瓷支撑膜正好弥补了聚合物支撑膜的缺点。在分离Cu 2+过程中,陶瓷支撑膜制成a铝/硅片型,其中注入2-羟基-5-壬基乙酰苯。 2 .2分离废水中的有机酸、无机酸 美国科罗拉多矿业大学的Wan gC.C研究了用液膜分离法去除水溶液中的多种

气体分离膜质量安全与检测参考文本

气体分离膜质量安全与检 测参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

气体分离膜质量安全与检测参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 正文: 气体膜分离技术是一种新型高效的分离技术,同传统 的分离技术相比,具有投资少、设备简单、能耗低、使用 方便、易于操作、安全无污染等特点,因而近年来在食 品、医药卫生、石油化工、生物技术、环境工程等行业应 用越来越广泛,受到了各方面的高度重视。气体分离膜材 料是发展膜分离技术的关键问题之一,理想的气体分离膜 材料应该具有高的透气性和良好的透气选择性,高的机械 强度,优良的热和化学稳定性以及优良的成膜加工性能。 上述要求中,气体分离膜分离气体各组分的气体透过率是 各生产厂家技术开发和研究重点关注的指标。本文结合 G2/110膜分离测试分析仪对气体分离膜分离气体各组分的

气体透过率测试进行简单的介绍。 一、气体分离膜的分离原理 气体膜分离技术是利用原料混合气体中不同气体对于气体分离膜材料本身具有不同的渗透率,以气体分离膜两侧气体的压力差为推动力,在渗透侧得到渗透率大的气体富集的物料,在为渗透侧得到不易渗透气体富集的分离气,从而达到气体分离的目的。 二、G2/110膜分离测试分析仪测试原理 G2/110采用压差法与色谱分析技术相结合的测试原理,将预先处理好的试样放置在上下测试腔之间、夹紧,对低压腔以及整个系统进行真空处理;当达到规定的真空度后,向高压腔充入试验气体,并保证在试样两侧形成一恒定的压差;气体在压差梯度的作用下,由高压侧向低压侧渗透;渗透到低压腔的试验气体,由载气携带至色谱分析仪,通过色谱技术处理,从而得到分离膜对试验气体各

乳状液膜分离法脱除废水中的污染物

乳状液膜分离法脱除废水中的污染物 杨磊 (同济大学化学系上海) 摘要:本实验以煤油作膜相,NaOH溶液作内相,制取非流动载体乳状液膜,并用于分离柠檬黄水溶液。通过控制变量法,保持搅拌条件和乳水比不变,改变油内比,用来探究油内比对于乳状液膜分离过程中制乳、传质和破乳的影响。本实验还可以对其他因素予以探讨。 关键词:乳状液膜柠檬黄制乳、传质、破乳油内比乳水比 Emulsion liquid membrane separation method of removing the pollutants in wastewater Yang Lei ((the Chemical Department of Tongji University Shanghai) Abstract: With kerosene as the membrane phase, NaOH solution for internal phase, making the carrier flow emulsion liquid membrane, and is used to separate citric yellow aqueous solution.This experiment by controlling variable method, the mixing condition and the water ratio unchanged, than change oil, used to explore oil than for emulsion membrane separation process in milk, the effect of mass transfer and demulsification.This experiment can also refer to other factors. Key words:Emulsion Liquid Membrane Tartrazine solution Mass Transfer Oil Naypyidaw Water Than Milk 1、引言: 液膜分离技术是受细胞流动载体的启发而衍生发展出来的一种分离技术,分为支撑液膜和乳状液膜,其类似于萃取和反萃取过程,常用于低浓度物质的富集。[1]液膜通常由膜溶剂、表面活性剂和流动载体组成。它利用选择透过性原理,以膜两侧的溶质化学浓度差为传质动力,使料液中待分离溶质在膜内相富集浓缩,分离待分离物质。在液膜分离过程中,被分离组分从外相进入膜相,再转入内相,浓集于内相。传质推动力大,试剂消耗量少,溶质逆浓度梯度效应,非常高的传质面积使其有极高的分离效率,且液膜传质速率高,选择性好,同时液膜分离具有操作简单以及连续性好的性质,使得液膜分离可广泛应用于化工、生化、医药、环保、有色冶金、核技术、食品、轻工、动力、机械等行业,有着广泛的应用前景。[2] 液膜分离机理有以下几种类型:①选择性渗透。利用混合物中各组分透过液膜的渗透速率的差别,实现组分分离,需要利用内外浓度差。②内相有化学反应。被分离组分 A透过液膜后与内相中的反萃剂R发生化学反应,反应产物P不能透过液膜,利用化学反应创造内外浓度差。③膜内添加活动载体。载体 R1作为渗透组分A在膜内传递的媒介。载体相当于萃取剂中的萃取反应剂,在外相与液膜的界面处,与渗透组分A生成络合物P1,P1在液膜内扩

油水分离膜的制备与应用

油水分离膜的制备与应用综述 摘要: 油水分离膜分为有机膜、无机膜、复合膜,本综述分别就工业中常用的有机膜(纤维素膜)、复合膜(不同种膜材料混合制成)、无机膜(煤基管状碳分离膜)的制备方法以及应用做了一些简要介绍和概括。 关键词:膜污染纤维素膜聚偏氟乙烯(PVDF)超滤膜表面改性共混 IPN结构聚醚砜和聚丙烯晴相转化法(sol-gel)碳膜油水分离 1 引言 油污染作为一种常见的污染,对环境保护和生态平衡危害极大,无论是环境治理、类回收及水的再利用都要求对含油污水进行有效分离。含油污水中油的存在形态可分为4类:油的粒径大于150 μm,称为浮油;油的粒径在20~150μm之间,称为分散油;油的粒径小于20μm,称为乳化油;油的粒径小于几微米时则为溶解油 [1] 。 膜分离技术主要用于分离稳定的乳化油,是对含油污水进行深度处理的可行而有效的方法[2]。以往研究较多的是疏水膜。常用的疏水性膜由聚乙烯,聚偏氟乙烯和聚四氟乙烯等聚烯烃类聚合物组成[3],去除油中少量水杂质的效果良好,但是容易使膜被严重污染。另外,油分子容易在疏水膜内聚结而阻止水通过,使水通量急剧下降。 为使油能快速离开膜表面、防止膜污染、保持水通量,膜的表面化学性质应是亲水的。亲水性膜水通量高,抗污染能力强,已渐成为含油污水除油作业的主要膜材[3]。亲水性的强弱可通过添加适当的亲水基团来控制。常用的亲水膜材料有聚醚砜,纤维素酯,聚酰亚胺/聚醚酰亚胺,聚脂肪酰胺和聚丙烯腈等具有亲水基团的高分子聚合物。增大膜的亲水性有利于水通量的提高,可大大降低膜的污染,但亲水性过高时膜易溶胀,丧失机械强度。另外,亲水性膜较疏水性膜耗费能源多,且易受表面活性剂影响。 无机陶瓷膜也属于亲水膜,氧化铝膜使用最为广泛,近来的新研究则注重二氧化钛膜、二氧化硅膜、二氧化锆膜及其复合膜。陶瓷膜的优点很多:能承受高温、高压,抗化学药剂能力强,机械强度高,受pH 值影响小,抗污染,寿命长等但陶瓷膜制备成本高,膜孔不易小孔径化,可选用的材料种类较有机膜少得多。 对膜分离技术所面临的最重要的限制因素——膜污染问题,可以使用膜表面改性技术增强膜表面的亲水性以减小污染。通过表面改性技术可制出适当的油水分离膜,既具有足够的机械强度,又能有效地降低膜污染。膜表面改性技术主要有有机物接枝膜改性,等离子聚合法,有机物嵌段共聚膜改性,溶剂化,离子移变凝胶膜和共混复合改性等,其中共混复合改性方面的研究越来越引起人们的重视。该方法在溶剂中加入改善性能的助溶剂,使两种膜材料的相容性(互溶性)得到改善,诱导一种膜材料在另一种膜材料表面成膜,使界面高分子互相贯穿成网络结构,即互穿聚合物网络(IPN)。[1] 2 油水分离膜的制备与应用 常用溶剂,很难直接加以利用。环胺氧化物溶剂体系是目前研究最为广泛、应用最为成功的一类纤维素溶剂,典型代表为N-甲基吗啉-N-氧化物(NMMO)。介兴明等以N-甲基吗啉-N-氧化物(NMM0) 为溶剂物理溶解纤维素,制备出了新型纤维素膜。[4]所制备的新型纤维素中空膜在3个方面表现出较好的应用潜力:①湿态下纤维素膜对CO2具有较高的渗透性能,同时对CH4、N2甚至H2都具有较高的分离系数;②该膜油水分离性能优异,同时耐污染能力较强,在油水分离过程中通量稳定,清洗周期长,通量极易恢复,表现出了良好的应用前景;③该膜采用NaOH水溶液作为吸收剂膜法脱除硫醇,基本无油分损失.可用于炼油工业大规模脱硫

气体分离膜

气体分离膜材料 1 膜的发展历史 人类对于膜现象有了初步认识就是在1748 年,然而认识膜的功能到被挖掘,却经历了200 多年的漫长历程,才为人类服务。人们在近几十年来,开始对膜进行科学研究。其发展的历史大致为:30 年代微孔过滤;40 年代透析;50 年代电渗析;60 年代反渗透;70 年代超滤与液膜;80年代气体分离;90 年代渗透汽化。同时以膜为基础的其它离过程,以及膜分离与其它分离过程结合的复合应用也日益得到重视与发展。 1979 年将气体分离推向工业化应用的基础,就是孟山都(Monsanto) 公司用于H?/N?分离的低温制氮系统(Prism)的建立。陶氏(Dow) 化学公司在1985年向市场提供以富N?为目的空气分离器,“Generon”气体分离用于天然气、石油、化工生产等领域,大大提高了气体生产过程的经济效益。 我国从1958年研究离子交换膜开始,80年代中期我国研究的气体分离膜取得长足进步,1985 年中国科学院大连化物所首次成功研制中空纤维N?/H?分离器,与国外同类产品主要的性能指标接近,现已投入批量生产。 2 气体分离膜材料 2.1高分子膜材料 高分子膜材料一般制备简单,性能稳定,耐溶剂性能较好,而广泛的应用于膜分离领域。用于制备气体分离膜的高分子膜材料主要有以下几种。 1)乙基纤维素EC 纤维素就是一种较为常见的天然高分子材料,乙基纤维素就是由碱纤维素与乙基卤化物反应得到,由于EC的热稳定性好、具有较强的抗生物性能,且气体气体的渗透系数 与气体渗透选择性较高,常用作空气中的氧、氮分离富集。 2)双酚A型聚砜PSF 双酚A型聚砜主链上含有砜基的一种线性杂链高分子膜材料,具有优异的热稳定性、力学性质与较强的刚性及较好的化学稳定性,耐蒸汽性能好,PSF的玻化温度(Tg)为190℃。可用于制备复合膜的支撑层,合成氨尾气回收氢,目前已得到工业化生产。 3)聚芳醚砜PES

陶瓷膜过滤器工作原理

陶瓷膜过滤器工作原理 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。本文简单介绍下以陶瓷膜为代表的无机膜材料及其分离器构成与工作原理。 关键词:膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 什么是膜?膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图 2 什么是陶瓷膜 2.1陶瓷膜是采用高纯度α-Al2O3在高温条件下烧制而成,具有筛分过滤作用的多孔固体连续介质。南京博滤工业无机陶瓷膜呈不对称结构,由三层组成:支撑层、过渡层和分离层。

膜分离技术目前的研究进展

生物分离工程期末论文 题目:膜分离技术目前的研究进展学院:化学工程学院 姓名:熊慧欣 班级:生物201301 学号:120133302064 指导老师:何璐 年月日:2015/12/7

目录 摘要 (1) Abstract (2) 1膜分离技术概述 (4) 1.1膜分离技术 (5) 1.2特点 (6) 1.3膜的分类 (5) 1.4膜材料、分类及膜分离装置 (6) 2膜分离技术的分离原理和特点 (1) 2.1纳滤(NF) (2) 2.2超滤(UF) (3) 2.3微滤(MF) (2) 2.4反渗透(RO) (3) 2.5电渗析(ED) (2) 3膜分离技术的发展及研究进展 (4) 3.1国外分离技术的发展及研究进展 (5) 3.2国内分离技术的发展及研究进展 (6) 4膜分离技术的应用 (4) 4.1膜分离技术在医药医疗中的应用 (5) 4.1.1膜分离技术在中药生产中的研究和应用 (6) 4.1.2分离技术在西药及生物制剂中的研究和应用 (5) 4.1.3膜分离技术在人工肾上的应用 (6)

4.2膜技术在工业废水处理中的应用 (5) 4.2.1含油废水的处理 (6) 4.2.2造纸废水的处理 (5) 5展望 (4) 参考文献 (1)

膜分离技术目前的研究进展 熊慧欣 (辽宁科技大学化学工程学院生物工程201301 120133302064) 摘要:介绍了膜分离技术原理、膜技术设备组成、膜分离技术的发展,阐述了膜分离技术在工业中的应用,展望了膜分离技术的发展趋势。 关键词:膜分离技术;研究进展;应用 The development of membrane separation technology and its present status of research progress XIONG Hui-xin (School of Chemical Engineering,University of Science and Technology Liaoning ,Bioengineering201301,120133302064) Abstract:The principles of membrane separation technology,equipment components of membrane technology,the development of membrane separation technology,and its application in industry were summarized in the review,the development trend of membrane separation technology in the future was prospected. Key words:barrier separation technology;research progress;application 膜是具有选择性分离功能的材料。膜分离包括最简单的滤纸过滤到高选择性的生物膜分离。膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时实现选择性分离的技术! ,膜分离技术具有分离、浓缩、纯化和精制的功能。膜分离技术已广泛应用超纯水、资源回收、食品工业、植物深加工、苦咸水淡化、饮料工业、医药工业、农产品深加工、生物医药、中药制剂、食品工业废水处理、临床医学、印染废水、饮料工业、生物发酵等,已成为当今分离科学中最重要的手段之一[1-5]。本文介绍了膜分离技术的研究进展。 1膜分离技术概述 1.1膜分离技术 膜分离是指借助膜的选择渗透作用在外界能量或化学位差的推动下对混合物中溶质和溶剂进行分离、分级提纯和富集。该技术作为新的分离净化和浓缩技术与其他传统的分离方法相比常温下操作有高效、节能、工艺简便、投资少、污染小并且膜分离具有过程简单、经济适用、分离系数较大、没有污染能适合常温下连续操作、可直接放大、可专一配膜等优点人类对于膜的研究源于18世纪, 但是膜分离技术的工业应用是在上个世纪年代以后从六十年代的反渗透到九十年代的渗透汽化,膜分离技术发展迅速, 膜分离技术的应用领域不断扩大常用的膜分离技术有超滤(UF)、微滤(MF)、反渗透(RO)、纳滤(NF)、电渗析(ED)等现已涉及人们生产和生活的各个方面对水处理工业、化工生产、医药、食品生产和生物工程等领域的发展产生了巨大的作用[6]。

相关主题