搜档网
当前位置:搜档网 › 1998~1999年国际磁性功能材料新进展

1998~1999年国际磁性功能材料新进展

1998~1999年国际磁性功能材料新进展
1998~1999年国际磁性功能材料新进展

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

磁性材料及其应用研究

万方数据

乘客乘车的凭证和票价结算的磁性卡等。 图1磁性材料 2.1永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,抗退磁能力强,磁能积(BH)大。相对于软磁材料而言,它亦称为硬磁材料。永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AINi(Co)、FeCr(Co)、FeCrMo、FeAIC、FeCo(V)(W);烧结合金有:Re--Co(Re代表稀土元素)、Re—Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnALC、CuNiFe和A1MnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类:主要成分为MO?6Fe203,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。 2.2软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAI等。 ②非晶态合金薄带:Fe基、C0基、FeNi基或FeNiCo基等配以适当的si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAI、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型一一MO?Fe203(M代表NiZn、MnZn、MgZ.、Lil/2Fel/2Zn、CaZrt等),磁铅石型一一Ba3Me2F也40141(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2.3矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器、衰减器、相移器、词制器、开关、限幅器及延迟线等,还有尚在发展。 3磁性材料的应用及行业发展 3.1磁性材料的应用 我们知道,硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基,粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r—Fe203或Cr02细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带一368~并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。 应用于计算机磁性存储设备和作为乘客乘车的凭证和票价结算的磁性卡所用的磁性材科及作用原理,同磁带所用的磁性材料及作用原理基本相同,只是用处不同而已。在磁性卡上有一窄条磁带,当你乘地铁从甲站到乙站时,在甲站向仪器中投入从甲站到乙站的票钱(硬币),之后投出一张磁性卡,在投出这张磁性卡的过程中已录上了到乙站下车的磁记录,拿这张磁性卡乘车到乙站后投入到仪器中,门开,出站。如果没在乙站下车,而是在比乙站远的丙站下车,投入的硬币不够,出站门不开。要拿磁性卡补票后才能出站。在乙站或丙站投入磁性卡的过程,就是磁记录经过磁头变成电信号的过程。再用电信号控制站门开关。电机的铁芯所用的磁性材料一般用硬磁铁氧体,这些材料的特点是磁化后不易退磁。对磁通的阻力小。磁性材料的用途广泛,磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。 3.2磁性材料的行业发展 中国地大物博,金属和稀有元素矿藏非常丰富,有着丰富而天然的原材料资源优势,磁性材料产业所需的各种原材料几乎国内都能满足。磁性材料行业,离不开稀土。因为稀土成本占磁材原料成本的30%,而中国是稀土的故乡,世界上80%的稀土储量在中国,因此中国稀土的资源优势,决定了磁性材料行业的中国优势。 2006年中国出口各类磁体23万吨,出口金额仅8.6亿美元;进口各类磁体6.9万吨,而进口金额达5.7亿美元。2007年1—8月中国电磁铁;永磁铁等;电磁或永磁工件夹具等进口数量为57,031,992.00千克,用汇513,161,987.00美元;出口数量为193,840,035.00千克,创汇809,909,620.00美元。 中国磁性材料工业在产量方面已经初具规模,发展速度很快,但与日本等磁性材料工业发达的国家相比,无论是管理水平、制造工艺、产品质量及产品档次都存在一定差距。中低档产品占据了较大的国际市场,但在高档产品上还缺乏竞争力。随着高清晰度电视等消费类电子产品的日益普及,汽车、通信业的发展,对高档磁性材料的需求越来越多。中国的磁性材料企业应该抓住这个有利的时机,开发高档磁性材料产品,占领国际市场。 “十一五”时期,是中国磁性材料工业大发展时期,世界磁性材料产业中心已经转移到中国。预计中国铝镍钴磁钢产量为3,000吨(全球产量7,840吨),铁氧体永磁产量195,000吨(全球产量676,000吨),稀土钕铁硼磁体9,400吨(全球14,400吨),软磁铁氧体产量98,800吨(全球431,000吨)。到2010年中国各类磁体的产量均稳居世界之首,占全球的份额还将继续增大。到2020年,中国磁性材料的产量将占全球一半以上,成为世界磁性材料产业中心。 参考文献 [1]胡双锋,黄尚宇,周玲,吕书林.磁学的发展及重要磁性材料的应[J].稀有全属材料与工程。2007.(9). [23余声明.智能磁性材料及其应用EJ].磁性材料度嚣件,2004,(5).[3]宋振纶,李卫.钕铁硼永詹材科表面防护技术:特点?应用?同题 [J].磁性材料及器件,2008,(1).万方数据

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

关于磁性材料及其应用的探讨

关于磁性材料及其应用的探讨 发表时间:2019-08-15T14:05:45.490Z 来源:《工程管理前沿》2019年第9期作者:程俊峰[导读] 对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 宁波招宝磁业有限公司 315000 【摘要】磁性材料的用途多种多样,目前越来越多的学者对其进行了研究,本文对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 【关键词】磁性材料;应用;探讨 1引言 磁性材料的种类多种多样,例如磁性纳米材料、磁性气凝胶材料、磁性吸附材料等,不同的材料其用途各不相同,可以被应用与不同的领域。目前,磁性材料已经成为研究热点,根据其优势越来越多的被应用于各个行业中,本文介绍了几种磁性材料以及其应用。2磁性纳米材料 与大多现有生物医用纳米材料不同,以纳米氧化铁为代表的医用磁性纳米颗粒既可介导外场产生局域磁场、热效应、力学效应,又兼顾了本征的类酶催化活性。同时,纳米氧化铁是当前为数不多的已被美国食品药品监督管理局(FDA)批准可用于临床的无机纳米材料. 因此,将多功能集成于一体的磁性纳米颗粒在磁共振造影成像(MRI)、磁感应热疗、细胞命运调控、生物催化等生物医学相关领域展现出巨大的应用前景. 在生物影像方面,超顺磁性氧化铁纳米颗粒增强的磁共振 T 2 成像已应用于多种疾病的诊断;在肿瘤精准治疗方面,集成影像与热疗为一体的磁性氧化铁诊疗一体化纳米平台材料也展现了巨大潜力;在生物催化方面,磁性氧化铁纳米材料由于具有类生物酶的催化特性,且稳定性高、经济以及可规模化制备等特点,已经成为当前的研究热点之一。然而,磁性纳米材料在取得良好进展的同时,也面临着更重要的挑战. 比如,传统超顺磁氧化铁纳米颗粒作为磁共振T 2 造影剂,在临床应用上存在易与低信号区产生混淆,且图像分辨率仍有待提高的问题,作为磁热疗剂,其低的磁热效率也一直是临床靶向磁热疗应用的障碍. 令人欣慰的是,随着磁性纳米材料合成技术的不断发展,新型的磁性纳米材料不断涌现,不仅有效改善了以往存在的科学问题,而且也进一步扩展了其在生物医学领域的应用面. 如利用准顺磁氧化铁作为T 1 造影剂已被成功开发,高磁-热效率的纳米热疗剂也逐步进入人们视野,在脑神经调控、生物体器官冷冻复苏、细胞命运调控以及肿瘤诊疗一体化等方面也取得了长足进展。目前,磁性纳米材料在生物医学应用的多个领域都展现出其独特的优势,特别是在高效介导外场产生的生物效应及其应用上取得了重要进展。 3磁性气凝胶材料 气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材料。气凝胶最初由 Kistle制得,他采用超临界干燥技术成功制备了二氧化硅气凝胶,因此将气凝胶定义为湿凝胶通过超临界干燥所获得的材料。随着气凝胶材料的不断发展,具有特殊功能的气凝胶也越来越受到人们的关注。磁性气凝胶是一种具有磁响应性能的气凝胶材料,它同时兼具气凝胶的特性和磁响应性能,在吸附、催化和生物医学等领域的应用都有独特的优势。磁性气凝胶主要采用将磁功能化的材料分散在溶液中,经过凝胶化、老化和超临界干燥等步骤制得,通常的方法是将磁性纳米颗粒物理分散或化学接枝到气凝胶基质中,如在常规气凝胶上负载磁性纳米材料,以赋予其磁性能。因磁功能化的纳米材料和气凝胶基质的不同,磁性气凝胶的结构和性能也会变化,这为制备具有特殊功能的气凝胶提供了条件,具有很广的研究前景。磁性气凝胶可分为无机磁性气凝胶和有机磁性气凝胶两类:无机磁性气凝胶的基质主要是 SiO2 和 TiO2 等气凝胶,主要研究磁性颗粒与气凝胶基体的相互作用机理以及对材料结构和性能的影响。而有机磁性气凝胶的基质主要是石墨烯气凝胶和碳气凝胶等柔性气凝胶,它们主要应用于吸附、催化和医药载体等领域,且具有磁分离效果好、催化效率高和可回收利用的特点。在水处理中,磁性气凝胶材料能在保持其自身结构完整的前提下有效吸附污染物,并且能够通过在外部加载磁场的作用下实现快速分离与回收,是一种新型的环保吸附剂。由于具有高比表面积、高孔隙率以及磁性能,磁性气凝胶在催化效率和磁响应性能上有巨大的优势,也可以作为高效催化剂使用。此外,磁性气凝胶材料还在生物医药和电极材料等领域有优异的性能和广泛的应用,是一种研究与应用潜力巨大的新型材料。 4磁性吸附材料 工业发展一方面促进了科技的发展,给人们生活创造了各种便利,但另一方面由于涉及各种化学反应和材质,生产过后带来的环境垃圾以及废水的排放和处理也是一大难题。废水的排放会导致新的环境安全问题,国家对排放进行了限制,专家们也致力于研究出新的方式来处理废水,那么磁性吸附就是新兴的一种方式。 磁性材料在外加磁场的条件下就可以加速重金属离子与液体的分离,因此确保吸附材料具有稳定的磁性,就需要通过一番实验制得。实验发现制得的磁性氧化石墨烯取得了良好的吸附效果,比如实验将 FeCl 3 ·6H 2 O 作为前驱体制备出 Fe 3 O 4 修饰的三元磁性氧化石墨烯AMGO 很好的对 Cr(VI) 进行了吸附。还有 Cu 2+ 、Pb 2+ 、Ni 2+ 、Hg 2+ 、Cd 2+ 、As 3+ 、As 5+ 、Cr 6+ 等重金属离子存在于水和土壤中给环境带来了很大的污染,简单的物理和化学方法不能高效的除去这些重金属离子,那么研究出完备的吸附法就可以解除燃眉之急。 我们都知道水体中各种成分都是可以共存的,如果采用化学反应之类的除去重金属离子,会对原来的水体造成化学污染,而且浪费了资源,过滤和回收都是需要耗费很大的代价的。在这个基础下,水中的任何物质之间都是有可能发生反应从而影响重金属离子的去除的,为了避免这个弊端,需要保证吸附材料具有稳定的磁性,同样还要保证自身的稳定性。合成物就是一种稳定存在的方式,Fe 表面含有很强络合重金属离子能力的丰富的官能团,被相关人员拿来做研究,经实验发现在此基础下具有一定的吸附量,而且吸附量深受 PH 的影响,为了达到高效的吸附量需要对相关影响因素进行控制和调整。 在不同的 pH 下还有在不同金属离子的存在下,所具备的吸附效果也是不同的。在 pH 为 5.3 的情况下 GO/Fe 3 O 4 对 Cu(II)的最大吸附容量是 18.26 mg/g,但是在 FA 存在时最大吸附容量可以达到19.09 mg/g。除此之外对重金属离子的吸附性还和吸附顺序有关,所以对于不同的重金属离子的吸附量也是不同的。如何制备出更加强效的稳定性的材料就需要通过各种离子的尝试。运用化学反应将实验收获的具有吸附能力的离子制备成稳定的合成物,在加上磁性条件的情况下加强吸附效果。比如将 Fe 3+ 和 Fe 2+ 与 GO 上的羧基形成配合物制得的磁性氧化石墨烯就对许多重金属离子有明显的吸附成效。因此专家和研究人员把目光和研究方向投向具有磁性的吸附材料上,经过尝试和摸索,确实得到比较完备的实验报告和收获,相信在未来会制备出更加高效的吸附材料。

关于磁性纳米材料的研究应用

关于磁性纳米材料的研究应用 文献综述 姓名:于辉 学号:2013155048 学院:理学院 专业:材料化学 年级:2013级

关于磁性纳米材料的研究应用 【前言】 磁性纳米材料的应用可谓涉及在机械,电子,光学,磁学,化学和生物学领域的应用前景,纳米科学技术的诞生将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题。 下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品[1]。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 磁性纳米材料由于其独特的磁学性能、小尺寸效应,在化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等领域都有应用[2]。

【磁性纳米材料的发展历程和现状】 (一)关于磁性纳米材料 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1-100nm),或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性,而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 (二)关于颗粒磁性的研究 颗粒的磁性,根据磁畴理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值[3]。铁磁材料,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,提出了磁宏观量子隧道效应的概念,并研制成了磁性液体。非晶态磁性材料的诞生为磁性材料增添了新的一页,也为纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料)的问世铺平了道路。(三)磁性纳米材料的特点和制备方法[4] 磁性纳米材料有量子尺寸效应、小尺寸效应、宏观量子隧道效应的特点。 制备方法: <1>磁流体的制备方法 物理法:研磨法、热分解法、超声波法。 化学法:化学沉淀法、水热法。 <2>磁性微粒的制备方法 分散法、单体聚合法。 <3>纳米磁性微晶的制备方法 非晶化法、深度塑性变形法。 <4>纳米磁性结构复合材料的制备方法 溶胶-凝胶法、化学共沉淀法、磁控溅射法和激光脉冲沉积法。 (四)磁性纳米材料的应用范围[4] 磁记录方面的应用、纳米永磁材料方面的应用、纳米软磁材料方面的应用、纳米吸波材料领域的应用、生物医学领域的应用、金属有机高分子磁性材料方面的应用。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

国内磁性材料业状况和前景

国内磁性材料业状况和前景 1中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性 材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪 30年代开发的铝-镍-钴永磁(AlNiCo);50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体(Sm-Co),包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼(Nd-Fe-B)。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平均以每年10%的速度增长。中国磁体 产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年 之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是 中国磁体产业开始发展的第一阶段,其特点是起点低:因为投资小, 设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小 生产的模式。 1997~2002的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够 按先进的工艺路线组织生产,产品质量一般属中低档。2003年起,中 国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”, 即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体; 投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织 集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和 磁体制备,投资显著降低,效益则大为提升;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先 进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产因为成本过高,已难以为继,世 界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企业看好中国,如日本的TDK、FDK、

功能磁性纳米材料的构建及诊疗应用基础-东南大学

2017年高等学校科学研究优秀成果奖(科学技术)推荐项目公示材料(自然奖) 1、项目名称:功能磁性纳米材料的构建及诊疗应用基础 2、推荐奖种:高等学校科学研究优秀成果奖自然科学奖 3、推荐单位(专家):东南大学 4、项目简介: 磁性纳米材料因其丰富的磁学特性和良好的生物相容性,在生物医学领域有广泛的应用前景。如何构建生物医用磁性纳米材料,解决其控制制备的关键科学问题并建立相关标准,发现磁性纳米材料新的生物效应,并解决其在生物医学应用中核心科学问题,是实现临床实际应用的挑战和迫切需求。经过多年研究取得了如下重要科学发现: 1. 系统研究了磁性纳米材料的控制制备及表面修饰,研究成果发表在Coll. Surf. A与Nanoscale Res. Lett.,共计被SCI正面他引260篇次。研制出10L纳米 -Fe2O3弛豫率国家标准物质(GBW(E)130387),教育部组织的科技成果鉴定认为该标准物质填补了国内外空白,对磁共振成像造影剂研制、生产及临床应用具有重要意义。提出了一种交变磁场诱导磁性纳米颗粒组装的新机制,制备得到具有各向异性磁热效应的水凝胶,结果发表在Angew. Chem. Int. Ed.、Adv. Mater.等专业期刊上,被同行认为“交变磁场组装磁性纳米颗粒是过去十几年

来除了静磁场控制组装以外首次提出的新的组装方式和机制”,“首次制备具有各向异性磁热效应的磁性水凝胶”,“在未来的临床热疗中具有重要应用前景”。 2. 发现了磁性纳米材料的pH依赖双模拟酶活性与促成骨新效应,为发展新型诊疗技术提供了重要基础。发现氧化铁纳米颗粒具有pH依赖双模拟酶活性,揭示了其在酸性条件下(如细胞溶酶体)的类过氧化物酶活性以及中性条件下(如细胞质)类过氧化氢酶活性。结果发表在ACS Nano并被亮点报道,被同行认为是“开拓性的工作”,促进了类酶纳米材料的发展。进一步通过纳米氧化铁颗粒表面修饰普鲁士蓝壳层,极大地提高了其类酶活性和生物检测的灵敏度,结果在J. Mater. Chem.发表后被同行评价为“构建的纳米结构模拟酶具有极好的电化学稳定性和更高的催化活性”,最近还被载入普通高等学校规划教材《酶工程》第三版中。还发现磁性纳米纤维支架在外加静磁场中可以显著促进成骨细胞分化,该策略在Nanoscale期刊发表后被国际上多家实验室应用,并且被评价为“磁性纳米纤维复合材料为骨组织缺损修复提供了一种有潜力的治疗策略”。 3. 创新构建了组装磁性纳米颗粒的复合超声微气泡,实现了增强的超声/磁共振双模态成像,深入探讨了磁性纳米颗粒与聚合物膜材分子的组装调控及释放机制,发展了超声调控类酶磁性纳米颗粒无损、高效传输进入细胞质的技术,为量化调控复合材料以及声能控制磁性微气泡药物精准靶向输运奠定了基础。结果发表在Biomater.、Small、ACS Appl. Mater. Interfaces等期刊,被同行评价为“这一令人兴奋的结果在未来疾病的双模态诊疗中极具潜力”。 10篇代表论文被SCI他引837篇次,其中被影响因子 7的期刊论文他引181篇次。培养全国百篇优博2名、国家自然科学基金杰出青年1名、教育部新世纪优秀人才2名,并且连续两期牵头国家重大科学研究计划项目研究(973首席科学家),并分别以良好和优秀成绩通过验收。

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

磁性陶瓷材料

磁性陶瓷材料 1.铁氧体磁性材料概述 铁氧体是一种非金属磁性材料,又称磁性陶瓷。早在我国春秋战国时代就有“慈石召铁”的记载。其中所谓的“慈石”就是现代称之的磁铁矿 石,也就是铁氧体的一种,其主要成分是Fe3O4,可以称其为天然的铁 氧体。人类研究铁氧体是从20世纪30年代开始的,至今已有70多年历 史了。早期有日本、荷兰等国家对铁氧体进行了系统研究,于20世纪 40年代开始有软磁铁氧体的商品问世。在第二次世界大战期间,由于无 线电、微波、雷达和脉冲技术的飞速发展,迫切需要能由于高频段,并 具有损耗低的新型磁性材料。当时的金属磁性材料由于存在严重的趋肤 效应和涡流损耗,而无法使用。铁氧体基本上是绝缘体,电阻率高,涡 流损耗小,在当时得到了迅速的研究和开发。20世纪50年代是铁氧体 蓬勃发展的时期。1952年磁铅石型硬磁铁氧体研制成功。1956年又在 此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石榴 石型铁氧体,从而形成了尖晶石型、磁铅石和石榴石型三大晶系铁氧体 材料体系。应该说铁氧体的问世,是强磁性磁学和磁性材料发展史上的 一个重要里程碑。至今铁氧体磁性材料已在广播、通讯、收音机、电视、 音像技术、电子计算机技术、自动控制、雷达、宇航与卫星通讯、仪器、 仪表、印刷、显示以及生物医学、光电子技术等众多高技术领域得到了 广泛应用。 尖晶石型铁氧体

磁铅石型铁氧体 从化学组成上看,铁氧体是由铁族离子、氧离子及其他金属离子所组成的复合金属氧化物。但也有少数不含铁的磁性氧化物,近年来显示出明显的科学意义和高新技术方面的应用前景。 2.铁氧体磁性材料的种类和应用--《功能陶瓷材料》 铁氧体材料分为软磁、硬磁、旋磁、矩磁和压磁等五类。 (1)软磁铁氧体材料这类铁氧体是最先得到广泛运用的,也是日常生活中人们经常接触到的。所谓软磁铁氧体材料是指在较弱的磁场作用下,很容易被磁化也容易被退磁的一类铁氧体材料。其典型的代表是锰锌铁氧体Mn-ZnFe2O4,如

相关主题