搜档网
当前位置:搜档网 › 纳米材料在电化学免疫传感器中的应用研究_孔粉英

纳米材料在电化学免疫传感器中的应用研究_孔粉英

纳米材料在电化学免疫传感器中的应用研究_孔粉英
纳米材料在电化学免疫传感器中的应用研究_孔粉英

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

电流型电化学传感器的研究进展

电流型电化学传感器的研究进展 作为一种新科技革命和信息社会的重要技术基础,传感技术已成为人们现代生活的重要组成部分。近年来,电化学传感器的研究受到人们的广泛关注。电极系统组成、电极类型、电解液等重要组成部分的选择对于电流型传感器的性能影响尤为关键。文章详细总结了电流型电化学气体传感器的发展状况,阐述了电极系统、电解液类型对传感器性能的影响,并讨论了电流型传感器的未来发展和应用前景。 标签:传感器;电极;电解液 1 概述 传感器是一种能感应信息并将其转换为可测量信号的器件[1]。作为一种新技术革命和信息社会的重要基础技术,传感器的发展特别迅速,已成为人们现代生活的重要组成部分[2]。 按照感性信号不同,传感器可分为物理传感器和化学传感器,化学传感器可以详细划分为电化学式传感器、光学式传感器、热学式传感器和质量式传感器等。其中电化学传感器由于其敏感度高、能耗低、信号稳定等特点,被广泛使用[3,4]。 电化学传感器是目前发展最为成熟和应用最广的一类传感器[5],按照其输出信号的不同可以分为电位型电化学传感器、电流型电化学传感器和电导型电化学传感器[6]。其中电位型傳感器是基于电极电势与被测组分浓度之间的关系,通过电极电势的变化来感知浓度的变化。电导型传感器是基于被测物质氧化或还原后电解质溶液电导变化实现检测的。本文主要介绍电流型传感器及其性能影响因素。 2 电流型传感器 电流型传感器是在电位恒定的条件下,使被测物发生定电势电解,基于扩散控制条件下极限电流与浓度的线性关系,从而检测被测物质组分的实时变化的一类传感器[7]。通常也被称为控制电位电解型气体传感器,这种传感器包括供气体进入的气室或薄膜、电极、离子导电性的电解质溶液几部分。电流型传感器是当前业内应用最为广泛的传感器。电流型传感器的工作过程一般包括被测气体进入传感器气室;待测物质通过反应气室到达透气膜附近,并向电极-电解液界面扩散;电活性物质在电解液中溶解;电活性物质在电极表面吸附;扩散控制下的电化学反应;产物脱附;产物离开电极表面的扩散;产物的排除等过程。 3 性能影响因素 影响传感器性能的最主要因素包括电极因素和电解液因素两部分,电极因素

纳米电化学生物传感器重点

收稿:2008年3月, 收修改稿:2008年8月 *深圳大学科研启动基金项目(No. 200818 资助**通讯联系人 e 2mail:yang hp@https://www.sodocs.net/doc/0c4959362.html,. cn 纳米电化学生物传感器 * 杨海朋 ** 陈仕国李春辉陈东成戈早川 (深圳大学材料学院深圳市特种功能材料重点实验室深圳518060 摘要纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质, 与特异性分子识别物质如酶、抗原P 抗体、D NA 等相结合, 并以电化学信号为检测信 号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势, 综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展, 包括纳米颗粒生物传感器, 纳米管、纳米棒、纳米纤维与纳米线生物传感器, 以及纳米片与纳米阵列生物传感器等。 关键词生物传感器电化学传感器纳米材料生物活性物质固定化 中图分类号:O65711; TP21213 文献标识码:A 文章编号:10052281X(2009 0120210207 Nanomaterials Based Electrochemical Biosensors Y ang Haipeng **

Chen Shiguo Li Chunhui Chen Dongche ng Ge Zaochuan (Shenzhen Key Laboratory of Special Functional M aterials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China Abstract Biosensors w hich utilize immobilized bioac tive compounds (such as enz ymes, antigen, antibody, D N A, etc. f or the c onversion of the target analytes into electroc he mically detectable products is one of the most widely used detection methods and have become an area of wide ranging research activity. The advances in biocompatible nano technology make it possible to develop ne w biosensors. A variety of biosensors with high sensitivity and excellent reproducibility based on nano technology have been reported in recent years. In this paper, the development of the researches on nano amperometric biosensors, one of the most important branches of biosensors, is revie wed. Nanoscale architectures here involve nano 2particles, nano 2wires and nano 2rods, nano 2sheet, nano 2array, and carbon nanotube, etc. Remarkable sensitivity and stability have been achieved by coupling immobilized bioactive compounds and these nanomaterials. Key words biosensors; electroche mistry sensors; nanomaterials; bioactive compounds; immobiliz ation Contents 1 Introduction to biosensors 2 Nanomaterials based electrochemical biosensors 2. 1 Challenges and developments of biosensors 2. 2 Introduction of nanomaterials 2. 3 Nanomaterials based electrochemical biosensors 2. 3. 1 Nano particles based electrochemical biosensors

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

电化学气体传感器

电化学气体传感器的研究 电化学气体传感器是由膜电极和电解液灌封而成的。气体浓度信号将电解液分解 成阴阳带电离子,通过电极将信号传出。它的优点是:反映速度快、准确(可用于ppm级),稳定性好、能够定量检测,但寿命较短(大于等于两年)。它主要适用于 毒性气体的检测,目前国际上绝大部分毒气检测采用该类型传感器。 电化学气体传感器的分类 电化学气体相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧 化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学分很多子类:(1)、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流 表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器 可以有效地检测氧气、二氧化硫、氯气等。 (2)、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正 的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害的主流传感器。 (3)、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用 氧气传感器、固体电解质型二氧化碳传感器。 (4)、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧 浓度检测。 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的电池式以 及需要供电的可控电位电解式。 基于电化学原理工作的传感器其最简单的一种型式就是两电极系统。其工作电极 和对电极由一薄层电解液隔开并经由一个很小的电阻联通外电路。当气体扩散进入传 感器后,在敏感电极表面进行氧化或还原反应,产生电流并通过外电路流经两个电极。该电流的大小比例于气体的浓度,可通过外电路的负荷电阻予以测量。 为了让反应能够发生,敏感电极的电位必须保持在一个特定的范围内。但气体的浓度 增加时,反应电流也增加,于是导致对电极电位改变(极化)。由于两电极是通过一 个简单的负荷电阻连接起来的,虽然敏感电极的电位也会随着对电极的电位一起变化。如果气体的浓度不断地升高,敏感电极的电位最终有可能移出其允许范围。至此传感 器将不成线性,因此两电极气体传感器检测的上限浓度受到一定限制。

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号:20114209033 授课教师: 考试日期:2012 年 1 月10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分

电化学葡萄糖传感器研究进展_吴爱坪

2015年第23期 科技创新科技创新与应用 电化学葡萄糖传感器研究进展 吴爱坪 (国家知识产权局专利局专利审查协作江苏中心,江苏苏州215000) 葡萄糖检测在医学、食品、生物技术及工业等领域有着广泛的应用,例如在医学上,常用电化学葡萄糖检测试条对病人血液、尿液或是唾液中的葡萄糖进行检测,从而指导饮食调节或是调整糖尿病用药,有助于糖尿病病情的治疗与控制;在食品方面,葡萄糖常见的碳水化合物,分析食品中(如饮料、果汁等饮品中)的葡萄糖含量也十分必要;葡萄糖含量的多少对微生物的发酵过程也有一定的影响;此外葡萄糖电化学传感器也用于检测工业废水中葡萄糖的含量。采用电化学传感器检测葡萄糖,其线性检测范围宽、灵敏度高、成本比较低,近年来,获得快速发展,已成为目前研究和应用最多的生物传感器。 1电化学酶传感器 酶传感器一般是由固定化酶和电极组合构建而成。利用酶的高度专一性及催化性,将酶作为生物传感器的敏感元件,从而实现生物分子,如糖类、醇类、有机酸化合物、氨基酸化合物的浓度检测。用于葡萄糖检测的酶常为葡萄糖氧化酶。根据检测过程中传感器的电荷传递机理不同,主要有以下几种类型的电流型葡萄糖传感器。 1.1氧气作为电子传递介体 在葡萄糖氧化酶存在的条件下,葡萄糖和氧气反应生成葡萄糖酸和双氧水,葡萄糖浓度的变化与双氧水或是氧气的浓度变化成线性关系。采用电化学方法检测过氧化氧的浓度和氧浓度可实现葡萄糖浓度的检测。张彦等采用壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量,通过电极检测氧气消耗量,并依据反应中消耗的氧气与葡萄糖的浓度成正比的关系,建立了检测葡萄糖含量的电化学方法[1]。由于这类传感器借助于中间物质氧气或是双氧水,极易受检测环境的影响,如氧气不足时,难以对高浓度的血糖进行测定;双氧水浓度过高还容易导致酶的失活[2]。 1.2利用电子媒介体代替氧气作为电子受体 电子媒介体,是指能将酶反应过程中产生的电子从酶反应中心转移到电极表面,从而使电极产生相应电流变化的分子导电体。其克服了葡萄糖酶传感器受氧气限制的缺点。电子媒介体能够使电子在酶的氧化还原中心与工作电极表面之间进行快速、往复传递。常见的电子媒介体有有机染料、二茂铁及其衍生物、醌及其衍生物、四硫富瓦烯、富勒烯及导电有机盐等。陈国松等用电子媒介体硒杂二茂铁制备得到的葡萄糖电极[3];莫昌莉等以蔡酚绿B为介体制备葡萄糖传感器,加入葡萄糖标准溶液前后对蔡酚绿B进行循环伏安扫描,根据蔡酚绿B氧化峰的电流值与葡萄糖浓度成正比从而实现葡萄糖的定量测定[4]。 1.3无介体传感器 其主要特点就是不经过酶与电极间电子交换,酶自身与电极之间直接进行电子转移。由于氧化还原活性中心深埋在葡萄糖氧化酶的分子内部,电子无法与电极表面以足够快速率进行转移,因此增强电子转移速度、缩短其与电极的距离是无介质传感器的研究热点。通常主要通过将酶共价键合在修饰电极表面、或将酶固定在导电聚合物修饰电极表面,达到酶催化反应的专一和高效。蔡称心等利用吸附的方法将葡萄糖氧化酶固定到CNT/GC电极表面,形成GOx-CNT/GC电极,通过葡萄糖氧化酶的直接电子转移实现葡萄糖的检测[5],Xinhuang Kang等采用葡萄糖氧化酶-石墨烯-壳聚糖修饰电极实现葡萄糖的直接电化学检测,借助于石墨烯的高比表面积和高导电性,实现葡萄糖氧化酶在电极表面的高吸附量,并加快了葡萄糖氧化酶与电极之间的电子传递速度[6]。 2电化学非酶传感器 酶的活性容易受到外界环境影响这一缺点限制了酶传感器的应用,通过在电极上修饰对葡萄糖有催化作用的材料构建非酶葡萄糖传感器越来越引起人们的关注。常见的用于构建非酶葡萄堂传感器的材料主要有金属纳米材料如Au、Ag、Pt等、金属合金如Pt-Pb、金属纳米氧化物纳米CuO等、碳纳米管、石墨烯、聚合物膜、水滑石等。非酶葡萄糖传感器克服了酶容易失活这一缺点,表现出良好的重现性及稳定性。 纳米材料由于其尺寸效应等具备良好的催化性能,越来越广泛应用于电化学传感器的研究中。丁海云等将制备了Cu纳米粒子修饰电极,其与大粒径的Cu粒子修饰电极相比较,Cu纳米粒子修饰电极对葡萄糖的检出限更低[7],罗立强等制备氧化铜-石墨烯纳米复合物修饰电极,测定人血清样品,其结果与生化分析仪得出的结果基本一致[8]。特殊形状的纳米结构性能更佳,王蕊通过电沉积的方法在金电极表面制备了具有三维Pt-Pb“纳米花”状纳米结构,其电活性面积和电催化活性都有极大的提高,且稳定性和选择性也很好[9]。黄新堂等制备钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极CN101598697A。 电极表面的聚合物膜可以消除干扰,提高电极选择性。俞建国等制备的修饰过氧化聚吡咯膜的微镍电极用于葡萄糖的检测,有效的减少了常见的干扰物质(如抗坏血酸、尿酸)对检测结果的干扰,提高修饰电极的稳定性[10]。 3结束语 酶传感器具有高度的专一性,非酶传感器具备良好的稳定性,两者均具备自己的优势,无论哪种传感器,其最终目的是实现葡萄糖传感器的高效、专一、长期检测。未来在酶传感器的酶的活性保持及非酶传感器的专一性等方面的研究将会是葡萄糖电化学传感器的研究热点。 参考文献 [1]张彦,等.壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量[J].分析化学,2009,37(7):1049-1052. [2]Guilbault G Q Lubrano G G.An enzyme electrode for ampero-metric determination of glucose[J].Analytica ChimicaActa,1973,64(3):439-455. [3]陈国松,等.CN102297886A[P].2011 [4]莫昌莉,等.以蔡酚绿B为介体的葡萄糖生物传感器[J].化学传感器,2003,23(1):26-31. [5]蔡称心,等.碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移[J].中国科学(B辑),2003,33(6):511-518. [6]Xinhuang Kang,等.Glucose Oxidase-graphene-chitosan modified e lectrode for direct electrochemistry and glucose sensing[J].Biosensors and Bioelectronics,2009,25:901-905. [7]丁海云,等.纳米铜修饰玻碳电极的制备及其对葡萄糖的催化氧化[J].分析化学,2008,36(6):839~842. [8]罗立强,等.CN102520035A[P].2012. [9]王蕊.Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D].天津大学材料学院,2010. [10]俞建国,等.高选择性的镍基无酶葡萄糖微传感器的研制及应用[J].分析化学,2008,36(9):1201-1206. 摘要:电化学传感器法检测葡萄糖是葡萄糖检测的常见方法,广泛应用于临床检测、食品生产、生物技术、发酵控制等领域,文章介绍了葡萄糖电化学传感器的常见类型及其工作原理,并对其优缺点进行了简单分析。 关键词:葡萄糖;电化学传感器;研究分析 63 --

电化学免疫传感器及其在临床检验中的应用进展

新技术、试剂与设备 电化学免疫传感器及其在临床检验中的应用进展* 贾立永1,郑 磊1,王 前1,干 宁2,Wen Wang3 (1.南方医科大学南方医院,广州510515;2.宁波大学宁波市新型功能材料及其制备科学 国家重点实验室培育基地,浙江315211;3.Queen M ary University of London,E14NS,U nited Kingdom) !关键词? 电化学; 免疫测定; 生物传感技术; 实验室技术和方法 DO I:10.3969/j.issn.1673 4130.2010.11.064 中图分类号:R446.61文献标识码:B文章编号:1673 4130(2010)11 1329 02 电化学免疫传感器将传感技术的高灵敏度和免疫反应的特异性结合起来,把抗原 抗体特异性反应过程中产生的信号通过换能器转变成电信号,从而对抗原或抗体进行定量检测。与传统的检测技术相比较,具有高灵敏度、高特异性、操作简便、分析速度快、价格低廉等优势,且易于实现自动化操作,已经在临床诊断、医疗保健、环境监测、食品安全等领域得到广泛应用,成为传感器领域的研究热点。 电化学免疫传感器的原理 电化学免疫传感器主要是由接受器(r eceptor)、换能器(t ransducer)和电子线路(electro nic contr ol circuit)三部分组成。固定在固相载体上的抗原或抗体构成传感器的敏感膜,即接受器。当样品中含有待测物时,待测物与接受器结合,产生化学量,由换能器将其转化成与分析物浓度有关的电信号,通过电子系统进行处理和显示。 电化学免疫传感器的分类 根据检测信号可分为电位型、电导型、电容型、电流型。其中电流型免疫传感器最为成熟,应用最广泛。 1.电位型 电位型免疫传感器是基于离子选择电极、气敏选择电极原理发展起来的。它是测量电位变化来进行免疫分析的生物传感器,反应过程中的电位变化值与待测物浓度的对数成正比,可直接或间接检测各种抗原、抗体,具有可实时监测、响应时间较快等特点。但是该类型免疫传感器由于不能很好的解决非特异性吸附和背景干扰等问题,灵敏度低,线性范围窄,实际应用有限。 L iang等[1]的研究表明三维立体疏松多孔壳聚糖的应用使电极具有高体表面积、良好的结构稳定性和亲水性,能够为电极表面固定蛋白提供良好的生物相容性环境,有效解决了电位型免疫传感器灵敏度低、线性范围窄等缺点。 2.电导型 电导测量法可大量用于化学系统中,因为许多化学反应都产生或消耗离子体,使溶液的导电能力发生改变,从而改变溶液的总导电率。通常是将一种酶固定在某种贵重金属电极上(如金、银、铜、镍、铬),在电场作用下测量待测物溶液中导电率的变化。Rezaei等[2]制备的人生长激素(hG H)传感器由于灵敏度高(检测限为0.64pg/mL)、线性动态范围宽(3~100pg/mL),可取代对人体有害的放射免疫测定法。 电导法易受待测样品的离子强度与缓冲液电容影响,加之溶液的电阻是由全部离子移动决定的,而且难以克服非特异性吸附问题,因此电导型免疫传感器发展比较缓慢。 3.电容型 电容型免疫传感器是一种建立在双电层理论上的高灵敏度的免疫传感技术。用类似于电容器的物理方程来描述:C=A 0 /de。其中C为界面电容, 0为真空介电常数, 为电极/溶液界面物质介电常数,A是电极与溶液的接触面积,d是界面层厚度。电极/溶液的界面电容能灵敏反应界面物理化学性质的变化。该类型传感器就是基于将抗体固定在电极表面,当抗原抗体在电极表面结合时,界面电容相应地降低,据此进行定量检测。 制作电容型免疫传感器的关键是在金属电极或者半导体上形成电绝缘层。随着L B膜、自组装膜等技术的不断发展和完善[3],能够实现在分子水平上的定向组装,形成高度致密有序的单分子或多分子层,为制备高灵敏的电容型免疫传感器提供了很好的途径。Y ang等[4]首次报道了自组装金纳米单分子层检测沙门氏菌的电容型免疫传感器。 4.电流型 电流型电化学传感器制作简单,敏感度高,价格低廉,已经有商品化的产品。主要原理是利用氧化还原反应在传感器上产生的电流与电极表面的的待测物浓度呈正比,通过测量恒定电压下通过电化学室的电流来对待测物进行定量检测。电流型传感器既可以检测酶标二抗对底物的氧化还原产生的直接电子传递,也可以利用抗原抗体形成的免疫复合物对电子在电极表面的转移的阻滞,测定峰电流改变值来定量检测待测物。 W ang等[5]将F e3O4磁性纳米微粒、壳聚糖、酪氨酸酶按一定的比例混合,滴在玻碳电极表面,利用纳米生物复合膜提供大量固定酶的微环境,可防止酶的泄露,制备了用于酚类物质检测的高灵敏免疫传感器。 电化学免疫传感器在临床诊断中的应用 检测疾病特异性#诊断蛋白?(DP,即抗原/抗体)含量和种类对疾病诊断、病情分析、治疗方案制定和预后具有重要意义。而电化学免疫传感器是一种简便快速检测DP的方法。电化学免疫传感器在临床诊断方面广泛应用于肿瘤标志物、感染性疾病、自身免疫病等疾病的诊断。 1.电化学免疫传感器应用于肿瘤标志物检测 肿瘤标 *基金项目:广东省科技计划资助项目(2008A050200006);广东省科技计划资助项目(2010A0303000006)。 通讯作者,E mail:nflab @https://www.sodocs.net/doc/0c4959362.html,。

电化学气体传感器的优缺点

不同电化学气体传感器中所包含的不同成份决定了它可与相应的毒气发生反应;测量头可测量反应所产生的电流并将其转换成气体浓度值(ppm或ppb)。催化传感器在涂有催化剂的小球上“无焰燃烧”可燃性气体;测量头可测量电阻的变化并通过a/d 转换,显示变化相应的读数。一般以爆炸下限作为满量程。 由于电化学型和催化燃烧型测量头相对较低的成本,它们通常被用于“源点”(即泄漏有可能发生的地方)处的测量。因而对泄漏的反应迅速并可连续探测。另外,由于没有可移动部件,所以不会造成机械故障。 但是,这两种类型的传感器也有缺点:一些气体传感器不但对与之相应的气体(即它们按照设计应该反应的气体)反应,而且对其他气体(干扰气体)也发生反应,因此有必要注意在设计和安装过程中避免将这些传感器用在有可能有干扰气体存在的地方。传感器需要定期标定,通常为三个月一次(视不同品牌,工作环境,工作状态等因素的影响);传感器在使用1到3年后通常需要更换(视不同品牌,工作环境,工作状态等因素的影响)。另外,有些品牌的传感器使用的是电解溶液,这就需要定期填充电解液。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/0c4959362.html,。

化学传感器的研究进展

武汉工程大学 “E+”国家人才培养模式创新实验区 科研训练 项目名称:化学传感器的研究进展 学生姓名:康福强 班级学号: 1306210607 指导教师:李辉 成绩评定: “E+”国家级人才培养实验区外语学院制

化学传感器的研究进展 摘要:化学传感器是当代信息产业的重要组成部分,其发展迅速,已在人类现代生活中发挥了重要的作用。本文介绍了化学传感器的基本概念,工作原理和分类,在此基础上着重总结了相关最新研究进展,并对化学传感器的发展做出了展望。 关键词:化学传感器;研究进展;电流型气体传感器;光纤化学传感器 Abstract:Chemical sensor is an important part of modern information industry, its development is rapid, been in the human has played an important role in modern life.This paper introduces the basic concepts of sensor, the working principle and classification, on this basis mainly related to the latest research progress are summarized, and the prospects are made on the development of chemical sensors. Key words:Chemical sensors;The research progress;Current type gas sensor;Fiber optic chemical sensor 1引言 在科学研究和工农业生产、环境保护等很多领域,化学量的检测与控制技术正在得到越来越广泛的应用,而化学传感器是这个过程的首要环节[1]。近儿十年化学传感器的研究和发表明,化学传感器的应用已深入人们现代生活的各个方面,环境的保持和监控,预防灾难和疾病的发生,以及不断提高人们的工农业活力和生活水平,仍然是当前乃至今后相当长时期化学传感器应用的主要领域。本文介绍了化学传感器及其最新研究进展。 2化学传感器 2.1化学传感器的概念 化学传感器(chemical sensor)通常描述成一种分析方法,这种分析方法更适合于被称作“分析化验”或者“感觉系统”,但是化学传感器通常是连续的获得数据信息,而感觉系统获得信息是不连续的[2]。在R. W . C atterall的著作[3]中将化学传感器定义为一种装置,通过某化学反应以选择性方式对特定的待分析物质产生响应从而对分析质进行定性或定量测定。此传感器用于检测及测量特定的某种或多种化学物质。 2.2化学传感器的工作原理和分类 化学传感器的组成包括具有对待测化学物质的形状或分子结构选择性俘获功能的接受器和将俘获的化学量有效转换为电信号功能的转换器。接受器将待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反应所测得的化学参数转化成传导系统可以产生响应的信号。 分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 化学传感器的种类繁多、原理各异,检测对象儿乎涉及各种参数。通常一种传感器可以

功能性纳米材料在电化学免疫传感器中的应用_王广凤

檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵殝 殝 殝 殝 评述与进展 DOI :10.3724/SP.J.1096.2013.20611 功能性纳米材料在电化学免疫传感器中的应用 王广凤 朱艳红 陈玲 王伦 * (安徽师范大学化学与材料科学学院,芜湖241000) 摘 要新型功能性纳米材料以其诸多优良性质在构建电化学免疫传感器中备受关注,为电化学免疫传感 器的开发和研究开辟了一片广阔天地。纳米材料在电化学免疫传感器方面的应用主要是将纳米材料作为传感器界面的修饰材料、生物分子的固载基质以及信号标记物等。本文就常见的功能性纳米材料在电化学免疫传感器中的应用做一综述。 关键词 功能性纳米材料;电化学免疫传感器;综述 2012-06-14收稿;2012-11-04接受 本文系国家自然科学基金项目(Nos.20901003, 21073001,21005001)资助*E-mail :wanglun@mail.ahnu.edu.cn 1 引言 纳米技术是一门在1 100nm 空间尺度内操纵原子和分子,对材料进行加工、制造具有特定功能的产品,或对某物质进行研究,掌握其原子和分子的运动规律和特性的崭新高技术学科,它的发展开辟了 人类认识世界的新层次[1] 。纳米材料是指三维空间尺寸至少有一维处于纳米级(通常为1 100nm )的材料。纳米材料具有表面效应、小尺寸效应和宏观量子隧道效应,表现出一系列独特的力学、电学、光学、磁学以及催化性能,拥有“21世纪最有前途的材料”的美誉 [2,3] 。纳米技术的兴起为生物电分析化学的发展提供了更为广阔的空间,而生物传感器也成为纳米材料最有前途的应用领域之一[4] 。新型功 能性纳米材料,由于其特殊的结构层次、较强的吸附能力、良好的定向性能、生物相容性以及结构相容性(酶、抗原、抗体以及生物分子受体具有和纳米材料相似的尺寸约2 20nm ),从而可以提高生物分子(如酶、DNA 等)的固载量、标记生物分子、催化反应、加快电子传递及增大电流信号,为生物电化学传感器的研究和应用提供新途径。 目前,比较成熟的生物电化学传感器技术有:酶传感器、免疫传感器、 DNA 传感器等。电化学免疫传感器是将免疫技术与电化学传感相结合的一种免疫传感器,它既具有电化学传感器的高灵敏度和简 便经济等特点,又具有免疫分析的高选择性、强专一性和低检出限等优点[5]。近年来,电化学免疫传感 器已成为电分析化学在生命科学研究领域中的前沿和热门, 在临床检测、环境检测、食品分析等方面得到了广泛应用 [6,7] 。 为了研制高灵敏度、高选择性、低成本和长寿命的电化学免疫传感器,免疫生物敏感膜界面的构建 一直是免疫传感器研究的关键技术之一。纳米材料在电化学免疫传感器方面的应用主要是将纳米材料作为传感器界面的修饰材料、生物分子的固载基质以及信号标记物等。纳米材料作为基底固载生物分子可以增大固载量、提高反应活性;同时,纳米材料标记的抗体(抗原),可保留其生物活性和对应的组分作用,并根据这些纳米材料的电化学检测确定分析物的浓度,使用纳米材料的放大标记物可以大大增加信号,制备超灵敏的电化学免疫传感器。本文主要介绍几种常见的纳米材料如碳材料、金银纳米以及半导体纳米材料在电化学免疫传感器中的研究进展,并展望其应用前景。 第41卷2013年4月 分析化学(FENXI HUAXUE )评述与进展Chinese Journal of Analytical Chemistry 第4期608 615

电化学气体传感器概述

电化学气体传感器 氧气传感器 概况 所有的氧气传感器都是自身供电,有限扩散,其金属-空气型电池由空气阴极,阳极和电解液组成。 氧气传感器简单来说是一个密封容器(金属的或塑料的容器),它里面包含有两个电极:阴极是涂有活性催化剂的一片PTFE(聚四氟乙烯),阳极是一个铅块。这个密封容器只在顶部有一个毛细微孔,允许氧气通过进入工作电极。两个电极通过集电器被连接到传感器表面突出的两个引脚,而传感器通过这两个触角被连接到所应用的设备上。传感器内充满电解质溶液,使不同种离子得以在电极之间交换(参见图1)。 Figure 1 - Schematic of oxygen sensor. 进入传感器的氧气的流速取决于传感器顶部的毛细微孔的大小。当氧气到达工作电极时,它立刻被还原释放出氢氧根离子: O2 + 2H2O + 4e-4OH- 这些氢氧根离子通过电解质到达阳极(铅),与铅发生氧化反应,生成对应的金属氧化物。 2Pb + 4OH-2PbO + 2H2O + 4e-

上述两个反应发生生成电流,电流大小相应地取决于氧气反应速度(法拉第定律),可外接一只已知电阻来测量产生的电势差,这样就可以准确测量出氧气的浓度。 电化学反应中,铅极参与到氧化反应中,使得这些传感器具有一定的使用期限,一旦所有可利用的铅完全被氧化,传感器将停止运作。通常氧气传感器的使用寿命为1-2 年,但也可以通过增加阳极铅的含量或限制接触阳极的氧气量来延长传感器的使用寿命。 毛细微孔氧传感器和分压氧传感器 城市技术生产的氧气传感器根据进入传感器的氧气的扩散方式的不同分为两种,一种是在传感器顶部设有一毛细微孔,而另一种设有一层固体薄膜允许气体通过。细孔传感器测量的是氧气浓度,而固体薄膜传感器测量的是氧气的分压。 细孔传感器产生的电流反映的是被测氧气的体积百分比浓度,与气体总压力无关。但当氧气压力瞬间发生变化时,传感器会产生一个瞬间电流,如果没有控制好就会出现问题。同样的问题在传感器受到重复压力脉冲时也会出现,例如进入传感器的气体是抽运式的。对这个现象的解释如下所示: 压力瞬变 当细孔氧气传感器遇到急剧增压或减压,气体将被迫通过细孔栅板(大流量)。气体的增加(或减少)产生了一个瞬变电流信号。一旦情况重新稳定不再有压力脉冲,瞬变即告结束。此类瞬变可以通过仪器报警,这样CityTech就可以努力寻求解决方案以减小压力影响。 所有城市技术的细孔氧气传感器都采用了抗大流量机制,见图2。根本上来说,可以增加一个PTFE 抗大流量薄膜来减弱压力变化带来的瞬变影响。这层薄膜用一个金属盖或塑料盖紧紧固定在细孔上,这个设计可以很大程度上减少信号的瞬间变化影响。 Figure 2 - Bulk Flow Membrane on Capillary Sensor 但某些压力变化产生的瞬变力量超过了这种设计允许的范围,特别是使用抽取式仪器对传感器输送气体的设备。某些泵产生的气体对CiTiceL 氧传感器造成持续的压力脉冲,人为地增强了信号。在这种情况下,有必要在传感器外设计一个气体膨胀室减小对传感器的压力脉冲。 部分分压型氧传感器 毛细微孔控制气体扩散并不是控制氧气进入传感器的唯一方法,我们还可以使用一个非常薄的塑料薄膜覆

电化学气体传感器模组说明.doc

系列智能传感器是专门针对气体探测器生产企业推出的新型智能传感器,主要为解决气体探测种类繁多、各品种传感器互不兼容、生产标定复杂、核心器件更换限制等问题。采用我司生产的智能型气体传感器则只需开发一款产品,即可快速响应客户对不同气体种类探测的需求,且生产过程简化,无需重新标定,大幅度降低企业的研发成本、生产成本,产品品质也立即提升到国际一流水准。 该传感器操作方便、测量准确、工作可靠,适用于工业现场或实验室测量等不同的要求。传感器具有电压和串口同时输出特点,方便客户调试及使用。 ■本安电路设计,可带电热拔插操作; ■专业精选、原装进口,兼容红外、电化学、催化、半导体等多种传感器; ■自带温度补偿,出厂精准标定,使用时无需再标定; ■电压和串口同时输出特点,方便客户调试及使用; ■最简化的外围电路,生产简单、操作方便。 传感器安装尺寸 图 接线示意图 传感器外部尺寸图 电化学气体传感器模组说明概述 产品特点 技术参数

2)工作电流:≤50mA (催化≤100mA); 1)工作电压:DC5V±1%(4-20mA输出的是DC 24V); 3)测量气体:有毒、可燃气体、挥发性有机物气体;4)安装方式:7脚拔插式; 5)测量范围:0-10000可选(以检测气体而定);6)检测原理:电化学、红外、催化; 7)测量单位;PPM 、%LEL 、%VOL (以检测气体而定);8)响应时间:<30s; 9)采样精度:±2%FS ;10 )预热时间:30s; 11)重复性:±1%FS;12)长期零漂:≤1%FS /年; 13)工作温度:-20~70 ℃;14)工作湿度:10 ~95%RH(无凝露); 15)存贮温度:-40~70 ℃;15)工作气压:86kPa~106kPa; 17)外壳材质:铝合金;18)输出接口:6PIN; 19)使用寿命:2年以上(以传感器使用寿命为准);20)质保期: 1年; 21)数字信号格式:数据位:8;停止位:1;校验位:无;22)波特率: 9600; 23)输出信号:0.4-2.0VDC( 常规)、0-1.6VDC 、0-4VDC 、0-5VDC电压信号或4-20mA电流信号可选; 24)外型尺寸:Φ33.5*31mm(引脚除外); 引脚定义 序号名称说明 1 GND 地 2 Vout 电压输出 3 Iout 电流输出 4 TX/A 串口发送或485A 5 RX/B 串口接收或485B 6 24V/5V 电源输入 传感器底视图 传感器通讯协议说明 1、异步串行通信参数: 始位:1 数据位:8 停止位:1 校验:无波特率:9600 2、帧格式:(详见下文)

相关主题