搜档网
当前位置:搜档网 › 数字示波器技术要求

数字示波器技术要求

数字示波器技术要求
数字示波器技术要求

1、数字示波器

技术要求:

1、带宽100MHz;

2、双通道独立采样,两通道同时使用时每通道最大采样率不少于2GS/s;

3、7 英寸WVGA (800X480)有源TFT彩色显示器;

4、双窗口FFT,可同时监测时域和频域,FFT窗口: Hanning, 平顶, 矩形,2048个样点;

5、包含双通道6位频率计数器,每个计数器的触发电平可以独立控制,可同时监测两个不同的信号频率,百万分之51精度;

6、自动设置和自动量程功能;

7、集成课件功能,提供课件软件,能够把教学材料整合到示波器内,示波器可以存储100 MB的课程教材,课件信息直接显示在示波器显示屏上,可以用来提供分步说明、背景理论、提示和技巧,便于学生编制实验工作文档;并可登录课件网页,可以分享到各地教育工作者有特色的课程材料;

8、上下文相关帮助系统;

9、34种自动测量参数;

10、保修三年。

2、混合域示波器

技术要求:

1、带宽350MHz,可后续升级到每通道1GHz带宽;4条模拟通道,每通道标配一条500MHz/10×/3.9pF电容负载的无源电压探头;

2、每条通道采样率2.5GS/s

3、每条通道存储深度10M

4、包含一条独立的9KHz-350MHz射频通道,N型接头输入,提供专门的前面板控件,可三维频谱图显示,可测量:信道功率、ACPR、OBW,可扩展到3GHz;

5、Wave Inspector波形搜索和导航功能,可搜索所有满足设置条件的信号;

6、可后期扩展16条逻辑分析通道、50MHz任意波形发生器通道、3GHz频谱仪频宽、串行总线分析,功率分析等;

7、包含数字电压表

8、不少于280000wfm/s的波形捕获率;

9、保修三年。

3、源表

技术要求:

1、电压源输出范围±5uV~±210V,测量1uV~210V;

2、电流源输出范围±50pA~±1.05A,测量:10pA~1.05A;

3、功率22W;

4、电阻测量范围:0.2Ω~200MΩ;

5、六位半万用表,最大回读速率2000readings/s;

6、保修一年;

4、直流电源

技术要求:

1、两路0~30V/0~3A连续可调,一路5V/3A可调;

2、所有通道独立控制,独立显示,数字按键输入,输出隔离;

3、连续设置和显示3个通道的电压和电流;

3、电压分辨率10mV,电流分辨率1mA;

4、编程精度:电压≤0.06%+20mV,电流≤0.2%+10mA;

5、回读精度:电压≤0.06%+20mV,电流≤0.2%+10mA;

6、保修三年

5、信号发生器

技术要求:

1、双通道,1μHz~25MHz频率范围,1uHz频率分辨率;

2、全频范围内1mVpp 到10Vpp输出,14位垂直分辨率;

3、50种内置连续模式、扫描模式、突发模式和调制模式,调制的类型:幅度调制、频率调制、相位调制、频移键控;

4、3.95英寸TFT液晶显示屏;

5、内置200MHz,6位频率计;

6、采样率125MSa/s;

7、64M内存存储任意波形;

8、保修三年;

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

数字示波器使用实验操作指导

DS1000E-EDU 数字示波器实验操作指导 一、显示和测量正弦信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1、欲迅速显示该信号,请按如下步骤操作: (1) 信号发生器输出一正弦信号,将通道1连接到信号发生器。 (2) 按下 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作 (1) 测量峰峰值 按下 Measure 按键以显示自动测量菜单。 按下1号菜单操作键以选择信源 CH1 。 按下2号菜单操作键选择测量类型: 电压测量 。 在电压测量弹出菜单中选择测量参数: 峰峰值 。 此时,您可以在屏幕左下角发现峰峰值的显示。 (2) 测量频率 按下3号菜单操作键选择测量类型: 时间测量 。 在时间测量弹出菜单中选择测量参数: 频率 。 此时,您可以在屏幕下方发现频率的显示。 3、用Cursor 光标测量功能进行手动测量 (1) 信号发生器输出一任意频率的正弦信号,将信号发生器输出端连接示波器通道1。 (2) 按下Cursor 光标测量键,选择手动测量,测量出信号的周期、频率,电压峰峰值,画出信号波形,标出周期、频率,电压峰峰值。 二、X -Y 功能的应用,观察李沙如图形 1. 将信号A 连接通道1,将信号B 连接通道2。 2. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。 3. 按下 AUTO (自动设置)按钮。 4. 调整垂直旋钮使两路信号显示的幅值大约相等。 5. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。 6. 按下时基菜单框按钮以选择 X -Y 。示波器将以李沙如(Lissajous )图形模式显示。 7. 调整垂直、垂直和水平旋钮使波形达到最佳效果。 8.调节信号发生器A 路信号频率为f X =50Hz ,根据频率比值关系和f X =50Hz ,算出相应的f Y 值。缓慢调节信号发生器B 路信号频率频率f Y ,分别调出 ==Y X X Y N N f f ::3:1;2:1;3:2;1:1的稳定李萨如图形,将所见稳定图形描绘在记录表格(参考下表)中并同时记录信号发生器相应的频率读数f Y 。并计算f Y 信和f Y 的相对偏差

数字示波器的简单使用

预备实验:数字示波器使用方法(简介) 内容提示:1、数字示波器功能简介 2、示波器面板照 3、示波器各按钮操作功能 4、示波显示状态的含义 5、常用功能按钮的操作 6、垂直控制按钮的操作 7、水平控制按钮的操作显示 8、触发电平控制按钮的操作 9、操作注意事项 10、显示、测量直流信号 11、显示、测量交流信号 一、数字示波器功能简介 数字示波器是一种小巧,轻型、便携式的可用来进行以接地电平为参考点测量的数字式实时示波器。它的屏幕既能显示被测信号的波形,还能显示被测信号的电压幅度、周期、频率等有关电参数。 ADS1000CA特点: ●全新的超薄外观设计、体积小巧、携带更方便 ●彩色TFT LCD 显示,波形显示更清晰、稳定 ●双通道,带宽: 25MHZ-100MHZ ●实时采样率:1GSa/s ●存储深度:2Mpts ●丰富的触发功能:边沿、脉冲、视频、斜率、交替、延迟 ●独特的数字滤波与波形录制功能 ●Pass/Fail 功能 ●32 种自动测量功能 ●2 组参考波形、20 组普通波形、20 组设置内部存储/调出;支持波形、设置、CSV 和位图文件U 盘外部存储及调出 ●手动、追踪、自动光标测量功能 ●通道波形与FFT 波形同时分屏显示功能 ●模拟通道的波形亮度及屏幕网格亮度可调 ●弹出式菜单显示模式,用户操作更灵活、自然 ●丰富的界面显示风格:经典、现代、传统、简洁 ●多种语言界面显示,中英文在线帮助系统 ●标准配置接口:USB Host:支持U 盘存储并能通过U 盘进行系统软件升级; USB Device:支持PictBridge 直接打印及与PC 连接远程控制;RS-232

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

数字示波器使用方法

数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 区分模拟带宽和数字实时带宽 带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。 有关采样速率 采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。 1.如果采样速率不够,容易出现混迭现象 如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生: ·调整扫速; ·采用自动设置(Autoset); ·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。 ·如果示波器有Insta Vu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。 2.采样速率与t/div的关系 每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出: fs=N/(t/div) N为每格采样点

数字示波器使用方法总结

数字示波器使用小方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU→Type(main)→Edge(pop-up)→Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU键,再按显示屏下方的T ype键,重复按这个钮直到Edge高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC键。 注:main代表显示屏下方的键,Side代表显示屏右方的键,pop-up代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (1) 二.使用探头 (2) 三.触发方式 (11) 四.测试方法 (15) 五.小常识、小经验 (23)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线)说明为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端说明交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。 尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头。 说明避免对示波器和探头造成损伤,尤其是有源探头。厂家说明。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏说明信号幅度超过±40V时,用有源探头P6245和P6243测量会造成探头的损坏。不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

数字示波器使用..

数字示波器使用 §1 基本操作常识 一、功能检查 1.接通仪器电源. 仪器执行所有自检项目,并确认通过自检,按SA VE/RECALL按钮,从顶部菜单框,默认的探头菜单衰减系数设值定为10X. 2.将p2100探头上的开关设定为10x,并将示波器探头与通道1连接.将探头连接器上的插对准ch1同轴电缆插接件上的插头并插入,然后向右旋转以拧紧探头. 把探头端部和接地夹接到探头补偿器的连接器上. 3.按自动设置钮.几秒钟内,可见到方波显示 按ch1 菜单按钮两次以关闭通道1 , 按ch2 菜单按钮以打开通道2.. 二、探头补偿 在首次将探头与任一输入通道连接时,进行此调节,使探头与输入通道相匹配. 1.将探头菜单衰减系数设定为10x, 将探头上的开关设定为10x 并将示波器探头与通道1连接. 将探头端部与探头补偿器的5伏连接器相连,基准导线与探头补偿器的地线连接器相连,打开通道,然后按自动门置. 2.检查所显示波形的形状. 3.如必要,调节探头. 自校准:应将所有探头或导线与输入连接器断开,然后,按UTILITY辅助功能钮,选择DO SELF CAL执行自校准,以确认准备就绪。 三、探头衰减系数设定: 探头有多种衰减系数,它们会影响示波器垂直标尺度数. 如改变(检查)探头衰减系数设定值,按所使用通道的---垂直功能菜单钮, 然后按---探头钮旁的选择钮,直至显示正确的设定值. 该设定在再次改变前一直有效. 注意:出厂时预定值为10x. 确认在探头上衰减开关的设定与示波器上探头探头菜单的选项相同.探头开关的设定值为1 和10. 注意:衰减开关,设定在1 时探头将示波器的带宽限制在7兆,欲全带宽时,必将开关设定为10-. 四、基本概念 (一)触发: 触发决定了示波器何时开始采集数据和显示波形,一旦触发被正确设定.它可以把不稳定的显示或黑屏转换成有意义的波形. 示波器在开始采集数据时,先收集足够的数据用来在触发点的左方画出波形,示波器在等待触发条件发生的同时连续地采集数据.当检测到触发后,示波器连续地采集足够的数据以在触发点的右方画出波形. 1.信源: 触发可从多种信源得到:输入通道,市电,外部触发.

数字示波器使用注意事项

数字示波器使用注意事项 首先在使用仪器前应仔细阅读说明书,对功能、使用注意事项有详细的了解。以下内容如果和说明书有出入以说明书和机身标示或其他声明的厂商数据、说明为准 1.一般情况下要求被测量设备和测量设备都应可靠连接参考地,如不能满足时应使用隔离系统做良好的隔离后才能测量,例如:使用隔离变压器,示波器使用电池供电,使用隔离探头等。 2.一般数字示波器配合探头使用时,只能测量(被测信号到信号地就是大地)信号端输出幅度小于300V CAT II信号的波形。绝对不能测量市电AC220V 或与市电AC220V不能隔离的电子设备的浮地信号。 3. 通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差; 电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。 4.用户如须要测量与市电AC220V不能隔离的电子设备进行浮地信号测试时,必使用高压隔离差分探头或示波器使用电池供电。

非隔离示波器探头使用注意事项 1、首先要注意带宽是否满足要求,通常探头上标明多少MHz。 2、探头在使用之前应注意阻抗是否匹配。 3、探头电容和阻抗在不同档时并不相同,通常探头上会标明什么 档位多少pF的电容,一般高衰减档电容值小于低衰减档,测量敏感信号时,如高阻输出信号、晶振信号等一般要求使用10X 档测量。 4、示波器探头在使用时,要保证地线夹子可靠连接参考点 5、使用多通道测量时,由于非隔离探头底线连通,地线夹子应连 于相同点,如需测量非共地信号时需使用隔离探头并注意隔离电压不可超过隔离探头耐压范围 6、注意!!!现有的Agilent 1000X探头为非隔离探头,探头负 接头和BNC外圈是连通的。 7、

示波器基础(一)——示波器基础知识之一

示波器基础(一)——示波器基础知识之一1.1 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。 将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。 影响屏幕的控制机构有:

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,[是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波]。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路:

1、频率(周期)不变,脉宽改变,其方法如下: [改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性],但其最主要的缺点是占空 比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion 的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提: 1. 扫频:一般分成线性(Lin)及对数(Log)扫频; 2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制; 上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上; 但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。而TTL INV 则只要加个NOT Gate即可;

数字示波器的使用

数字示波器的使用 实验报告 姓名: 学号: 座位号: 指导教师: 报告箱号: 实验日期:年月日星期第节

数字示波器的使用 预习提示:完整地学习使用某一仪器的最好方法一般是对照着用户手册,按照提示一步一步地操作,并观察记录实验现象和结果,思考自己所完成的仪器操作的作用。但初次接触像示波器这样的通用仪器,一方面,我们不可能在短时间内学会其所有的操作;另一方面,通用仪器的各种功能之间并不一定有直接的相互关联,我们可以选择其中的部分功能进行学习,其他功能可以留到以后用到时再参考用户手册来学习和实践。实验预习时,学生可以粗读用户手册中与实验内容相关的章节(第一章和第二章),知道有关功能/操作大致是哪些步骤、可以得到哪些结果。千万不要尝试去“背诵”用户手册的某个章节甚至整本用户手册。 实验目的: 预习作业: 1.示波器是一个什么样的仪器?它有哪些应用? 2.本实验所用数字示波器的电压显示范围V pp是_________;若待测量信号的V pp小于此值,则可将信号 直接接到数字示波器的信号输入端(通道1或通道2);若待测量信号的V pp大于此值,则需用示波器10:1衰减探头,且在探头线___________开关打开的情况下才能将信号接入示波器。 3.信号接入示波器之后,如果发现信号幅度纵向只占屏幕的很小部分或上下均超出屏幕显示范围,应调 节相应通道的________旋钮;若信号纵向偏离屏幕中心位置,则应调节相应通道的_________旋钮。若屏幕上显示的信号周期数太少或太多,则应调节该通道的________旋钮。 4.若屏幕上显示的信号一直在左右移动,很可能是因为_________源/模式选择或________电平设置不当。 5.(本题可在实验过程中完成)电压档位显示在液晶屏的_________位置,时基档位显示在液晶屏的 _________位置,触发源和触发模式选择显示在液晶屏的________位置。 6.(本题可在实验过程中完成)屏幕上,信号电压的零点由显示屏________位置的_______符号来指示。 信号以直流耦合方式输入时的指示符号是________;信号以交流耦合方式输入时的指示符号是 ________。

示波器的认识及使用

调整与使用示波器 郭明超 09015008 1.实验目的 (1)了解示波器的基本结构,熟悉数字示波器的调节和使用; (2)学会用数字示波器观测电压波形; (3)通过观测李萨如图形,学会一种用示波器测量频率和相位的方法。 2.实验仪器 GDS-2062数字示波器一台,F-05数字合成函数信号发生器一台。 3.实验原理 (1) 示波器的基本机构 示波器的规格和型号较多,但所有的示波器所具有的基本结构都相同,大致可分为:示波管(又称阴极射线管)、X 轴放大器和Y 轴放大器(含各自的衰减器)、锯齿波发生器等,见图8-1所示。 ○1示波管 示波管是示波器的核心部件,它主要包括电子枪、偏转系统和荧光屏三部分,这三部分全部被密封在高真空的玻璃外壳内(如图8-2所示)。电子枪有灯丝、阴极、控制栅极、第一阳极和第二阳极共五部分组成。灯丝通电后加热表面涂有氧化物的金属圆筒(即阴极),使之发射电子。控制栅极是一个套在阴极外面的金属圆筒,其顶端有一小孔,它的电位比阴极低,对阴极发射出来的电子起减速作用, 只有初速度较大的电子才可能穿过栅极顶端的小孔,进入加速区的阳极。因此控制栅极实际上起控制电子流密度的作用。调整示波器面板上的“亮度”旋纽,其实就是调节栅极电位改变飞出栅极的电子数目,飞出的电子数目越多,荧光屏上亮斑就越亮。从栅极飞出来的电子再经过第一阳极和第二阳极的加速与聚焦后打到荧光屏上形成一个明亮清晰的小圆点。偏转系统是由两对相互垂直的电极板组成。电子束通过偏转系统时,同时受到两个相互垂直方向的电场的作用,荧光屏上小亮点的运动轨迹就是电子束在这两个方向运动的叠加。 ○ 2X 、Y 轴电压放大器和衰减器 由于示波管本身的X 及Y 偏转板的灵敏度不高(约0.1~1mm /V ),当加在偏转板上的信号电压较小时,电子束不能发生足够的偏转,屏上的光点位移较小,不便观测。这就需要 Y 输入 X 图8-1 示波器的基本结构图 偏转系统 图8-2 示波管结构图

示波器常识讲课教案

示波器的触发功能 汪进进美国力科公司深圳代表处 我记得初入力科的时候,在关于示波器的三天基础知识培训中有一整天的时间都是在练习触发功能。“触发”似乎是初学者学习示波器的难点。我们常帮工程师现场解决关于触发 的测试问题的案例也很多。通常有些工程师只知道“Auto Setup”之后看到屏幕上有波形然后“Stop”下来再展开波形左右移动查看细节。因此,我有时候甚至接到这样的电话,质疑我们的示波器有问题,因为他在”Auto Setup”之后看到的波形总是在屏幕上来回“晃动”。但是当我问他触发源设置得对不对,触发电平设置得合适否,是否采用了合适的触发方式等问题时,我没有得到答案; 即使有时遇到我心目中的高手,我也常发现他们对触发的基本概念都没有建立起来。我喜欢在写作某个主题之前google一下,但是很遗憾我没有找到一篇堪称完整的启蒙文章。虽然三家示波器厂家的PPT讲稿中都有很多关于触发的,但细致介绍触发的 中文文章真的很少。当然,这也是幸运的,因为我的拙文也许将是很多工程师茅塞顿开的启蒙之作。 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常地丰富,通过触发设置使用户可以看到触发前的信号也可以看到触发后的信号。对于高速信号的分析,其实很少去谈触发,因为通常是捕获很长时间的波形然后做眼图和抖动分析。触发可能对于低速信号的测量应用得频繁些,因为低速信号通常会遇到很怪异的信号需要通过触发来隔离。假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。如图一所示。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。其主要目的是保证波形能显示出来,这对于拿到示波器不知道如何使波形“出来”的新手是有用的。但如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量甚至得出结论是不对的。示波器毕竟是工程师的眼睛,工程师需要透彻掌握这个工具,用好这双眼睛。 所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一

数字示波器的使用

实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此

示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。操作时,使用“电平(LEVEL)”旋钮,改变触发电平高度,当待测电压达到触发电平时,扫描发生器开始扫描,直到一个扫描周期结束。但如果触发电位高度超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2. 示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示:

示波器基础知识

示波器基础知识 示波器是一种图形显示设备,它描绘电信号的波形曲线。这一简单的波形能够说明信号的许多特性:信号的时间和电压值、振荡信号的频率、信号所代表电路中“变化部分”信号的特定部分相对于其它部分的发生频率、是否存在故障部件使信号产生失真、信号的直流成份(DC)和交流成份(AC)、信号的噪声值和噪声随时间变化的情况、比较多个波形信号等。 1、示波器的发展过程 初期主要为模拟示波器 廿世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,泰克成功开发带宽10MHz的同步示波器,这是近代示波器的基础。五十年代半导体和电子计算机的问世,促进电子示波器的带宽达到10 0MHz。六十年代美国、日本、英国、法国在电子示波器开发方面各有不同的贡献,出现带宽6GHz的取样示波器、带宽4GHz的行波示波管、1GHz的存储示波管;便携式、插件式示波器成为系列产品。七十年代模拟式电子示波器达到高峰,行谱系列非常完整,带宽1GHz的多功能插件式示波器标志着当时科学技术的高水平,为测试数字电路又增添逻辑示波器和数字波形记录器。模拟示波器从此没有更大的进展,开始让位于数字示波器,英国和法国甚至退出示波器市场,技术以美国领先,中低档产品由日本生产。 模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和预前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器逐渐从前台退到后台。

但是在发展初期模拟示波器的某些特点,却是数字示波器所不具备的: ○操作简单:全部操作都在面板上可以找到,波形反应及时,数字示波器往往要较长处理时间。 ○垂直分辨率高:连续而且无限级,数字示波器分辨率一般只有8位至1 0位。 ○数据更新快:每秒捕捉几十万个波形,数字示波器每秒捕捉几十个波形。 ○实时带宽和实时显示:连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉神经十分灵敏,屏幕波形瞬间反映至大脑作出判断,细微变化都可感知。因此,刚开始模拟示波器深受使用者的欢迎。 中期数字示波器独领风骚 八十年代的数字示波器处在转型阶段,还有不少地方要改进,美国的TEK 公司和HP公司都对数字示波器的发展作出贡献。它们后来停产模拟示波器,并且只生产性能好的数字示波器。进入九十年代,数字示波器除了提高带宽到1G Hz以上,更重要的是它的全面性能超越模拟示波器。出现所谓数字示波器模拟化的现象,换句话说,尽量吸收模拟示波器的优点,使数字示波器更好用。 数字示波器首先在取样率上提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1 GHz的取样率就是5GHz/s,甚至10GHz/s。 其次,提高数字示波器的更新率,达到模拟示波器相同水平,最高可达每秒40万个波形,使观察偶发信号和捕捉毛刺脉冲的能力大为增强。

示波器的使用注意事项

别看一个示波器探头很简单,其实还是很有讲究的。以下是圈圈使用示波器探头的一点小经验,供大家使用时参考一下。 首先是带宽,这个通常会在探头上写明,多少MHz。如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。 另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。数字示波器不用调节)。然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常是1KHz的方波信号),然后调节扫描时间旋钮,使波形能够显示2个周期左右。调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。然后观察方波的上、下两边,看是否水平。如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。 另外就是示波器上还有一个选择量程的小开关:X10和X1。当选择X1档时,信号是没经衰减进入示波器的。而选择X10档时,信号是经过衰减到1/10再到示波器的。因此,当使用示波器的X10档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。另外,X10档的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波形时,把探头打到X10档可更好的测量。但要注意,在不确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成这样的习惯是很有必要的,不然,哪天万一因为这样损坏了示波器,要后悔就来不及了。经常有人提问,为什么用示波器看不到晶振引脚上的波形?一个可能的原因就是因为使用的是探头的X1档,这时相当于一个很重的负载(一个示波器探头使用×1档具有上百

数字示波器原理及使用

数字示波器的原理及使用 【摘要】示波器是以直角坐标为参数系,以时间扫描为时基两维地显示物理量——电量瞬时变化的仪器,它不但能观测低频信号(包括单次信号),同时也能观测高频信号和快速脉冲信号,并能对其表征的参量进行分析和测量。随着数字集成电路技术的发展而出现的数字存储示波器,不但能对波形进行显示,还能对波形进行存储、分析、计算,并能组成自动测试系统,使之成为了电子测量领域的基础测试仪器之一。 关键词:示波器,信号,数字集成电路,数字存储 【Abstract】Oscilloscope is an instrument that can display electrical signals in rectangular coordinates system based on amplitude and time. It can not only observe the low-frequency signal (including single signal), but also the high-frequency signal and pulse signal, and parameters on the characterization of the analysis and measurement. The digital storage oscilloscope was invented with the development of digital integrated circuit technology, which can not only display the waveform but also can store, analysis, calculate the Parameters of the signal and can form an automatic testing system. The digital storage oscilloscope have become one of the basic testing instrument for electronic measurement . Keywords: oscilloscope,signal,digital integrated circuit, digital storage oscilloscope 1.前言 随着数字集成电路技术的发展,数字式示波器的出现以其存储波形及多种信号分析、计算、处理等优良的性能逐步取代模拟示波器。与模拟示波器相比,数字示波器可以实现高带宽及方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 2.数字示波器的基本原理 2.1数字存储示波器的组成原理 典型的数字示波器原理框图如图2.1所示,它分为实时和存储两种工作状态,当其以实时状态工作时,其电路组成原理与模拟示波器相同。当其以存储状态工作时,它的工作过程一般分为存储和显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过采样和量化两个过程的数字化处理,将模拟信号转化成数字信号后,在逻辑控制电路的控制下将数字信号写入到存储器中。量化过程就是将采样获得的离散值通过 A/D转换器转换成二进制数字。采样,量化及写入过程都是在同一时钟频率下进行的。在显示工作阶段,将数字信号从存储器中读出来,并经D/A转换器转换成模拟信号,经垂直放大器放大加到CRT 的Y偏转板。与此同时,CPU的读地址计数脉冲加之D/A转换器,得到一个阶梯波的扫描电压,加到水平放大器放大,驱动CRT的X偏转板,从而实现在CRT上以稠密的光点包络重现模拟信号。

示波器常识

一.数字示波器存储时间长度计算 以常见示波器TDS220(存储深度2.5k)为例,如测一个300kHz方波 时间轴设定25us/div , 此时取样点间隔0.1us , 总记录时长250us , 一个周期的波形约由34个点组成 时间轴设定50us/div , 此时取样点间隔0.2us , 总记录时长500us , 一个周期的波形约由17个点组成 时间轴设定100us/div , 此时取样点间隔0.4us , 总记录时长1ms , 一个周期的波形约由8个点组成二. 如何选择示波器 1了解您的信号? 您要知道您用示波器观察什么?既您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时显示多少信号? 2模拟还是数字? 参见前面的《示波器发展》。总之,传统的观点认为模拟示波器具有熟悉的面板控制,价格低廉,因而总觉得模拟示波器“使用方便”。但是随着A/D转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的各种功能,数字示波器已独领风骚。 3带宽如何? 带宽一般定义为正弦输入信号幅度衰减到-3dB时的频率,即70.7%,带宽决定示波器对信号的基本测量能力。随着信号频率的增加,示波器对信号的准确显示能力将下降,如果没有足够的带宽,示波器将无法分辨高频变化。幅度将出现失真,边缘将会消失,细节数据将被丢失。如果没有足够的带宽,得到的关于信号的所有特性,响铃和振鸣等都毫无意义。 一个决定您所需要的示波器带宽有效的经验法则是“5倍准则”;即将您要测量的信号最高频率分量乘以5。 这将会使您在测量中获得高于2%的精度。 在某些应用场合,您不知道你的感兴趣的信号带宽,但是您知道它的最快上升时间,大多数字示波器的频率响应用下面的公式来计算关联带宽和仪器的上升时间:带宽= 0.35 ÷信号的最快上升时间。 带宽有两种类型:重复(或等效时间)带宽和实时(或单次)带宽。重复带宽只适用于重复的信号,显示来自于多次信号采集期间的采样。实时带宽是示波器的单次采样中所能捕捉的最高频率,且当捕捉的事件不是经常出现时要求相当苛刻。实时带宽与采样速率联系在一起。 由于更宽的带宽往往意味着更高的价格,因此应对照你的预算来评定通常要观察信号的频率成分。 4采样速率怎样? 定义为每秒采样次数(Sa/s),指数字示波器对信号采样的频率。示波器的采样速率越快,所显示的波形的分辨率和清晰度就高,重要信息和事件丢失的概率就越小。 如果需要观测较长时间范围内的慢变信号,则最小采样速率就变得较为重要。为了在显示的波形记录中保持固定的波形数,需要调整水平控制按钮,而所显示的采样速率也将随着水平调节按钮的调节而变化。 如何计算采样速率?计算方法取决于所测量的波形的类型,以及示波器所采用的信号重建方式。 为了准确地再现信号并避免混淆,奈奎斯定理规定:信号的采样速率必须不小于其最高频率成分的两倍。 然而,这个定理的前提是基于无限长时间和连续的信号。由于没有示波器可以提供无限时间的记录长度,而且,从定义上看,低频干扰是不连续的,所以采用两倍于最高频率成分的采样速率通常是不够的。 实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法。一些示波器会为操作者提供以下选择:测量正弦信号的正弦插值法,以及测量矩形波、脉冲和其他信号类型的线性插值法。 有一个在比较取样速率和信号带宽时很有用的经验法则:如果您正在观察的示波器有内插(通过筛选以便在取样点间重新生成),则(取样速率/信号带宽)的比值至少应为4∶1。无正弦内插时,则应采取10∶1的比值。 5屏幕刷新率多快? 所有的示波器都会闪烁。也就是说,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不再进行测量。这就是波形捕获速率,也称屏幕刷新率,表示为波形数每秒(wfms/s)。采样速率表示的是示波器在一个波形或周期内,采样输入信号的频率; 波形捕获速率则是指示波器采集波形的速度。波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。高波形捕获速率的示波器将会提供更多的重要信号特性,

相关主题