搜档网
当前位置:搜档网 › 动态规划选址,背包matlab

动态规划选址,背包matlab

动态规划选址,背包matlab
动态规划选址,背包matlab

%选址问题

clear

a=[150 170 210 260 310;

150 165 220 170 320;

150 180 230 265 310;

150 190 215 240 300]%第一年到第五年的选址费用

b=[0 5 10 9;

5 0 7 6;

10 7 0 8;

9 6 8 0]%从地址i转到地址j的转移费用

f=zeros(4,6);%存储指标函数的值

v=zeros(4,1);%存储决策变量的值

ff=zeros(5,1);%存储指标函数的值

c=zeros(5,1);%存储最终所选地址

for s=5:-1:1%用逆推法求解

for k=1:4

v=a(:,s)+b(:,k);

f(k,s)=min(v+f(:,s+1));

end

ff(s,1)=min(f(:,s));

c(s,1)=min(find(f(:,s)==ff(s,1)));%找到一列中最小元素所在的行,如果有两行相等则取较小行end

ff,c

% 背包问题

A=10; %背包的重量极限

n=3; %物品的种数

a=[3 4 5]; %第i件物品的单件重量

c=[4 5 6]; %第i件物品的单件价值

%%%%%%%%%%%%%%%%%%%

s=0:1:A;

x{1}=floor(s./a(1));

f{1}=c(1).*x{1};

for i=1:A+1

xvalue{1}{i}=x{1}(i); %xvalue为最优路径

end

for i=2:n

for j=0:10

tmax=floor(s(j+1)/a(i))+1;

ff{j+1}=ones(1,tmax);

for t=1:tmax

ff{j+1}(t)=(t-1)*c(i)+f{i-1}(s(j+1)-(t-1)*a(i)+1); %临时取值:(t-1)*c(i)+f(i)

xval{j+1}{t}=[xvalue{i-1}{s(j+1)-(t-1)*a(i)+1},t-1]; %每种ff取值的x 的路径

end

fff=ones(1,tmax);

fff=ff{j+1};

[f{i}(j+1),k]=max(fff);

xvalue{i}{j+1}=xval{j+1}(k); %通过k值确定最优路径

end

end

[fmax,h]=max(f{n}); %最优解

finalx=xvalue{n}{h}; %最优路径

finalx

fmax

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

动态计划求解方法的Matlab实现及应用[]

动态规划求解方法的Matlab实现及应用[1].txt我自横刀向天笑,笑完我就去睡觉。你的手机比话费还便宜。路漫漫其修远兮,不如我们打的吧。第 %卷第 ,期信息工程大学学报 S>:+% <>+, !""’年 >月 T>8D3F: >C 53C>DEFB2>3 G3?23@@D23? 032H@DA2BI 6@N+!""’ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! 动态规划求解方法的 !"#$"%实现及应用 于斌,刘姝丽,韩中庚 <信息工程大学信息工程学院,河南郑州 #’"""!) 摘要:文章对动态规划问题的求解方法进行了分析研究,根据问题的特点、难点和关键点做了 针对性的处理,然后用 !"#$"%做了实现尝试,从而实现了“最佳组队”和“最短路线”等问题的 求解。实践证明所采用方法和程序都是有效的。 关键词:动态规划;基本方程;!"#$"%实现;最佳组队 中图分类号:* !!&+,文献标识码:-文章编号:&%.& $ "%.,

$ "# !"#$"% &’"$(>"#(*+ *, #-’ ./+"0(1 23*43"00(+4 5663*"1-"+7 8#9 566$(1"#(*+ /0 123,450 6789:2,。-< =7>3?9?@3? <53AB2B8B@ >C 53C>DEFB2>3 G3?23@@D23?,53C>DEFB2>3 G3?23@@D23? 032H@DA2BI,=7@3?J7>8 #’"""!,K723F) 5%9#3"1#:1I F3F:IJ23? F3L 23H@AB2?FB23? B7@ LI3FE2M ND>?DFEE23? FNND>FM7,F3 @CC@MB2H@ L2AN>AF: 7FA O@@3 L>3@

动态规划 销售人员分配问题(matlab编程)

数学规划课程设计 题目:销售人员费配问题 姓名: 学号: 成绩: 2011年6月

销售人员费配问题 摘要:动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法,本论文通过对动态规划的基本概念和基本思路,并利用Matlab对动态规划中的销售人员分配问题进行了分析,然后利用Matlab语言进行了程序设计和计算,是复杂问题简单化,避免了繁琐的计算,从而使问题能跟方便地得到解决。 关键词:动态规划销售人员分配问题Matlab语言

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员, 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及 C 代码动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01 背包问题。 /* 一个旅行者有一个最多能用M 公斤的背包,现在有N 件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M —个的试。比如,开始任选N 件物品的一个。看对应M 的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1 物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5

5,6 c[i][j] 数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3 则里面放 4. ...................................................... "这样,这一排背包容量为4,5,6, 10 的时候,最佳方案都是放 4."假如1 号物品放入背包.则再看2 号物品.当背包容量为3 的时候,最佳方案还是上一排的最价方案c 为 4." 而背包容量为5 的时候,则最佳方案为自己的重量 5. "背包容量为7 的时候,很显然是5加上一个值了。加谁??很显然是7-4=3 的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7 的时候,最佳方案不是本身的 6. "而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n, m)二max{f( n-1,m), f(n-1,m-w[ n] )+P( n,m)}这就是书本上写的动态规划方程. 这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过) : #include int c[10][100];/* 对应每种情况的最大价值*/

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用 动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。 1.动态规划基本组成 (1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k (2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。 (3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。用()k k D x Dk(xk)表示k x 的允许决策的集合。 (4) 策略 每个阶段的决策按顺序组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。从初始状态* 11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{ } **** 121,,,,n n x x x x + 称为最优轨线。 (5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。 (6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。过程在某阶段j 的阶段指标函数是衡量该阶段决策优劣数量指标,取决于状态j x 和决策j u ,用(,)j j j v x u 表示。 2.动态规划基本方程 (){} 11()min ,,(),()k k k k k k k k k k f x g v x u f x u D x ++=∈???? Matlab 实现 (dynprog.m 文件) function [p_opt,fval]=dynprog (x,DecisFun,SubObjFun,TransFun,ObjFun) % x 是状态变量,一列代表一个阶段的所有状态; % M-函数DecisFun(k,x) 由阶段k 的状态变量x 求出相应的允许决策变量; % M-函数SubObjFun(k,x,u) 是阶段指标函数, % M-函数ObjFun(v,f) 是第k 阶段至最后阶段的总指标函数 % M-函数TransFun(k,x,u) 是状态转移函数, 其中x 是阶段k 的某状态变量, u 是相应的决策变量; %输出 p_opt 由4列构成,p_opt=[序号组;最优策略组;最优轨线组;指标函数值组]; %输出 fval 是一个列向量,各元素分别表示p_opt 各最优策略组对应始端状态x 的最优函数值。

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

动态规划_销售人员分配问题(matlab编程)

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员,分配到各市场所获利润如下表示,试问应如何分配销售人员才能使总利润最大? 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

最大收益:f 2(x 2)=2 max u [g 2(u 2)+ f 3(x 3)]= 2 max u [g 2(u 2)+ f 3(x 2- u 2 )] 最大收益:f 1(x 1)=1 max u [g 1(u 1)+ f 2(x 1- u 1)]= max[g 1(u 1)+ f 2(4- u 1)] 为此,我们可以用Matlab 语言编程使问题能跟方便地得到解决,其算法设计如下图:

01背包问题(动态规划法)

0/1背包问题 1. 问题描述 给定一个载重量为m,n个物品,其重量为w i,价值为v i,1<=i<=n,要求:把物品装入背包,并使包内物品价值最大 2. 问题分析 在0/1背包问题中,物体或者被装入背包,或者不被装入背包,只有两种选择。 循环变量i,j意义:前i个物品能够装入载重量为j的背包中 (n+1)*(m+1)数组value意义:value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j,第i个物品不装入背包 否则,若w[i]<=j且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值(替换为第i个物品装入背包后的价值) 计算最大价值的动态规划算法如下: //计算 for(i=1;ij,第i个物品不装入背包 value[i][j]=value[i-1][j]; //w[i]<=j,且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值 int temp=value[i-1][j-w[i]]+v[i];

if(w[i]<=j && temp>value[i][j]) value[i][j]=temp; } } 即该段程序完成以下n个阶段: 1:只装入1个物品,确定在各种不同载重量的背包下,能够得到的最大价值 2:装入2个物品,确定在各种不同载重量的背包下,能够得到的最大价值 。。。 n:以此类推,装入n个物品,确定在各种不同载重量的背包下,能够得到的最大价值3. 问题求解 确定装入背包的具体物品,从value[n][m]向前逆推: 若value[n][m]>value[n-1][m],则第n个物品被装入背包,且前n-1个物品被装入载重量为m-w[n]的背包中 否则,第n个物品没有装入背包,且前n-1个物品被装入载重量为m的背包中以此类推,直到确定第一个物品是否被装入背包为止。逆推代码如下: //逆推求装入的物品 j=m; for(i=row-1;i>0;i--) { if(value[i][j]>value[i-1][j]) { c[i]=1; j-=w[i]; } } 4. 代码如下

实验报告:动态规划---0-1背包问题)

XXXX大学计算机学院实验报告计算机学院2017级软件工程专业 5 班指导教师 学号姓名2019年10 月21 日成绩

实验内容、上机调试程序、程序运行结果 System.out.println("选中的物品是第"); for(int i=1;i<=n;i++){ for(int j=1;j<=maxweight;j++){ //当前最大价值等于放前一件的最大价值 maxvalue[i][j] = maxvalue[i-1][j]; //如果当前物品的重量小于总重量,可以放进去或者拿出别的东西再放进去 if(weight[i-1] <= j){ //比较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最高价值) if(maxvalue[i-1][j-weight[i-1]] + value[i - 1] > maxvalue[i-1][j]){ maxvalue[i][j] = maxvalue[i-1][j-weight[i-1]] + value[i - 1]; } } } } return maxvalue[n][maxweight]; } public static void main(String[] args) { int weight[] = {2,3,4,5}; int value[] = {3,4,5,7}; int maxweight = 8; System.out.println(knapsack(weight,value,maxweight)); } } 完成效果:

动态规划法求解背包问题

算法分析与设计实验报告

附录:完整代码 #include #include int V[200][200];//前i个物品装入容量为j的背包中获得的最大价值int max(int a,int b) //一个大小比较函数,用于当总重大于第I行时{ if(a>=b) return a; else return b; } int Knap(int n,int w[],int v[],int x[],int C) { int i,j; for(i=0;i<=n;i++) V[i][0]=0; for(j=0;j<=C;j++) V[0][j]=0; for(i=0;i<=n-1;i++) for(j=0;j<=C;j++) if(j=0;i--) { if(V[i][j]>V[i-1][j]) { x[i]=1; j=j-w[i]; } else

x[i]=0; } printf("选中的物品是:\n"); for(i=0;i

相关主题