搜档网
当前位置:搜档网 › Meniscus Confined Three Dimensional Electrodeposition for Direct-Writing of Wire Bonds

Meniscus Confined Three Dimensional Electrodeposition for Direct-Writing of Wire Bonds

Meniscus Confined Three Dimensional Electrodeposition for Direct-Writing of Wire Bonds
Meniscus Confined Three Dimensional Electrodeposition for Direct-Writing of Wire Bonds

DOI: 10.1126/science.1190496

, 313 (2010);

329 Science Jie Hu and Min-Feng Yu Writing of Wire Bonds Meniscus-Confined Three-Dimensional Electrodeposition for Direct

This copy is for your personal, non-commercial use only.

clicking here.colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others

here.following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles

): September 7, 2014 https://www.sodocs.net/doc/0c4447180.html, (this information is current as of The following resources related to this article are available online at

https://www.sodocs.net/doc/0c4447180.html,/content/329/5989/313.full.html version of this article at:

including high-resolution figures, can be found in the online Updated information and services, https://www.sodocs.net/doc/0c4447180.html,/content/suppl/2010/07/15/329.5989.313.DC1.html can be found at:

Supporting Online Material https://www.sodocs.net/doc/0c4447180.html,/content/329/5989/313.full.html#ref-list-1, 1 of which can be accessed free:

cites 15 articles This article

https://www.sodocs.net/doc/0c4447180.html,/cgi/collection/app_physics Physics, Applied

subject collections:This article appears in the following registered trademark of AAAS.

is a Science 2010 by the American Association for the Advancement of Science; all rights reserved. The title Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n S e p t e m b e r 7, 2014

w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m

in considerably more active designs.On the ex-perimental side,by analogy with our previous results with computationally designed Kemp elim-inases (5),it should be possible to increase the activity of these enzymes by directed evolution.The agreement between the designed and the experimentally observed substrate specificity and stereoselectivity of DA_20_10is notable given the importance of selectivity in organic chemistry reactions.The capability to rationally control both substrate specificity and stereoselectivity via de-signed enzymes opens up new avenues of research in both basic and applied chemistry.

References and Notes

1.T.Ose et al .,Nature 422,185(2003).

2.J.M.Serafimov,D.Gillingham,S.Kuster,D.Hilvert,J.Am.Chem.Soc.130,7798(2008).

3.S.P.Kim,A.G.Leach,K.N.Houk,https://www.sodocs.net/doc/0c4447180.html,.Chem.67,4250(2002).

4.Materials and methods are available as supporting material on Science Online.

5.D.R?thlisberger et al .,Nature 453,190(2008).

6.L.Jiang et al .,Science 319,1387(2008).

7.D.L.Boger,in Modern Organic Synthesis:Lecture Notes (The Scripps Research Institute Press,San Diego,CA,1999),pp.213–272.

8.V.E.Gouverneur et al .,Science 262,204(1993).9.J.F.Blake,D.Lim,W.L.Jorgensen,https://www.sodocs.net/doc/0c4447180.html,.Chem.59,803(1994).

10.M.I.Page,W.P.Jencks,Proc.Natl.Acad.Sci.U.S.A.68,

1678(1971).

11.A.Zanghellini et al .,Protein Sci.15,2785(2006).12.B.Kuhlman,D.Baker,Proc.Natl.Acad.Sci.U.S.A.97,

10383(2000).

13.Single-letter abbreviations for the amino acid residues

are as follows:A,Ala;C,Cys;D,Asp;E,Glu;F,Phe;G,Gly;H,His;I,Ile;K,Lys;L,Leu;M,Met;N,Asn;P,Pro;Q,Gln;R,Arg;S,Ser;T,Thr;V,Val;W,Trp;and Y,Tyr.

14.J.T.Yli-Kauhaluoma et al .,J.Am.Chem.Soc.117,7041

(1995).

15.R.Breslow,S.D.Dong,Chem.Rev.98,1997

(1998).

16.C.E.Cannizzaro,J.A.Ashley,K.D.Janda,K.N.Houk,

J.Am.Chem.Soc.125,2489(2003).

17.The PyMOL Molecular Graphics System,Schr?dinger,LLC,

Version 1.2r3pre.

18.This work was supported by the Defense Advanced

Research Projects Agency (DARPA),the Howard Hughes Medical Institute (HHMI),a Molecular Biophysics traineeship from the NIH for J.B.S.,and the Lawrence Livermore National Laboratory Lawrence Scholars program for G.K.We thank M.Toscano (ETH)and C.Rosewall (University of Washington)for chemical synthesis and B.Siegel

and https://www.sodocs.net/doc/0c4447180.html,m for helpful comments on the manuscript.The x-ray crystallographic coordinates have been deposited in the Protein Data Bank with

accession ID 3I1C.The University of Washington has submitted a patent application on the protein sequence coding for the engineered enzymes reported here as well as some of the design methodology.

Supporting Online Material

https://www.sodocs.net/doc/0c4447180.html,/cgi/content/full/329/5989/309/DC1Materials and Methods SOM Text

Figs.S1to S13Tables S1to S5References

30March 2010;accepted 1June 201010.1126/science.1190239

Meniscus-Confined Three-Dimensional Electrodeposition for Direct Writing of Wire Bonds

Jie Hu and Min-Feng Yu *

Continued progress in the electronics industry depends on downsizing,to a few micrometers,the wire bonds required for wiring integrated chips into circuit boards.We developed an electrodeposition method that exploits the thermodynamic stability of a microscale or nanoscale liquid meniscus to “write ”pure copper and platinum three-dimensional structures of designed shapes and sizes in an ambient air

environment.We demonstrated an automated wire-bonding process that enabled wire diameters of less than 1micrometer and bond sizes of less than 3micrometers,with a breakdown current density of more than 1011amperes per square meter for the wire bonds.The technology was used to fabricate high-density and high-quality interconnects,as well as complex three-dimensional microscale and even nanoscale metallic structures.

A

s an essential part of any integrated chip,interconnects provide the electrical paths needed in a circuit to pass signals and

data among electrical devices or device units.The increasing device density in electronic chips has led to exponential growth in the density of inter-connects and the complexity of their design.With the introduction of three-dimensional (3D)chip ar-chitecture,interchip vias (1)constitute one method to integrate devices in 3D stacks,but alternative interconnect technologies that can provide flexible means to electrically wire microscale device components in three dimensions are still required.Traditional wire-bonding technology has served the electronics industry for many decades,satisfying the interconnection needs for device packaging (2).Recently,flip-chip interconnect technology was introduced as a means of increas-ing the interconnect density and improving de-vice performance for high-frequency operation (3).However,downscaling this technology to interconnect pad pitches on the order of a few micrometers has proven to be difficult.Thermo-sonic gold wire bonding has a limiting pitch of ~40m m,whereas flip-chip technology can achieve a pitch of ~100m m in industrial practices.This increases the on-chip space needed for the inter-connect pads,reduces the number of chips that can be produced per wafer,and consequently increases the cost per chip.It is expected that downscaling the traditional solder-based inter-connect cannot meet either the thermomechanical reliability requirement or the current density requirement at very fine pitches (4).

Among the 3D microfabrication technologies that are compatible with electronic devices,e-beam –or focused ion beam –based deposition (5)and direct writing with metal colloidal ink (6)have been explored as methods for fabricating 3D interconnects with nanoscale or microscale di-mensions.E-beam –or focused ion beam –based

Department of Mechanical Science and Engineering,University of Illinois,1206West Green Street,Urbana,IL 61801,USA.*To whom correspondence should be addressed.E-mail:

mfyu@https://www.sodocs.net/doc/0c4447180.html,

Fig.1.(A )Schematic showing the general setup for meniscus-confined 3D electrodeposition.The long-travel piezostages (nominal resolution <10nm)provide the fine positioning needed to con-trol the travel path of the micropipette in the 3D space.The high-sensitivity electrometer circuit (resolution <1pA)monitors and controls the ionic current.A magnified view at the nozzle –metal wire interface shows the formation of a meniscus (liquid bridge)serving as the stable confinement needed for the continuous electrodeposition of a uniform-diameter microscale or nanoscale metal wire as the micropipette is continuously withdrawn from the substrate surface.(B )SEM image showing the nozzle at the end of a glass micropipette with a side cut made by focused ion beam machining.(C )Electro-deposited Cu wires with different inclination angles fabricated with the use of a side-cut micropipette.

https://www.sodocs.net/doc/0c4447180.html, SCIENCE

VOL 329

16JULY 2010313

REPORTS

deposition is capable of fabricating 3D structures with feature sizes as small as ~10nm.However,the process must be performed in a high-vacuum environment and the throughput is low.The choice of materials that can be deposited is lim-ited by the scarcity of the special chemical com-pounds,and the deposited metals tend to have low electrical quality (5).Direct writing with metal colloidal ink has been used to fabricate intercon-nect bridges,~10m m in diameter,made of Ag with the use of an Ag colloidal dispersion (6).The limi-tation,however,lies in the further downsizing of the fabricated wires:The finite size of the colloidal particles,and hence the fluidics involved with a dispersion of these particles,ultimately limit the min-imum nozzle size that can be used to dispense the colloidal dispersion.Further,a specific metallic col-loidal material system must be developed for each type of metallic wire while taking into consideration how to convert the resulting colloidal wires into metal-lic ones,for instance,through thermal annealing (6).We demonstrate an automated direct-writing wire-bonding technology that exploits meniscus-confined 3D electrodeposition and operates in an ambient air environment.We show the direct-writing fabrication of conductive interconnect bridges with submicrometer diameters and bond sizes of less than 10m m 2.The interconnects are made of pure Cu,or even noble metals such as Pt,and potentially can be made from other metals that can be electrochemically deposited with the use of readily available electrolyte solutions.These interconnects achieve a breakdown current den-sity of >1011A/m 2,six orders of magnitude higher than that for solder-based interconnects.The meniscus-confined 3D electrodeposition relies on an electrolyte-containing micropipette with a microscopic dispensing nozzle (several micro-meters down to 100nm in diameter)as the working toolbit (Fig.1A).As the micropipette approaches a conductive substrate surface,a meniscus (liquid bridge)is established between the dispensing nozzle and the substrate surface.With an appropriate elec-trical potential applied between the electrolyte contained in the micropipette and the substrate sur-face,electrodeposition is initiated within the sub-strate surface confined by the meniscus.The key to fabricating the interconnect is to synchronize the withdrawal speed of the micropipette away from the substrate surface with the growth rate of the local deposit,which maintains the stable formation of the meniscus now established between the nozzle and the growth front of the deposited wire,thereby sustaining the continuous growth of the off-surface micro-or nanowires.The method thus represents an advance over technologies such as electro-chemical dip-pen lithography,in which the dep-osition is limited to surface patterning (7),or electric field –enhanced electrodeposition with a sharpened metal tip,in which the local electro-deposition is realized through the localization of the electric field near the end of the tip and fabrication must be performed with both the work piece and the tip immersed in an electrolyte environment (8).The size and shape of the meniscus formed between the nozzle and the growing metal wire is defined by the size of the nozzle,by the thermo-dynamic properties of the liquid solution and the involved interfaces,and by the separation be-tween the nozzle and the growth front of the wire (thus,by the withdrawal speed of the micro-pipette and the growth rate of the wire).Theoret-ically,a meniscus as narrow as ~2nm can be established (9),and the thermodynamic stability of such a small meniscus was recently studied both experimentally and theoretically (10,11).Because the size of the meniscus defines the di-ameter of the deposited wire when a stable growth is established,this method is intrinsically capable of fabricating wires down to nanometer sizes.Prac-tically,the mechanical stability of the physical system,the availability of nozzles of small size,the ion transport behavior through small nozzles,the interaction between the electrodeposit and substrate surface related to nucleation and growth,and the electrochemical process in a confined meniscus environment all affect the minimum feature size and the quality of nanostructures that can be fab-ricated with this method.We have used this method to grow straight metal wires (vertical to the substrate surface)of various diameters down to ~100nm with the use of a micropipette with a nozzle diameter of ~100nm;we achieved wire lengths of >80m m,limited only by the travel range of the piezoelectric linear stage (fig.S1)(12,13).To facilitate interconnect bridge fabrication,which involves the lateral growth of a metallic wire over a sufficient span,we shaped the micro-pipette nozzle to allow the stable meniscus to form sideways to the nozzle.Figure 1B shows a shaped glass micropipette with a nozzle diameter of ~3m m.The nozzle end and the side opening allow the formation of a stable meniscus with the wire oriented along any direction between 0°(parallel to the substrate surface)and 90°(normal to the substrate surface).The shaping of the nozzle is done with focused ion beam machining,which provides the requisite precision.Figure 1C shows a series of angled Cu wires grown with a side-cut nozzle.The vertical and lateral lengths,as well as the orientation of the Cu wires,were controlled by the travel path of the micropipette,and the diameter was determined by the nozzle size and the size of the side opening in the nozzle.The wires were fabricated from a simple 0.05M CuSO 4aqueous solution and biased at 0.2V with respect to the Au-coated sample surface.The micropipette had a nominal nozzle diameter of ~3m m.The growth rate for the Cu wire at those conditions was ~0.25m m/s,and the corresponding ionic current was main-tained at ~3.5nA.The deposition was carried out with the substrate exposed to a humidity-controlled ambient air environment at room temperature.To form a connected wire (Fig.2A)(14),we formed the second bond by mechanically push-ing the suspended end of the laterally grown metal wire down to the substrate,with the nozzle end in close proximity so that the electrolyte me-niscus under the nozzle extended to immerse both the wire end and the region of contact on the

Fig.2.(A )Schematic showing the steps involved in the wire-bonding process with the meniscus-confined 3D electrodeposition.(B )SEM image showing 20electrodeposited inter-connects with submicrometer diam-eters fanning out from a central pad with an area of 50m m by 50m m.(C )SEM image showing the uniform quality of the first and the second bonds.(D )SEM image showing multi-layered interconnection over three steps of 5m m each in height.(E )SEM image showing overlap inter-connects over steps of 5m m in height.Scale bar,10m

m.

Fig.3.Constant-current mode I -V characteristics of a Cu interconnect (diameter ~740nm,length ~40m m)showing the linear ohmic contact behavior of the bonds measured in an ambient air environment.The inset shows the failed wire at high current.

16JULY 2010VOL 329SCIENCE https://www.sodocs.net/doc/0c4447180.html,

314REPORTS

substrate surface.Several voltage pulses with amplitude at the electrodeposition potential were then applied to initiate the electrodeposition.The distance needed to push the wire end toward the surface was determined by an automated sensing procedure in which the micropipette was shifted sideways to detach from the wire end and driven with the piezoelectric stage to approach the sub-strate surface with the electrolyte biased at a dep-osition potential.At the moment of meniscus formation between the nozzle and the substrate surface,an ionic current could be detected and the distance between the wire end and the under-lying substrate surface was determined.The micro-pipette was then withdrawn to reengage with the wire end to form the second bond as described.Figure 2,B to D,shows the result of this electrodeposition-based wire bonding of submi-crometer-diameter Cu wires.The wire-bonding process was performed to form 20interconnects fanning out from a central bonding pad with an area of 50m m by 50m m,resembling a typical device layout (Fig.2B).Multilayered intercon-nection without (Fig.2D)or with (Fig.2E)over-lap wiring was also realized.The diameter of the Cu wires (Fig.2,B,D,and E)was ~800nm,and the size of the formed bonds was ~3m m.

The bonded wires were found to be of high electrical quality.Figure 3shows the acquired current-voltage (I -V )curve from a bonded wire with a diameter of ~740nm and a length of ~40m m,tested in an ambient air environment.The linear behavior in the broad current range reflected the ohmic contact of the bonds.The nonlinear be-havior at high current implied the potential effect of heating (thus,oxidation of the Cu wire)(15).The overall resistance of the bonds and the wire

was ~2.9ohms when deducting the resistance contributed from the peripheral connections in the measurement,very close to the expected value for a Cu wire of this size (~1.6ohms,as-suming an electrical resistivity of 1.68×10?8ohm·m of bulk Cu)with the bonds contributing a small contact resistance.At high current,the bonded Cu wire failed in the middle of the bridge and not at the bonds (inset,Fig.3).The break-down current density was ~1.25×1011A/m 2,in agreement with reported values for similar-sized Cu wires (16–18).Mechanically,we measured the bonding strength with an atomic force micro-scope (AFM)cantilever-based pull test.By moni-toring the deflection of the AFM cantilever while pulling a Cu wire vertically grown on an Au-coated substrate and with the free end glued onto the AFM tip with epoxy,we calculated that the strength of this electrodeposition-formed bond was more than ~39MPa,well above the nominal bonding strength required in traditional wire bonding (8.5MPa,according to the MIL-STD-883G test standard).

We also carried out such fabrication and char-acterization for Pt interconnects deposited with the use of an aqueous solution of chloroplatinic acid (H 2PtCl 6)as the electrolyte.Similar results were obtained (fig.S2).

The remarkable dexterity of this method for fabricating interconnect bridges relies on the ther-modynamic stability of the meniscus maintained during the deposition process.In general,the sta-bility of the meniscus is largely governed by wet-ting conditions involved with the nozzle and the wire growth front.To maintain the growth of a uniform-diameter wire,the thermodynamic con-sideration of the interfacial forces at the three-phase contact line between the meniscus and the growing wire requires the classical Neumann quad-rilateral relation to be met (19),which would then require the establishment of an equilibrium angle ?0between the growth direction and the slope of the meniscus at the contact line (inset,Fig.4)

?0?arccos g 2L tg 2S ?g 2SL

2g L g S

e1T

where g L and g S are the surface energies of the electrolyte and the metal wire with absorbing fluid,respectively,and g SL is the interfacial energy of the metal-liquid interface.This angle is determined to be ~12°for the copper-water-air system (taking g L =0.07119J/m 2,g S =0.07112J/m 2,and g SL =0.01456J/m 2)(20).Solving the meniscus shape equations then defines a region of stability for the stable growth of a uniform-diameter wire governed by

H M D W ?1

2

cos ?0cosh ?1D N D W cos ?0?cosh

?1

1cos ?0

e2T

(21),where H M is the height of the meniscus,D N

is the diameter of the micropipette nozzle,and

D W is the wire diameter.For a micropipette with a nozzle diameter of D N ,the diameter of a wire that can be stably grown lies within the range D N to ~0.5D N .Within the stable growth region,the deviation d ?of the contact angle ?from the equilibrium angle ?0leads to the fluctuation of the wire size according to

dD W

dt

?2ev N ?v W Ttan d ?e3T

where v N is the withdrawal speed of the micro-pipette and v W is the growth rate of the wire.The growth rate of the wire is simply defined by Faraday ’s law

v W ?4iM

nF rp D 2

W e4T

where i is the electrodeposition current;M and r are the molar mass and the mass density of the deposited material,respectively;n is the number of electrons per ion;and F is the Faraday con-stant.Figure 4shows the experimentally acquired parameter window for the stable wire growth in terms of the resulting wire diameter,the with-drawal speed,and the applied ionic current,in comparison to the prediction from the model.In the modeling,the diameter of the nozzle was measured from the scanning electron microscopy (SEM)image,and the surface energy and inter-facial energy values for the Cu –water vapor system were obtained from the literature.The agreement between the experimental and model-ing data covered a broad range of wire diameters up to near the predicted minimum diameter.

As in a regular wire-bonding process,the de-sign of small interconnect bridges requires taking certain mechanical considerations into account.One is the stress sustained by the wire during the fabrication process,which ideally should be well below the failure stress of the wire;another is the spring force sustained by the second bond,which should be lower than the bonding force.Consider a simple interconnect bridge as shown in Fig.2A.The maximum stress occurs at the left edge of the 90°bend and can be estimated according to s c =3EHr /L 2,and the spring force sustained by the second bond according to F s =3p EHr 4/4L 3,where E is the Y oung ’s modulus of the metal wire,H is the standoff height,and L and r are the length and radius of the lateral segment of the wire,respectively.For a typical Cu interconnect bridge of 1m m in wire diameter,5m m in standoff height,and 30m m in span,the maximum stress is calculated to be ~1GPa,which is beyond the yield strength of Cu.Thus,the Cu wire at the bend will experience a plastic deformation in the bonding process.The problem can be readily solved (if needed)by growing a tiled wire from the first bond (Fig.2C)instead of a vertical one to allow the formation of a smooth bend instead of a 90°bend.The maximum spring force on the second bond is ~3m N,and if the size of the second bond is assumed to be 10m m 2,the loading stress is ~0.3MPa,much lower than the debonding strength we measured for such an electrodeposited

bond.

Fig.4.Meniscus stability –defined parameter window for the stable electrodeposition of uniform-diameter metal wires.Plots show the dependence of wire diameter on the withdrawal speed of the micropipette (circles)at a fixed ionic current of ~12nA with the use of a micropipette with a nozzle diameter of ~1.6m m,and the dependence of wire diameter on ionic current (squares)at a fixed withdrawal speed of ~0.3m m/s with the use of the same pipette.The solid lines represent the relevant modeling data.The inset shows a schematic of the meniscus and the angle ?0between the growth direction and the slope of the meniscus at the three-phase contact line relevant to the stable electrodeposition of uniform-diameter metal wires.

https://www.sodocs.net/doc/0c4447180.html, SCIENCE

VOL 329

16JULY 2010315

REPORTS

Overall,reducing the wire diameter and increasing the lateral length of the wire can also effectively benefit the lowering of such stresses.

The growth rate of an electrodeposited wire is intrinsically limited by the rate of electrore-duction,or more specifically by the diffusion-limited ionic current (22)described by a recessed microelectrode (the growth front of the deposited metal wire)in a truncated cone (the tapered dispensing end of the micropipette).Nonetheless,the growth rate might be increased through an increase in electrolyte concentration and/or the use of a short tapered micropipette.Alternatively,an array of micropipettes can be deployed to in-crease the wire-bonding throughput.

With the proper mechanical design and sys-tem control,this meniscus-confined 3D electro-deposition method can be used to fabricate more intricate microscale and nanoscale structures than those described here.Such structures could in-clude designed structural and device functionali-ties integrating a variety of metallic materials,such as magnetic and noble metals and even metal alloys.Moreover,because it is intrinsically a low-cost direct-writing technology,this technique can be used to fabricate such micro-or nanostructures

on existing micro-or nanostructures when such fabrication becomes difficult or expensive with the traditional lithography process (fig.S3).

References and Notes

1.P.Ramm,J.M.Wolf,B.Wunderle,in 3-D IC Integration:Technology and Applications ,P.E.Garrou,P.Ramm,C.A.Bower,Eds.(Wiley-VCH,New York,2008),pp.289–318.

2.G.Harman,Wire Bonding in Microelectronics (McGraw-Hill,New York,2009).

3.C.Harper,Electronic Packaging and Interconnection Handbook (McGraw-Hill,New York,2005).

4.International Technology Roadmap for Semiconductors (ITRS-2007)(https://www.sodocs.net/doc/0c4447180.html,/Links/2007ITRS/Home2007.htm).

5.T.Morita et al .,J.Vac.Sci.Technol.B 21,2737(2003).

6.B.Y.Ahn et al .,Science 323,1590(2009);published online 12February 2009(10.1126/science.1168375).

7.Y.Li,B.W.Maynor,J.Liu,J.Am.Chem.Soc.123,2105(2001).

8.J.D.Madden,I.W.Hunter,J.Microelectromech.Syst.5,24(1996).

9.J.Jang,G.C.Schatz,M.A.Ratner,Phys.Rev.Lett.92,085504(2004).

10.J.Jang,G.C.Schatz,M.A.Ratner,Phys.Rev.Lett.90,

156104(2003).

11.R.C.Major,J.E.Houston,M.J.McGrath,J.I.Siepmann,

X.-Y.Zhu,Phys.Rev.Lett.96,177803(2006).

12.A.P.Suryavanshi,M.-F.Yu,Appl.Phys.Lett.88,083103

(2006).

13.A.P.Suryavanshi,M.-F.Yu,Nanotechnology 18,105305

(2007).

14.See supporting material on Science Online.

15.M.E.Toimil Molares et al .,Appl.Phys.Lett.82,2139

(2003).

16.Q.Huang,C.M.Lilley,M.Bode,R.Divan,J.Appl.Phys.

104,023709(2008).

17.Q.Huang,C.M.Lilley,R.Divan,Nanotechnology 20,

075706(2009).

18.S.Karim,K.Maaz,G.Ali,W.Ensinger,J.Phys.D 42,

185403(2009).

19.R.Defay,I.Prigogine,Surface Tension and Adsorption

(Longman,London,1966).

20.H.Ghasemi,C.A.Ward,J.Phys.Chem.C 114,5088

(2010).

21.Y.A.Tatarchenko,Shaped Crystal Growth (Kluwer

Academic,New York,1993).

https://www.sodocs.net/doc/0c4447180.html,nyon et al .,Anal.Chem.79,3048

(2007).

23.Supported by the Grainger Foundation.We acknowledge

the use of microscopy facilities in the Center for

Microanalysis of Materials at the University of Illinois at Urbana-Champaign.A U.S.patent application based on this work was filed by the University of Illinois on 7June 2010.

Supporting Online Material

https://www.sodocs.net/doc/0c4447180.html,/cgi/content/full/329/5989/313/DC1Materials and Methods Figs.S1to S3

5April 2010;accepted 10June 201010.1126/science.1190496

Cenozoic Tectonics of Western North America Controlled by Evolving Width of Farallon Slab

W.P.Schellart,1*D.R.Stegman,2,3R.J.Farrington,4J.Freeman,4,5L.Moresi 1,4

Subduction of oceanic lithosphere occurs through two modes:subducting plate motion and trench https://www.sodocs.net/doc/0c4447180.html,ing a global subduction zone data set and three-dimensional numerical subduction models,we show that slab width (W )controls these modes and the partitioning of subduction between them.Subducting plate velocity scales with W 2/3,whereas trench velocity scales with 1/W .These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width.The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width;shortening occurred during wide-slab subduction and overriding-plate –driven trench retreat,whereas

extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.U

nderstanding the partitioning of plate consumption at subduction zones is vital for constraining its effect on mantle an-isotropy,dynamic topography,and overriding plate deformation at subduction zones (1–3).Subduction partitioning also exerts an important control on slab geometry (4,5)and the style of mantle stirring [i.e.,poloidal versus toroidal flow (5–8)],providing

constraints on the geochemical heterogeneity of the mantle.It remains unclear,however,how the rate of plate consumption at oceanic trenches [the subduction velocity (v S ⊥)]is partitioned into its two primary components,the trench-normal subduct-ing plate velocity (v SP ⊥)and trench velocity (v T ⊥),and what controls such partitioning.At present,variation in subduction partitioning (v SP ⊥/v S ⊥)ranges from subducting-plate-motion –controlled (v SP ⊥/v S ⊥>0.5,such as for Sunda and Mexico –Central America)to trench-motion –controlled (v SP ⊥/v S ⊥<0.5,such as for Scotia and Cascadia).Previous research suggests that plate age cor-relates with subducting plate velocity (9,10)and trench velocity (11),but early work on global trench velocities contradicts the latter correlation (12).Other research suggests that plate velocity

is controlled by plate boundary fraction that is a subduction margin (13),but this provides no explanation for the global variation in trench velocity.

We present results from a global compilation of present-day subduction zone kinematics for 17subduction zones and three-dimensional numer-ical models of buoyancy-driven progressive free subduction of a dense four-layer plate into a strat-ified linear-viscous mantle (14).In the models,the plate has a strong viscous core 300times more viscous than the upper mantle;however,because it is only 25km thick,the lithosphere is still weak with respect to bending (15–17),in accordance with slab geometries,slab pull forces,and geoid signatures at subduction zones (5,15,17,18).The subduct-ing plate is laterally homogeneous,and slab width (W )—the trench-parallel extent of a subducted slab that is limited by its lateral slab edges —varies between 300and 7000km.The causes for lateral slab edge formation are manifold,including slab tearing,slab window (gap)formation,subduction termination,and slab detachment.

The global data set of current subduction kin-ematics indicates negligible to moderate correla-tions between plate boundary fraction that is a subduction margin and v SP ⊥(Fig.1A)and between plate age and v SP ⊥or v T ⊥(Fig.1,B and C).In contrast,both the global data set and the dynamic models show that average v SP ⊥,v T ⊥,and v SP ⊥/v S ⊥vary nonlinearly with W along with strong cor-relations (Fig.2).In nature and models,v SP ⊥/v S ⊥and v SP ⊥show a nonlinear increase with increasing W ,whereas v T ⊥shows a nonlinear decrease.

The nonlinear increase of v SP ⊥with W (Fig.2,A and D)can be explained with Stokes-like sink-ing of an oblate ellipsoid (analog for slab)parallel

1

School of Geosciences,Monash University,Melbourne,Victoria 3800,Australia.2Scripps Institution of Oceanography,University of California,San Diego,La Jolla,CA 92093,USA.3

School of Earth Sciences,University of Melbourne,Melbourne,Victoria 3010,Australia.4School of Mathematical Sciences,Monash University,Melbourne,Victoria 3800,Australia.5Bureau of Meteorology,Melbourne,Victoria 3001,Australia.*To whom correspondence should be addressed.E-mail:wouter.schellart@https://www.sodocs.net/doc/0c4447180.html,

16JULY 2010VOL 329

SCIENCE

https://www.sodocs.net/doc/0c4447180.html,

316REPORTS

浅谈小班幼儿绘本快乐阅读

浅谈幼儿绘本快乐阅读 丹阳市皇塘中心幼儿园 212327 尹芳 摘要:绘本是一种适合低幼儿阅读的图画书,以图画为主阅读为辅,甚至完全没有文字而全是图画的书籍。《快乐的蝴蝶》这本绘本阅读书,以快乐不需要理由为主要线索贯穿整个故事,让幼儿在快乐中阅读,体验阅读的快乐。 关键词:快乐阅读环境 语言是人们进行交流和沟通的工具,儿童时期是语言发展的最佳时期,也是最迅速的时期。因此,发展孩子口头语言是培养孩子接受一切教育的基础。笔者认为小班语言教学的主要任务,应该是抓好口头语言训练的最基础部分,即正确发音和短句的表达。新《纲要》中指出:“儿童的早期阅读能力培养已被纳入幼儿园语言教育的目标。”作为儿童早期阅读材料的新生力量——绘本,以其出色的创意、联想,幽默的表现手法和丰富的人文精神,深受到孩子的喜爱。“绘本”又称为“图画书”。是作绘本家、画家专为幼儿创作的图画书。儿童是富有幻想的,他们常常凭借着自己还不多的体验,进入到想像的世界中去。结合幼儿的年龄特点,我尝试从绘本阅读入手,让孩子快乐地阅读,从而培养和提高孩子的阅读能力。 一、创设良好的阅读环境,让孩子“想读”。 环境是绘本阅读的最好向导。因此,在日常生活中渗透阅读内容,为幼儿提供阅读机会和场所就显得十分重要。我们根据幼儿的年龄特点和认识水平,有的放矢地为幼儿提供大量的绘本,放在班级图书袋 中,让幼儿自由地选择阅读材料,自主地进行感知、体验、探索。例如:在每次阅读活动前,教师提供相应的新图书,并向幼儿介绍图书的名称和内容,以激发幼儿阅读的欲望和兴趣。教师除了有目的、有计划地为幼儿提供了内容丰富的幼儿绘本读物,还要并保证读物每月换一次、并逐步增加程度相同而内容不同的图书,保持幼

英语翻译基础期末复习完整

《英语翻译基础》期末复习 13年12月 题型: 一、选择题(每小题2分,共20分) Section A; 选择译文中最符合原文意思的选项(考查翻译实践能力) Section B: 关于翻译理论知识的题目 二、改译句子。(每小题2分,共10分) 三、翻译句子。(每小题3分,共15分) 四、篇章翻译(每小题40分,共40分) 五、案例分析题(每小题15分,共15分) 注意:本门课程为:“闭卷(只允许考生带一本正规英汉词典参加考试,不得携带除此之外的任何查字工具。) I、Multiple Choice Questions (20 points, 2 points each) A : Directions : This part consists of five sentences, each followed by four different versions marked A, B, C and D. Choose the one that is the closest equivalent of the original in terms of meaning and expressiveness. 1. I prefer driving to being driven. B A. 我喜欢开车,不喜欢别人开车。 B. 我喜欢开车,不喜欢坐车。 C. 我开车比被开车更喜欢。 D. 我喜欢开车,也喜欢被开车。 2. She had deprived herself of the advice of all but yesmen. C A.她丧失了除了唯唯诺诺的人之外的所有人的劝告。 B.她剥夺了自己的所有人的劝告,唯唯诺诺的人除外。 C.她喜欢唯唯诺诺的人,根本听不进所有其他人的劝告。 D.她剥夺了所有人的劝告,除了唯唯诺诺的人。 3.我第一次听她在晚上唱歌,她的歌声就深深地打动了我。B A.Because it was the first time I heard her sing at a party, her song moved me deeply. B. When I first heard her sing at a party, I was deeply moved. C. I first heard her singing a party, I was deeply moved. D. Because it was the first time I heard her sing at a party, her voice moved me deeply. 4.When it came to reading, they were as good as blind. B

古代晋灵公不君、齐晋鞌之战原文及译文

晋灵公不君(宣公二年) 原文: 晋灵公不君。厚敛以雕墙。从台上弹人,而观其辟丸也。宰夫胹熊蹯不熟,杀之,寘诸畚,使妇人载以过朝。赵盾、士季见其手,问其故而患之。将谏,士季曰:“谏而不入,则莫之继也。会请先,不入,则子继之。”三进及溜,而后视之,曰:“吾知所过矣,将改之。”稽首而对曰:“人谁无过?过而能改,善莫大焉。诗曰:‘靡不有初,鲜克有终。’夫如是,则能补过者鲜矣。君能有终,则社稷之固也,岂惟群臣赖之。又曰:‘衮职有阙,惟仲山甫补之。’能补过也。君能补过,衮不废矣。” 犹不改。宣子骤谏,公患之,使鉏麑贼之。晨往,寝门辟矣,盛服将朝。尚早,坐而假寐。麑退,叹而言曰:“不忘恭敬,民之主也。贼民之主,不忠;弃君之命,不信。有一于此,不如死也!”触槐而死。 秋九月,晋侯饮赵盾酒,伏甲将攻之。其右提弥明知之,趋登曰:“臣侍君宴,过三爵,非礼也。”遂扶以下。公嗾夫獒焉。明搏而杀之。盾曰:“弃人用犬,虽猛何为!”斗且出。提弥明死之。 初,宣子田于首山,舍于翳桑。见灵辄饿,问其病。曰:“不食三日矣!”食之,舍其半。问之,曰:“宦三年矣,未知母之存否。今近焉,请以遗之。”使尽之,而为之箪食与肉,寘诸橐以与之。既而与为公介,倒戟以御公徒,而免之。问何故,对曰:“翳桑之饿人也。”问其名居,不告而退。——遂自亡也。 乙丑,赵穿①攻灵公于桃园。宣子未出山而复。大史书曰:“赵盾弑其君。”以示于朝。宣子曰:“不然。”对曰:“子为正卿,亡不越竟,反不讨贼,非子而谁?”宣子曰:“呜呼!‘我之怀矣,自诒伊戚。’其我之谓矣。” 孔子曰:“董狐,古之良史也,书法不隐。赵宣子,古之良大夫也,为法受恶。惜也,越竞乃免。” 译文: 晋灵公不行君王之道。他向人民收取沉重的税赋以雕饰宫墙。他从高台上用弹弓弹人,然后观赏他们躲避弹丸的样子。他的厨子做熊掌,没有炖熟,晋灵公就把他杀了,把他的尸体装在草筐中,让宫女用车载着经过朝廷。赵盾和士季看到露出来的手臂,询问原由后感到很忧虑。他们准备向晋灵公进谏,士季说:“如果您去进谏而君王不听,那就没有人能够再接着进谏了。还请让我先来吧,不行的话,您再接着来。”士季往前走了三回,行了三回礼,一直到屋檐下,晋灵公才抬头看他。晋灵公说:“我知道我的过错了,我会改过的。”士季叩头回答道:“谁能没有过错呢?有过错而能改掉,这就是最大的善事了。《诗经》说:‘没有人向善没有一个开始的,但却很少有坚持到底的。’如果是这样,那么能弥补过失的人是很少的。您如能坚持向善,那么江山就稳固了,不只是大臣们有所依靠啊。

小学语文阅读短文及答案

依稀记得在我两三岁的时候,我天天跟着妈妈到学校里玩耍,那时妈妈在学校里给幼儿班代课。课间一群比我大点的孩子们总是围着我说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给我手中或嘴里塞干粮的。他们一听到铃声嘴里“哦———”着飞也似的进了教室。于是我便一人悠闲自在地在校园里溜达:一步一步地踱到东边看看美丽的花儿;爬到西边的球台上翻着晒晒太阳;听到南边教室里悠扬的歌声,于是又跑到窗户下踮着脚使劲儿地仰起头向里看;仰倦了头嘴里嘟嘟地哼着,若无其事的来到北面那两块瓷砖镶嵌的大地图下,看着那些花花绿绿的条条块块,也不知道是些什么。 如今,我已是那时年龄的四倍了,仍在这熟悉温暖的校园里,那时一切不懂的,今天都明白了。那时的快乐依在,那时的天真依在。不过现在我所看到的、听到的、感悟的比那时多得多了。 清晨的校园,阳光钻透东边茂密的柳林,斑驳的光点印在绿绿的草坪上。无数只鸟儿横着或倒挂在柔柔的柳条上凑响清脆的晨曲。在通向教师办公大楼的水泥道上,陆陆续续晃过一群高大的身影———我们的老师,他们又上班去了。 当校园正中升起鲜艳的五星红旗时,悦耳的歌声和朗朗的读书声早已把校园装点得生机勃勃。我再不需要像过去那样踮脚仰头地去向往了。我尽心地在这宽敞明亮的教室里学习,聆听着老师的教诲,享受着群体的温暖与关爱。 课间,我们三三俩俩去拉着或牵着幼儿班的那些小娃娃,说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给他们手中或嘴里塞泡泡糖的。有一天,我把三四个小娃娃牵到北面那两块瓷砖镶嵌的大地图下,学着老师的样子摇头晃脑、指着地图比比划划地讲:“这是中国,这是长江、那是黄河……,我们的学校在这里,要记住,别忘记。看我的手好大,把一个省都罩住了。”小娃娃们叽叽喳喳地笑个不停,我也笑得前俯后仰。 上课铃响了,我们“哦———”着飞也似的进了教室。那天我们进了教室,唱完了一首长长的歌,没见老师来,于是我站起来对大家说:“大家先读读书吧,我去办公室看看”。话音刚落,只见李老师一瘸一拐地走进教室。同学们注视着他的脚。原来他脚上缠着一圈大大的药纱布。我们明白他的脚受伤了。他开始给我们讲课,和往常一样站着,不时还转去转来。一会儿,我从他变化了的语调中感到:他的脚疼痛难忍了。我忍不住环视一下四周,发现所有同学的眼里都水晶晶的,此刻我心头一热,眼泪夺眶而出。这天我在日记中写道:“在我们快乐的时候,我们的老师也许正痛苦着;在我们获取的时候,我们的老师正在奉献着;在我们成长的时候,我们的老师正在消亡着。” 太阳依旧从东边升起,灿烂的阳光总是洒满校园。当我的年龄到了是现在的若干倍的时候,我会依然记起今天的快乐与感触。 1、作者的感触是什么(4分) 答:。 2、在文中找出拟人的一句话写在下面。(1分) 答:。 3、用“~~~”标出文中照应的句子。(2分) 4、在文中找出三对反义词写在下面。(3分) 、、 5、“哦——”中的“———”号起作用。(2分) “一群高大的身影——我们的老师,”中的“——”号起作用。(2分) 6、把你对“陆陆续续晃过一群高大的身影”的理解写在下面。(4分) 答:。 7、第自然段是承上启下的文字。(1分) (3分)

绘本教案快乐是什么

活动名称:心理健康教学活动:《快乐是什么》年龄段岁 执教人:潘燕君活动时间2010年11月4日 设计意图:纲要中指出,在一日生活中教师应保持幼儿积极愉快的情绪,快乐的情绪对幼儿身心发展起着至关重要的作用。那么在孩子们的心中快乐又是什么?他们能够感受到幼儿园这个大家庭中的快乐吗?能够体会到集体生活的快乐吗?当我看到孩子们面对掉落的纸屑宁愿绕道而过时,当我看到某些孩子面对散落的玩具熟视无睹时,我发现孩子们还没有真正体会到快乐的内涵。《快乐是什么》是一篇优美而富有哲理的儿童故事。随着故事情节的开展,我们看到不同的人对快乐有不同的理解,细细品味这个简单的故事,它表达了一个深刻的哲理:快乐是真诚的付出,快乐是人与人之间的相互关心,快乐是生活中的点点滴滴。 本次活动通过让孩子体验集体生活中的快乐,借助绘本《快乐是什么》,引导孩子发现集体生活中的快乐,帮助他们理解快乐的内涵,知道快乐无处不在,懂得在生活中只有真诚的付出才能收获快乐。 活动目标: 1.感受集体生活中的快乐。 2.初步理解快乐的内涵,会用完整的语句表达自己的快乐。 3.能够发现集体生活中的点滴快乐。 活动准备: 环境创设:各区域活动中的玩具凌乱走廊过道上有少数垃圾 物质准备:背景音乐一《追梦人》背景音乐二《喜洋洋》小椅子若干(与幼儿人数相等)一次性纸杯若干 教学活动过程设计 活动过程:隐性教育的预设 一、体验集体游戏的快乐。 游戏:坐上快乐的小椅子。 玩法:将小椅子摆成圆圈,椅子的个数和幼儿人数相同,《喜洋洋》的音乐响起,幼儿绕椅子用动作表现自己听到音乐后的感受,音乐停,幼儿找椅子坐下,如此椅子渐渐变少,快乐的感觉在慢慢增强,让孩子懂得共同分享椅子的快乐。

英语翻译期末试卷

黄山学院初等教育学院2008-2009学年度第二学期06级英语班《英语翻译》期末考试卷 班级序号姓名成绩 一、选择题。(请将答案写在序号前面)20% 1. Success in many fields depends on getting the latest information. A. 许多领域的成功都取决于能否得到最新消息。 B. 田里的收成在很多方面依靠获得最新的消息。 C. 从很多方面讲,成功主要依靠在最后的时刻还能得到信息。 D. 在众多领域里,成功是获得最晚信息的保障。 2. At least three persons died in the fire and 23 others were injured. A. 至少3人因这次火灾和另外23次火灾造成死亡。 B. 起码有3个人在大火中丧命,23个以外的人受伤。 C. 火灾造成至少3人死亡,23人受伤。 D. 至少有3人死于火海,23人被火海包围。 3. Not only has he a first-class brain, but he is also a tremendously hard worker. A. 在一班,他不仅是头领,而且,也是一个非常严肃的工作者。 B. 他有一流的头脑,是个非常难对付的家伙。 C. 他不仅头脑好用,而且,还喜欢做极端困难的工作。 D. 他不仅头脑非常聪明,而且,工作上也非常勤奋。 4. It is reported that some areas of Australia have had no rain for more than four years. A. 有报道说,澳大利亚地区已经4年多没下雨了。 B. 据报道,澳大利亚的部分地区有4年多没下雨了。 C. 澳大利亚的个别地方被报道说没下雨的时间已经超过了4年。 D. 报纸报道,某些澳大利亚地区已经有4年多没下雨的时间。 5. The village was named after the high mountain standing in front of it. A. 这个村庄是以矗立在它面前的那座高山命名的。 B. 这个村庄的名字是来自于它面前的那座高山。 C. 这个村庄的名字是在前面的那座高山之后起的。 D. 这个村庄的名字是以站立在它面前的那座高山起的。 6. It was officially announced that the birth rate dropped greatly in the past three years. A. 据官方宣布,出生率在过去的三年中有了大幅下降。 B. 正式宣布,过去三年的出生率大幅下降。 C. 正式宣布,出生率大幅下降在过去三年。 D. 据正式声明,过去三年的出生率大幅下降。 7. The introduction of the new technique reduced the cost of the product three times. A. 对新技术的介绍,使产品的成本减少到三分之一。 B. 新技术的引进使产品的成本减少了三倍。 C. 对新技术的介绍使产品的成本减少到原来的三分之二。 D. 新技术的引进使产品成本减少了三分之二。 8. If you are buying a car, you may pay for it out of savings. A. 假使你正在买一辆汽车,你也许会透支购买。 B. 如果你要买一辆汽车,你可以用自己的储蓄存款支付。 C. 假定你打算买一辆汽车,你得花掉你得全部存款。 D. 加入你买一辆汽车,你需要用你的积蓄交此款。 9. Full-service banks can offer services unavailable at smaller financial institutions. A. 全面服务的银行能提供在小财政机构所不能获得的服务。 B. 提供全方位服务的银行能提供较小的金融机构所不能提供的服务。 C. 充满了服务的银行可能提供给较小的财政机构某些无法获得的服务 D. 全面服务的银行可能提供服务,这种服务是较小的金融机构所不能提供的。 10. The following qualifications are required from the candidates for the above position. A. 我们要求应聘高职位的求职者需具备以下资历。 B. 应聘以上职位,需具备下列资格。 C. 候选人为了高职位要求自己具备以下资历。 D. 以下资历是对应聘此职位的候选人的要求。 二、用正反表达法翻译下列句子。20% 1. The teacher found some of the pupils absent. 2. I wonder if he is coming. 3. Your request is beyond my power. 4. You will fail unless you work harder. 5. That lazy boy went to class before he had prepared his lesson. 6. Be sure to lock the door when you leave. 7. Students, with no exception, are to hand in their papers this afternoon. 8. The doubt still unsolved after his repeated explanation. 9. Such flight couldn’t long escape notice. 10. All the articles are untouchable in the museum. 三、用重复法翻译下列句子。20% 1. We should learn how to analyze and solve problems. 2. It's our duty to rebuild and defend our home-land. 3. People forget your face first, then your name. 4. Each had his own business to handle. 5. Big families had their own difficulties.

小学语文阅读训练100篇(附参考答案)

1.快乐与感触 依稀记得在我两三岁的时候,我天天跟着妈妈到学校里玩耍,那时妈妈在学校里给幼儿班代课。课间一群比我大点的孩子们总是围着我说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给我手中或嘴里塞干粮的。他们一听到铃声嘴里“ 哦———” 着飞也似的进了教室。于是我便一人悠闲自在地在校园里溜达:一步一步地踱到东边看看美丽的花儿;爬到西边的球台上翻着晒晒太阳;听到南边教室里悠扬的歌声,于是又跑到窗户下踮着脚使劲儿地仰起头向里看;仰倦了头嘴里嘟嘟地哼着,若无其事的来到北面那两块瓷砖镶嵌的大地图下,看着那些花花绿绿的条条块块,也不知道是些什么。 如今,我已是那时年龄的四倍了,仍在这熟悉温暖的校园里,那时一切不懂的,今天都明白了。那时的快乐依在,那时的天真依在。不过现在我所看到的、听到的、感悟的比那时多得多了。 清晨的校园,阳光钻透东边茂密的柳林,斑驳的光点印在绿绿的草坪上。无数只鸟儿横着或倒挂在柔柔的柳条上凑响清脆的晨曲。在通向教师办公大楼的水泥道上,陆陆续续晃过一群高大的身影———我们的老师,他们又上班去了。 当校园正中升起鲜艳的五星红旗时,悦耳的歌声和朗朗的读书声早已把校园装点得生机勃勃。我再不需要像过去那样踮脚仰头地去向往了。我尽心地在这宽敞明亮的教室里学习,聆听着老师的教诲,享受着群体的温暖与关爱。 课间,我们三三俩俩去拉着或牵着幼儿班的那些小娃娃,说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给他们手中或嘴里塞泡泡糖的。有一天,我把三四个小娃娃牵到北面那两块瓷砖镶嵌的大地图下,学着老师的样子摇头晃脑、指着地图比比划划地讲:“这是中国,这是长江、那是黄河……,我们的学校在这里,要记住,别忘记。看我的手好大,把一个省都罩住了。” 小娃娃们叽叽喳喳地笑个不停,我也笑得前俯后仰。 上课铃响了,我们“哦———”着飞也似的进了教室。那天我们进了教室,唱完了一首长长的歌,没见老师来,于是我站起来对大家说:“大家先读读书吧,我去办公室看看”。话音刚落,只见李老师一瘸一拐地走进教室。同学们注视着他的脚。原来他脚上缠着一圈大大的药纱布。我们明白他的脚受伤了。他开始给我们讲课,和往常一样站着,不时还转去转来。一会儿,我从他变化了的语调中感到:他的脚疼痛难忍了。我忍不住环视一下四周,发现所有同学的眼里都水晶晶的,此刻我心头一热,眼泪夺眶而出。这天我在日记中写道:“在我们快乐的时候,我们的老师也许正痛苦着;在我们获取的时候,我们的老师正在奉献着;在我们成长的时候,我们的老师正在消亡着。” 太阳依旧从东边升起,灿烂的阳光总是洒满校园。当我的年龄到了是现在的若干倍的时候,我会依然记起今天的快乐与感触。 1、作者的感触是什么?(4分) 答: 。 2、在文中找出拟人的一句话写在下面。(1分) 3、用“~~~”标出文中照应的句子。(2分) 4、在文中找出三对反义词写在下面。(3分) 、、 5、“ 哦——”中的“ ———”号起作用。(2分) “一群高大的身影———我们的老师,” 中的“ ———”号起作用。(2分)6、把你对“陆陆续续晃过一群高大的身影”的理解写在下面。(4分)

英汉翻译期末考试题 样卷

样卷 广东外语外贸大学国际商务英语学院 《英汉笔译》2011-2012学年上学期期末考试试卷(A) 考核方式:开卷 考核对象:国际商务英语学院法律英语系2009级考试时间:120分钟姓名______________ 班级________ 学号____________________ 分数___________ PART I. LEGAL TERMS (20%, one point for each) 1.outstanding liabilities 2.without prejudice to PART II. Translation Improvement (30%) Directions: There may be one or more errors or inappropriate treatment in each of the following TRANSLATED VERSIONS. Please underline it (or them) and then correct it (or them) in the corresponding space provided on the ANSWER SHEET. If you believe the whole translation is wrong or inappropriate, you are advised to underline the whole translation. Marks will be given if you have identified and properly marked the error(s). (2 points for each save as specified otherwise) 21.His retort was delivered with a strong note of vinegar. 原译:他的反驳是带着强烈的醋意发出的。 改译: 22.The new father wore a proud smile. 原译:那位新父亲面带得意笑容。 改译: PART III. SENTENCES (30%) Directions: Translate the following sentences. Employ the translation skill suggested in the brackets where appropriate. (3 points for each save as specified otherwise) https://www.sodocs.net/doc/0c4447180.html,mission depends on the quantity of goods ordered. (Amplification) 32.We learn that you have been dealers of Chinese products for many years. (Conversion) PART IV. PASSAGE (20%) Translate the underlined part of the following passage. 1

如何翻译古文

如何翻译古文 学习古代汉语,需要经常把古文译成现代汉语。因为古文今译的过程是加深理解和全面运用古汉语知识解决实际问题的过程,也是综合考察古代汉语水平的过程。学习古代汉语,应该重视古文翻译的训练。 古文翻译的要求一般归纳为信、达、雅三项。“信”是指译文要准确地反映原作的含义,避免曲解原文内容。“达”是指译文应该通顺、晓畅,符合现代汉语语法规范。“信”和“达”是紧密相关的。脱离了“信”而求“达”,不能称为翻译;只求“信”而不顾“达”,也不是好的译文。因此“信”和“达”是文言文翻译的基本要求。“雅”是指译文不仅准确、通顺,而且生动、优美,能再现原作的风格神韵。这是很高的要求,在目前学习阶段,我们只要能做到“信”和“达”就可以了。 做好古文翻译,重要的问题是准确地理解古文,这是翻译的基础。但翻译方法也很重要。这里主要谈谈翻译方法方面的问题。 一、直译和意译 直译和意译是古文今译的两大类型,也是两种不同的今译方法。 1.关于直译。所谓直译,是指紧扣原文,按原文的字词和句子进行对等翻译的今译方法。它要求忠实于原文,一丝不苟,确切表达原意,保持原文的本来面貌。例如: 原文:樊迟请学稼,子曰:“吾不如老农。”请学为圃。子曰:“吾不如老圃。”(《论语?子路》) 译文:樊迟请求学种庄稼。孔子道:“我不如老农民。”又请求学种菜蔬。孔子道:“我不如老菜农。”(杨伯峻《论语译注》) 原文:齐宣王问曰:“汤放桀,武王伐纣,有诸?”(《孟子?梁惠王下》) 译文:齐宣王问道:“商汤流放夏桀,武王讨伐殷纣,真有这回事吗?(杨伯峻《孟子译注》) 上面两段译文紧扣原文,字词落实,句法结构基本上与原文对等,属于直译。 但对直译又不能作简单化理解。由于古今汉语在文字、词汇、语法等方面的差异,今译时对原文作一些适当的调整,是必要的,并不破坏直译。例如: 原文:逐之,三周华不注。(《齐晋鞌之战》) 译文:〔晋军〕追赶齐军,围着华不注山绕了三圈。

阅读中的感悟和乐趣

阅读中的感悟和乐趣 四平市第三中学七年五班梁家鸣 指导教师:孙倩每当恬淡的黄昏,或是静谧的夜晚,我会倚在床的一角,手捧一本书静静地阅读,默默地品味。打开一本书,我可以随意想象,想象自己是蓝天,一望无际;想象自己是月夜,寂静美丽;想象自己是海浪,澎湃不息…… 书籍是我们生活的导航,它教会我们去尊重他人,尊重自己,让贫乏和平庸远离我们。每当茶余饭后咀嚼着书籍中优美的文字,欣赏一个个动人的故事,都会让我人有所感悟。 阅读是一种陶冶,是一种享受。 有人说过,假如一次灾难把现在的城市乡村都毁灭了,那么,只要还留下一座图书馆,人类就不会灭亡,也不会倒退回茹毛饮血的时代。书,让我们畅游在知识的海洋,书,让我们在快乐中成长,书,让我们在阅读中懂得欣赏,书,更让我们在聚精会神的时候懂得感悟。打开一本好书,迎面扑鼻的是清香而深邃的气息,仿佛是那新翻耕的泥土散发出的馨香。读小说,我会随着主人公跌宕起伏的命运或喜或悲;读抒情的散文诗歌,我会在作者淡淡的忧郁中品味他们对生命、生活、自然的态度;翻阅轻松诙

谐的书,我可以尽情地放声大笑,把一切烦恼都抛到九霄云外……你可以和冰心一起享受诗歌的人情冷暖;你可以和司马迁一起谈古论今;你可以和安徒生一起读懂“美人鱼”的宽宏大量…… 阅读是一种学问,是心灵净化的快慰。 阅读,能改变我们生命的面貌,能驱除我们生命中的寂寞,能丰沛我们的精神财富,由此来解析生命存在的意义,感悟行走的岁月。徜徉在斑斓的文字世界里,心灵听风沐雨,春暖花开。就像梁实秋所说:"一个人最好的修养,就是读书。"从龟甲到竹简,从丝帛到纸张,经典书籍的芬芳弥漫在历史的每一个角落,哪里有文明,哪里就有书卷。嗅着淡淡的墨香,感受着字里行间的郁郁葱葱,在不经意间,感悟到深含的情感,与作者进行着心灵的对话。 书是清凉的泉水,让人清凉解渴;书是甜美的果汁,让人滋心润肺;书是浓浓的绿茶,让人神清气爽。阅读就如同在快乐之海遨游。曾经在书中体会过“怦然心跳”;曾经在书中有一种“莫名感动”;曾经在书中进行自我审视,也曾经在书中看到人生百态……我只愿有书为伴,心情平和而宁静,灵魂纯洁而超然! 阅读,轻盈了我的脚步,靓丽了我的身影,让我在文字的世界里纵横驰骋,在文字的田园里自由奔跑,在文字的海洋里无拘

英语期末考试翻译句子

Unit1 A new study shows that dogs can detect if someone has cancer just by sniffing the person’s breath. Ordinary household dogs with only a few weeks of basic training learn to accurately distinguish between breath samples of lung- and breast-cancer patients and healthy subjects.One expert, who led the research, said, “Our study provides compelling evidence that cancers hidden beneath the skin can be detected simply by (dogs’) examining the odors of a person’s breath.” Early detection of cancers greatly improves a patient’s survival chances, and researchers hope that man’s best friend, the dog, can become an important tool in early screening. Unit 2 A research team recently replicated a bacterium’s genetic structure entirely from l aboratory chemicals, moving one step closer to creating the world’s first artificial organism. The researchers said, “It’s the second step of a three-step process to create a synthetic organism. But the final step could prove far more difficult.” Nonetheless, the research is pushing forward at a rapid pace. Last June, the team revealed details of an experiment in which researchers inserted the DNA of one species of bacterium into the cells of another. That process almost magically booted up the inserted genome. The research team hopes to use a similar trick to boot up the artificially created genome, so as to create a man-made living organism. Unit 3 In recent years, the psychologists from many countries banded together to do a research which indicated that continued income growth could make people apply themselves to an ongoing consumption race rather than promote overall happiness. Everyone has to spend more and more money in order to maintain a constant level of happiness. This is because our vanity and jealousy are functioning . The way to sort out them out is to cultivate the noble sentiment of being considerate and serving the society. People shouldn’t pin all their hopes on money. Instead , friends, family and work are also playing a very improtant role . Therefore, hapiness is not an inborn trait, but a talent which everyone can learn. Unit 4 I used to feel excited at teaching my students the elegant economic theories that could supposedly cure societal problems of all types. But what is the good of all my complex theories when people were dying of starvation on the sidewalks and porches across from my lecture hall? My lessons were like the American movies where the good guys always win. But when I emerged from the comfort of the classroom, I was faced with the reality of the city streets. Here good guys were mercilessly beaten and trampled. Daily life ws getting worse, and the poor were growing even poorer. Unit 5 No one thought that shy little Einstein would grow up to a prominent scientist. He was slow in learning to speak, and he often paused to consider what he would say during a conversation.In school, Albert Einstein was singled out by his teachers as a troublesome child because he liked to ask difficult strange questions. He did not like to memorize facts and rules, but was interested in what lay below the surface of things. When he was four or five years old, for instance, his father gave him a compass. Little Einstein was curious about the mysterious force that could keep a compass needle always pointing north, which prompted him to read widely in science. His real studies were mostly done at home by reading books on mathematics, physics, and philosophy. Unit 6 Most Americans have great vigor and enthusiasm. They prefer to discipline themselves rather than be disciplined by others. They pride themselves on their independence, their right to make their own minds. They tend to take the initiatives, even when there is a risk in doing so. They have courage and do not give in easily. They are considered sentimental. When they see a flag on ceremonial occasions, or attend parades celebrating Ame rica’s glorious past, tears may come to their eyes. They tend to be emotional at the reunions with family and friends, too. Sometimes, they can laugh at themselves and their country, while they will always remain intensely patriotic.

齐晋鞌之战原文和译文

鞌之战选自《左传》又名《鞍之战》原文:楚癸酉,师陈于鞌(1)。邴夏御侯,逢丑父为右②。晋解张御克,郑丘缓为右(3)。侯日:“余姑翦灭此而朝食(4)”。不介马而驰之⑤。克伤于矢,流血及屦2 未尽∧6),曰:“余病矣(7)!”张侯曰:“自始合(8),而矢贯余手及肘(9),余折以御,左轮朱殷(10),岂敢言病吾子忍之!”缓曰:“自始合,苟有险,余必下推车,子岂_识之(11)然子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之。此车一人殿之(12),可以集事(13),若之何其以病败君之大事也擐甲执兵(14),固即死也(15);病未及死,吾子勉之(16)!”左并辔(17) ,右援拐鼓(18)。马逸不能止(19),师从之,师败绩。逐之,三周华不注(20) 韩厥梦子舆谓己曰:“旦辟左右!”故中御而从齐侯。邴夏曰:“射其御者,君子也。”公曰:“谓之君子而射之,非礼也。”射其左,越于车下;射其右,毙于车中。綦毋张丧车,从韩厥,曰:“请寓乘。”从左右,皆肘之,使立于后。韩厥俛,定其右。逢丑父与公易位。将及华泉,骖絓于木而止。丑父寝于轏中,蛇出于其下,以肱击之,伤而匿之,故不能推车而及。韩厥执絷马前,再拜稽首,奉觞加璧以进,曰:“寡君使群臣为鲁、卫请,曰:‘无令舆师陷入君地。’下臣不幸,属当戎行,无所逃隐。且惧奔辟而忝两君,臣辱戎士,敢告不敏,摄官承乏。” 丑父使公下,如华泉取饮。郑周父御佐车,宛茷为右,载齐侯以免。韩厥献丑父,郤献子将戮之。呼曰:“自今无有代其君任患者,有一于此,将为戮乎”郤子曰:“人不难以死免其君,我戮之不祥。赦之,以劝事君者。”乃免之。译文1:在癸酉这天,双方的军队在鞌这个地方摆开了阵势。齐国一方是邴夏为齐侯赶车,逢丑父当车右。晋军一方是解张为主帅郤克赶车,郑丘缓当车右。齐侯说:“我姑且消灭了这些人再吃早饭。”不给马披甲就冲向了晋军。郤克被箭射伤,血流到了鞋上,但是仍不停止擂鼓继续指挥战斗。他说:“我受重伤了。”解张说:“从一开始接战,一只箭就射穿了我的手和肘,左边的车轮都被我的血染成了黑红色,我哪敢说受伤您忍着点吧!”郑丘缓说:“从一开始接战,如果遇到道路不平的地方,我必定(冒着生命危险)下去推车,您难道了解这些吗不过,您真是受重伤了。”daier 解张说:“军队的耳朵和眼睛,都集中在我们的战旗和鼓声,前进后退都要听从它。这辆车上还有一个人镇守住它,战事就可以成功。为什么为了伤痛而败坏国君的大事呢身披盔甲,手执武器,本来就是去走向死亡,伤痛还没到死的地步,您还是尽力而为吧。”一边说,一边用左手把右手的缰绳攥在一起,用空出的右手抓过郤克手中的鼓棰就擂起鼓来。(由于一手控马,)马飞快奔跑而不能停止,晋军队伍跟着指挥车冲上去,把齐军打得打败。晋军随即追赶齐军,三次围绕着华不注山奔跑。韩厥梦见他去世的父亲对他说:“明天早晨作战时要避开战车左边和右边的位置。”因此韩厥就站在中间担任赶车的来追赶齐侯的战车。邴夏说:“射那个赶车的,他是个君子。”齐侯说: “称他为君子却又去射他,这不合于礼。”daier 于是射车左,车左中箭掉下了车。又射右边的,车右也中箭倒在了车里。(晋军的)将军綦毋张损坏了自己的战车,跟在韩厥的车后说: “请允许我搭乗你的战车。”他上车后,无论是站在车的左边,还是站在车的右边,韩厥都用肘推他,让他站在自己身后——战车的中间。韩厥又低下头安定了一下受伤倒在车中的那位自己的车右。于是逢丑父和齐侯(乘韩厥低头之机)互相调换了位置。将要到达华泉时,齐侯战车的骖马被树木绊住而不能继续逃跑而停了下来。(头天晚上)逢丑父睡在栈车里,有一条蛇从他身子底下爬出来,他用小臂去打蛇,小臂受伤,但他(为了能当车右)隐瞒了这件事。由于这样,他不能用臂推车前进,因而被韩厥追上了。韩厥拿着拴马绳走到齐侯的马前,两次下拜并行稽首礼,捧着一杯酒并加上一块玉璧给齐侯送上去,

小学语文中高年级阅读理解附答案快乐与感触

小学语文中高年级阅读理解附答案快乐与感触 依稀记得在我两三岁的时候,我天天跟着妈妈到学校里玩耍,那时妈妈在学校里给幼儿班代课。课间一群比我大点的孩子们总是围着我说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给我手中或嘴里塞干粮的。他们一听到铃声嘴里“哦———”着飞也似的进了教室。于是我便一人悠闲自在地在校园里溜达:一步一步地踱到东边看看美丽的花儿;爬到西边的球台上翻着晒晒太阳;听到南边教室里悠扬的歌声,于是又跑到窗户下踮着脚使劲儿地仰起头向里看;仰倦了头嘴里嘟嘟地哼着,若无其事的来到北面那两块瓷砖镶嵌的大地图下,看着那些花花绿绿的条条块块,也不知道是些什么。 如今,我已是那时年龄的四倍了,仍在这熟悉温暖的校园里,那时一切不懂的,今天都明白了。那时的快乐依在,那时的天真依在。不过现在我所看到的、听到的、感悟的比那时多得多了。 清晨的校园,阳光钻透东边茂密的柳林,斑驳的光点印在绿绿的草坪上。无数只鸟儿横着或倒挂在柔柔的柳条上凑响清脆的晨曲。在通向教师办公大楼的水泥道上,陆陆续续晃过一群高大的身影———我们的老师,他们又上班去了。 当校园正中升起鲜艳的五星红旗时,悦耳的歌声和朗朗的读书声早已把校园装点得生机勃勃。我再不需要像过去那样踮脚仰头地去向往了。我尽心地在这宽敞明亮的教室里学习,聆听着老师的教诲,享受着群体的温暖与关爱。 课间,我们三三俩俩去拉着或牵着幼儿班的那些小娃娃,说啊、笑啊、眯眯眼做做鬼脸什么的,也有不停地给他们手中或嘴里塞泡泡糖的。有一天,我把三四个小娃娃牵到北面那两块瓷砖镶嵌的大地图下,学着老师的样子摇头晃脑、指着地图比比划划地讲:“这是中国,这是长江、那是黄河……,我们的学校在这里,要记住,别忘记。看我的手好大,把一个省都罩住了。”小娃娃们叽叽喳喳地笑个不停,我也笑得前俯后仰。 上课铃响了,我们“哦———”着飞也似的进了教室。那天我们进了教室,唱完了一首长长的歌,没见老师来,于是我站起来对大家说:“大家先读读书吧,我去办公室看看”。话音刚落,只见李老师一瘸一拐地走进教室。同学们注视着他的脚。原来他脚上缠着一圈大大的药纱布。我们明白他的脚受伤了。他开始给我们讲课,和往常一样站着,不时还转去转来。一会儿,我从他变化了的语调中感到:他的脚疼痛难忍了。我忍不住环视一下四周,发现所有同学的眼里都水晶晶的,此刻我心头一热,眼泪夺眶而出。这天我在日记中写道:“在我们快乐的时候,我们的老师也许正痛苦着;在我们获取的时候,我们的老师正在奉献着;在我们成长的时候,我们的老师正在消亡着。” 太阳依旧从东边升起,灿烂的阳光总是洒满校园。当我的年龄到了是现在的若干倍的时候,我会依然记起今天的快乐与感触。 1、作者的感触是什么?(4分) 答:。 2、在文中找出拟人的一句话写在下面。(1分) 3、用“~~~”标出文中照应的句子。(2分) 4、在文中找出三对反义词写在下面。(3分) 、、 5、“哦——”中的“———”号起作用。(2分)

相关主题